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Abstract

A new formula for accelerated discrete efficient stochastic simulation of chemically reacting system is
proposed. This formula has better accuracy and stiff stability properties than the explicit [J. Chem.
Phys, 115. 1716-1733, (2001)] and implicit [J. Chem. Phys, 119. 11784-94, (2004)] tau-leaping
formulas for discrete stochastic systems, and it limits to the trapezoidal rule in the deterministic
regime. Numerical results are presented to demonstrate the advantage of the new formula.
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Introduction

In recent years, concerns over stochastic effects result-
ing from the small numbers of certain reactant molecules
in microscopic systems (Mcadams and Arkin 1997, 1999,
Arkin et. al. 1998, Fedoroff and Fontana 2002), have
called for accurate and efficient stochastic simulation
methods. The fundamental simulation method is Gille-
spie’s Stochastic Simulation Algorithm (SSA) (Gillespie
1976, 1977). Although progress (Gibson 2000, Cao et.
al. 2004) has been made to improve the efficiency of
implementations of the SSA method, as an exact pro-
cedure that simulates every reaction, it is necessarily
inefficient for most realistic problems. The tau-leaping
method (Gillespie 2001) has been proposed to improve
the efficiency. By using a Poisson approximation, the
tau-leaping method can ”leap over” many fast reactions
and approximate the stochastic behavior of the system
very well. The tau-leaping method makes a natural con-
nection between the SSA in the discrete stochastic regime
and the explicit Euler method applied to the chemical
Langevin equation in the continuous stochastic regime
and to the reaction rate equation (RRE) in the continu-
ous deterministic regime. Thus the tau-leaping method
provides a numerical formula ideal for multiscale stochas-
tic simulation.

Several extensions (Gillespie and Petzold 2003, Rathi-
nam et. al. 2003, Cao et. al. 2004) to the tau-leaping
method have recently been proposed, including a more
robust stepsize selection strategy (Gillespie and Petzold
2003) and an implicit tau-leaping method (Rathinam
et. al. 2003). The implicit tau formula is a modifica-
tion to the tau-leaping method (also called explicit tau
formula) to improve the numerical stability of the tau-
leaping method when it is applied to stiff (stiffness re-
flects the presence of multiple timescales, the fastest of
which are stable) stochastic systems. The convergence
and stability of the explicit and implicit tau methods
have been studied (Rathinam et. al. 2004). Despite
this progress, research on tau-leaping methods is still at
the early stage. Several important problems still remain
open. For example: (1) Both the explicit and implicit
tau methods are of convergence order one. Higher order

formulas are desired. (2) The stepsize selection strategy
proposed in Gillespie (2001) and improved in Gillespie
and Petzold (2003) is still not as efficient or reliable as
it might be. Better stepsize selection strategies are still
needed. (3) For stiff problems, the implicit tau method
has a damping effect (Rathinam et. al. 2003): the vari-
ance generated from the implicit tau formula is much
smaller than the exact value for large stepsizes. Although
the down-shifting strategy (Rathinam et. al. 2003) can
be applied to overcome the damping effect, it would be
desirable to have a formula that maintains the stiff sta-
bility without the damping effect.

In this paper we propose the trapezoidal tau-leaping
formula. This formula is similar to the trapezoidal rule
for solving ordinary differential equations (ODEs) (As-
cher and Petzold 1998). We will present this formula,
and show through numerical experiments that, just as
the trapezoidal rule is a second-order formula in the de-
terministic regime, the trapezoidal tau-leaping formula
also is second order for the mean value (although it is still
first order for the variance). The numerical experiments
also show that, for stiff problems, the trapezoidal tau-
leaping formula doesn’t have the damping effect. Thus
this formula can capture the variance without the use of
down-shifting.

Simulation Algorithms for Chemical Kinetics

Suppose the system involves N molecular species
{51, ..., Sn}. The state vector will be denoted by
X(t) = (X1(t),...,Xn(t)), where X;(¢) is the number of
molecules of species S; in the system at time t. M reac-
tion channels {Ry,...,Rum} are involved in the system.
We assume that the system is well-stirred and in ther-
mal equilibrium. The dynamics of reaction channel R;
is characterized by the propensity function a; and by the
state change vector v; = (v1j,...,vnN;): a;j(z)dt gives the
probability that one R; reaction will occur in the next
infinitesimal time interval [t,t + dt), and v;; gives the
change in the S; molecular population induced by one
R; reaction.

The dynamics of the system obeys the chemical mas-
ter equation (CME) (Gillespie 1976, 1977). But the CME
is hard to solve, both theoretically and numerically. An



equivalent simulation method is the SSA (Gillespie 1976,
1977). Let ag(x) = aJ( z). The time 7 to the next
occurring reaction is t e exponentially distributed ran-
dom variable with mean 1/ag(z). The index j of that
reaction is the integer random variable with probability
a;(z)/ao(x). SSA is a Monte Carlo method based on
these distributions. For each step, SSA generates two
random numbers r; and ry in U(0,1), the uniform dis-
tribution on the interval (0,1). The time for the next
reaction to occur is given by t 4+ 7, where 7 is given by

L Jog(2). (1)
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The index j for the next reaction is given by the smallest
integer satisfying

> o

The system states are updated by X (¢t +7) = X (t) +v;.
Then the simulation proceeds to the next occurring time,
until it reaches the final time.

In principle, the SSA could be used to simulate all of
the chemical species and reactions, except that because it
must proceed one reaction at a time, it is much too slow
for most practical problems. Gillespie (2001) has pro-
posed a scheme called tau-leaping to accelerate the SSA.
The basic idea of the tau-leaping method is to ask the
question: How many times does each reaction channel fire
in each subinterval? In each step, the tau-leaping method
can proceed with many reactions. i This is achieved at
the cost of some accuracy. For each j from 1 to M, define
K;(1;z,t) as the number of times, given X (¢) = z, that
reaction channel R; will fire in the time interval [¢,t+7).
Tau-leaping assumes the Leaping Condition: Require
T to be small enough that the change in the state during
[t,t+ 7) will be so slight that no propensity function will
suffer an appreciable change in its value. K;(7;x,t) is
then given by the Poisson random variable

= P(a;(2)7)

The basic tau-leaping method proceeds as follows:
Choose a value for 7 that satisfies the Leaping Condi-
tion. Generate for each j = 1,..., M a sample value k;
of the Poisson random variable P(a;(z),), and update
the state by

> 7ro ao ) (2)

Kj(t;,1) (j=1,...,M). (3)

M
X(t+7‘)=x+Zk‘juj. (4)

The tau-leaping method is equivalent to the explicit Eu-
ler formula in the deterministic regime. But the explicit
Euler formula is known to be inefficient when applied to
stiff problems. The basic tau-leaping formula (also called
explicit tau-leaping formula) has the same difficulty. The
implicit tau formula (Rathinam et. al. 2003) has been

proposed to handle the stiffness, and is given by

X(“)(t-l—r)—;H—ZuJ[ (a5(@)) = a5 (@) +a; (X (¢ +7))] .
j=1
()

Newton’s method is used to solve (5) for X (t 4 7).

Note that here X () (¢ 4 7) are floating point values. In
the simulation, we change them to integers by round-
ing the quantity in brackets on the right side of (5) to
the nearest integer. But to simplify the analysis, here
we will use (5) as written. It has been demonstrated
(Rathinam et. al. 2003) that the implicit tau formula al-
lows much larger stepsizes than the explicit tau formula,
when applied to stiff stochastic systems. The damping
effect (Rathinam et. al. 2003) has also been observed
for the implicit tau formula: When a large stepsize is
used to solve a stiff system, although the implicit tau
formula captures the mean value very well, it yields a
much smaller variance than the exact value. The vari-
ance can be recovered by the ”down-shifting” procedure
(Rathinam et. al. 2003), but this adds to the time and
complexity of the numerical solution procedure.

Trapezoidal Tau-Leaping Formula

It is well-known in the numerical analysis of ODEs that
the trapezoidal rule has the following features compared
with both the explicit and implicit Euler formulas: (1)
The trapezoidal rule has a higher convergence order (two)
than the explicit and implicit Euler formulas (which are
first order accurate); (2) The trapezoidal rule is A-stable
(Ascher and Petzold 1998); (3) The trapezoidal rule does
not have the damping effect. We might hope that the
analogue of the trapezoidal rule in the discrete stochastic

regime might inherent some of these properties.
We propose the trapezoidal tau-leaping formula as fol-
lows:

M
R (t47) = 243 vy [Plos(@)7) -
j=1

a;(z) + —a (X<">(t + T))]

(6)
The difference between (6 (6) and (5) is only the coefficients
of the a;(z) and a;(X {) terms. The other implementation
details are similar to that of the implicit tau formula.
After generating the Poisson random numbers P(a;(2)7),

we apply Newton’s method to solve (6) for X®7). Then
K; is given by

K{'" = ROUND ([P(a;(2)) - Za; (X + T))]())

7
The solution of the trapezoidal tau-leaping formula is
given by (4), with K from (7). For a fixed stepsize T,

the trapezoidal tau formula is formulated as follows:

.
5‘11'(35) +

Algorithm Trapezoidal Tau Method

1. Initialization.  (Set the initial numbers of
molecules. Set t = 0. Set 7.)

2. Calculate the propensity functions a;, (i =
sy M.

3. Generate M independent random numbers from
P (a;(x)7).
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4. Solve (6) for X) by Newton iteration.

5. Calculate K;, (i =1,..., M) by (7).

6. Update the states of the species by (4).
t=t+r.

7. End the simulation when t reaches the final time.
Otherwise, go to step 2.

Update

Numerical Examples

We use three examples to demonstrate the advantages
of the trapezoidal tau formula.

Example 1: Isomerization reaction

Consider the isomerization example
X — 0, (8)

with propensity function a(z) = 0.1z, X (0) = 100 in the
time interval [0, 10]. With these parameters, this problem
is nonstiff.

For this example we can compute the exact values for
the mean and variance and compare them with the nu-
merical results. Figures 1 and 2 show the errors in the
mean and variance for different formulas and stepsizes.
It is apparent that the errors in the mean from the trape-
zoidal tau formula are much smaller than the correspond-
ing errors from the explicit and implicit tau formulas.
But the errors in the variance from the trapezoidal tau
formula show only a linear convergence. By a similar
analysis to Rathinam et. al. (2004), we can prove that
trapezoidal formula is order two for the mean value and
only order one for the variance. This numerical results
match with the theoretical analysis.

Simple Decay Process: Mean Error vs Stepsize

FIG. 1: The errors of the mean vs. the stepsize for Example
1 with 10° samples computed using explicit tau (the solid line
plot with “0”), the implicit tau (the dashed line with “+7),
and the trapezoidal tau (the dotted line with ”*”).

Example 2: Decaying-dimerizing reaction set

This reaction system was studied in Gillespie (2001)
and Rathinam et. al. 2003 as a very stiff system. It
consists of N = 3 species undergoing M = 4 different

FIG. 2: The errors of the variance vs. the stepsize for Ex-
ample 1 with 105 samples computed using explicit tau (the
solid line plot with “0”), the implicit tau (the dashed line with
“4+7), and the trapezoidal tau (the dotted line with ”*”).

types of chemical reactions:

S <50
S + 51 : Sy (9)

Sy =4 Ss.

We chose values for the parameters

c1 =1, ¢ =10, ¢ = 1000, ¢4 =0.1.
Hence the propensity functions are given by
a1 =1, a2 = bz1(x1 — 1), ag = 1000z2, as = 0.1z5,

x; being the number of species S;. We chose the initial
conditions X;(0) = 400, X»(0) = 798, X3(0) = 0 and
final time T = 0.2. Table I shows the mean and vari-
ance values of 10,000 samples generated independently
by different formulas with different stepsizes compared
with the results of 10,000 samples from SSA. As we can
see, the explicit tau formula blows up for larger stepsizes.
The implicit tau formula produces an accurate mean but
too small variance, due to the damping effect. The trape-
zoidal tau formula generates an accurate variance even
with large stepsizes.

Method | Stepsize| 1075 | 107* [2x 107*[ 1073 | 1072

Explicit Mean |387.68|386.60| 384.85 00 00
Tau Variance| 362.47)598.48| 2486 00 00

Implicit Mean |387.18|387.833| 387.57 |387.60|387.55
Tau Variance| 845.90|242.17| 187.87 | 64.56 | 9.25

Trapezoidal| Mean 387.30| 387.83 |387.43|3887.79
Tou Variance 347.49| 352.50 |847.64|338.92

TABLE I: The mean and variance for X; at T = 0.2, gen-
erated from different formulas. The SSA values are: mean
387.6931 and variance 343.5377.



o 100 200 300 400 500 600 700 800 500

FIG. 3: The histogram (10,000 samples) of X solved by the
SSA method (solid line), explicit tau (plot with ’+’), implicit
tau (plot with *’) and trapezoidal method (plot with ’0’) for
Schlégl reaction.

Example 3: Schlogl reaction: a bistable example

The Schlogl reaction (Gillespie 1992) is a famous ex-
ample of a reactor with bistable distribution.
C1
By +2X = 3X,
o2 10
B, = X. (10

Caq

B; and B, denote buffered species whose molecular pop-
ulations N; and N, are assumed to remain essentially
constant over the time interval of interest. Let

X (t) = number of Xmolecules in the system at time ¢.

The propensity functions are

a1(z) = aaNz(z —1),
az(z) = caz(z —1)(z — 2), (1)
az(z) = c3No,
as(x) = .
The state change vectors are vy = v3 =1, s = vy = —1.

For some parameter values, this reaction has two stable
states. The special parameter set that we used in our
simulation is:

c1 =3 X 10_7, Co = 10_4, c3 = 10_3,
N1:1X105, N2:2X105.

Cq4 = 3.5;

(12)
We ran the simulation from ¢ = 0 with initial state z(0) =
250 to time 7" = 4. The histograms generated from SSA,
explicit tau, implicit tau and trapezoidal tau with fixed
stepsize 7 = 0.4 are shown in Figure 3. We can see that
the histogram given by the trapezoidal tau method is
much closer to that given by the SSA method than those
given by the explicit and implicit tau methods.

Conclusions

A new tau-leaping formula for discrete stochastic sim-
ulation of biochemical systems was introduced. Numeri-
cal experiments verify it excellent stability and accuracy
properties.
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