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Abstract. Moving mesh methods based on the equidistribution principle (EP) are studied from
the viewpoint of stability of the moving mesh system of differential equations. For fine spatial grids,
the moving mesh system inherits the stability of the original discretized partial differential equation
(PDE). Unfortunately, for some PDEs the moving mesh methods require so many spatial grid points
that they no longer appear to be practical. Failures and successes of the moving mesh method applied
to three reaction-diffusion problems are explained via an analysis of the stability and accuracy of the
moving mesh PDE.
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1. Summary. Many methods have been proposed for adapting the mesh to
achieve good spatial resolution in the solution of PDEs. Some of these methods are
moving mesh methods in which the meshpoint locations are computed simultaneously
with the solution via an augmented system of differential equations. In principle,
these methods have the advantage that they are able to move the mesh to follow a
rapidly changing solution. However, obtaining a robust implementation of moving
mesh methods has proven to be very difficult. This is true especially in problems with
more than one spatial dimension.

In this paper we study moving mesh methods from the viewpoint of stability of
the moving mesh system of differential equations. Following spatial discretization
via the method of lines, a moving mesh PDE which attempts to equidistribute a
given mesh function yields a system of differential-algebraic equations (DAEs), where
equidistribution is the constraint. In section 2, we give an introduction to moving
mesh schemes based on equidistribution. In section 3, the discretized moving mesh
system is written as a DAE. Moving mesh methods which have been proposed in the
literature are shown to be regularizations of this DAE. In many cases, theory for DAEs
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720 SHENGTAI LI, LINDA PETZOLD, AND YUHE REN

can be applied directly to yield convergence of the mesh to the equidistributing mesh,
as the regularization parameter γ → ∞. A technique is presented for investigating
the stability of the discretized moving mesh PDE, based on the theory of stability for
DAEs. This approach has been used in some simple and very smooth cases to show
that the discretized moving mesh PDE inherits the stability properties of the original
discretized PDE.

Unfortunately, for some PDEs, moving mesh methods require so many spatial
grid points to maintain stability and accuracy that they no longer appear to be prac-
tical. In section 4, we present some numerical experiments for three reaction-diffusion
problems. For two of the problems, a large number of meshpoints must be used to
achieve a reasonable solution with the moving mesh, whereas the results on the fixed
mesh are much better. The moving mesh method performs quite well on the third
problem. In section 5, these results are explained via an analysis of the stability and
accuracy of the moving mesh PDE. Such an analysis can give a good idea of when
not to use a moving mesh method.

2. Background. To begin, we consider a one-dimensional time-dependent PDE

ut = f(x, u, t), x ∈ Ω, 0 < t < T,(2.1)

with the initial and boundary conditions

u(x, t = 0) = u0(x), b(u, x, t) = 0, x ∈ ∂Ω.

The subscripts indicate partial derivative operators, Ω is an interval in < with bound-
ary ∂Ω, the vector u(x, t) lies in some function space, and f and b are nonlinear spatial
differential operators.

In the Lagrangian frame, meshes move continuously with time, and equation (2.1)
can be rewritten in the form

u̇− uxẋ = f(x, u, t),(2.2)

where u̇ = ut+uxẋ is a total derivative. Moving mesh methods determine the solutions
u and the meshes x simultaneously.

Moving mesh methods are applied for time-dependent PDEs with large gradients.
They allow automatic selection of meshes for both spatial x and temporal t according
to the behavior of the solution. The idea of moving meshes is easy to understand, while
the determination of effective moving mesh strategies has proven to be surprisingly
difficult, in part because of problems with instability. Here we will be concerned
mainly with finite-difference discretizations of moving mesh methods based on the
EP [13]. Another class of moving-grid methods is based on the moving finite element
(MFE) method, which was proposed in [28, 29, 18] and analyzed in [36, 25, 37].
Although much interesting research on the MFE method continues, that method now
rests on a firmer theoretical foundation than the class of moving mesh methods we will
consider. Here, we seek to develop a deeper understanding of moving mesh systems of
PDEs based on equidistribution, particularly with respect to the effect of the moving
mesh on stability of the spatially discretized system, and to the causes for breakdown
of this method.

The EP has been one of the most important concepts in the development of
moving mesh methods. Mathematically, the goal of finding mesh functions {xi(t)}N−1

i=1

or moving meshes

Π : {a = x0 < x1(t) < · · · < xN−1(t) < xN = b},(2.3)
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STABILITY OF MOVING MESH SYSTEM 721

which are equidistributing for all values of t, means that we want∫ xi(t)

xi−1(t)

M(x, t)dx =
1

N

∫ b

a

M(x, t)dx =:
1

N
θ(t), i = 1, 2, . . . , N.(2.4)

This equidistribution equation can be written equivalently as∫ xi(t)

xi−1(t)

M(x, t)dx =

∫ xi+1(t)

xi(t)

M(x, t)dx, i = 1, 2, . . . , N − 1,(2.5)

where M(x, t) is a positive monitor function. The arclength and curvature monitors
are widely chosen to determine the positions of the mesh [38].

In [12], the stability of the equidistribution process has been studied for some
moving mesh methods. Differentiating the equidistribution equation (2.5) yields

Miẋi(t)−Mi−1ẋi−1(t) +

∫ xi(t)

xi−1(t)

∂

∂t
M(x, t)dx

= Mi+1ẋi+1(t)−Miẋi(t) +

∫ xi+1(t)

xi(t)

∂

∂t
M(x, t)dx,

(2.6)

where Mi = M(xi(t), t), which leads to instabilities of the moving mesh. In particular,
the differentiation of equation (2.4)

M(xi, t)ẋi +

∫ xi

a

Mt(x, t)dx =
i

N

dθ

dt
, i = 1, . . . , N,(2.7)

is investigated. A linearized perturbation of (2.7) yields

M(xi(t), t)δẋi(t) +
∂M

∂x
(xi(t), t)ẋi(t)δxi(t) +Mt(xi(t), t)δxi(t) = 0,

i.e.,

d

dt
[M(xi(t), t)δxi(t)] = 0.(2.8)

Integrating from t = 0 to t,

δxi(t) =
M(xi(0), 0)

M(xi(t), t)
δxi(0).(2.9)

If the monitor function is chosen such that M(xi(0),0)
M(xi(t),t)

> 1, the mesh moving is unstable.

In part, the instabilities in the above scheme arise because the equidistribution
constraint has been differentiated. Thus the solution can “drift off” the original con-
straints, a phenomenon which has often been observed in the solution of DAEs when
using the differentiated constraint. In this case, the drift can cause the meshpoints
even to leave the problem domain. This problem is easily corrected, as proposed
in [12], by reintroducing the original constraints, either directly to obtain (following
spatial discretization) a DAE or indirectly via a regularization of the DAE. However,
the resulting DAE has often been observed to have problems with stability and/or
spatial accuracy. Methods based on regularizations of the DAE appear to be more
robust but depend on selecting an appropriate value for the regularization parameter
which is problem dependent and apparently difficult to determine.
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722 SHENGTAI LI, LINDA PETZOLD, AND YUHE REN

3. Moving mesh DAEs. In this section, we consider the equidistribution (2.5)
as a constraint in moving mesh methods for solving time-dependent PDEs. Following
spatial discretization and expanding the system by introducing the new variable y = ẋ
results in a semiexplicit DAE system

ẋ = y,(3.1a)

u̇ = f(x, u) + h(x, u)y,(3.1b)

0 = g(x, u),(3.1c)

where x = (x1, x2, . . . , xN−1)T , u = (u1, u2, . . . , uN−1)T , and g = (g1, g2, . . . , gN−1)T

where

gi =

∫ xi(t)

xi−1(t)

M(x, u)dx−
∫ xi+1(t)

xi(t)

M(x, u)dx for i = 1, 2, . . . , N − 1.(3.2)

M(x, u) is a monitor function which controls the movement of the mesh, and h(x, u)
is a diagonal matrix whose ith diagonal element is the difference approximation to ux
at xi. The DAE system (3.1) is index-2 Hessenberg [9] if gx+guh(x, u) is nonsingular
in a neighborhood of the solution.

In moving mesh methods, the PDE and the mesh equation are solved simultane-
ously as in (3.1). Although the stability of the equidistribution equation has been well
studied, the stability of the system (3.1) has not to our knowledge been investigated.
Moreover, most of the stability results which have appeared [23, 32, 33, 34] apply only
to the continuous moving mesh PDE rather than to its discretization.

Our experience with moving mesh schemes based on equidistribution has been
that when there is a problem with stability, the solution as well as the mesh is often
affected. Any such problems can usually be corrected by allowing enough grid points.
However, the number of grid points needed may be much larger than what is desirable
for efficiency or necessary for spatial resolution. We have observed that the spatial
discretization used in h(x, u) (the discretization of ux) can dramatically affect stabil-
ity. For example, noting that the term uxẋ in a sense convects the solution at a speed
which is locally equal to the mesh velocity, it is not surprising that by upwinding
this term, rather than using the centered difference as in most of the moving mesh
literature, the equidistributing mesh system (3.1) can often be stabilized. High-order
upwinding schemes for moving mesh systems are considered in [27] and offer a sub-
stantial improvement for convection-dominated problems, but they cannot stabilize
the moving mesh for the reaction-dominated problems considered later in this paper.

Thus we believe that a complete understanding of the stability of moving mesh
systems of PDEs based on equidistribution can only be obtained by studying the sta-
bility of the coupled, discretized system (3.1) and its regularizations. It is important
to understand the stability of the equidistributing DAE (3.1) directly, rather than only
that of its regularizations. Even if the regularized solutions are shown to converge to
the solutions to (3.1) and to possess other good properties, they will not be robust
with respect to the choice of the regularization parameter for all problems unless the
limiting equation (3.1) is stable.

We will now examine several moving mesh methods which correspond to regular-
izations of the DAE. Usually, differentiating the constraint equation (3.1c) leads to
mild instabilities for the numerical integration. For the stabilization of this type of
DAE, some methods are suggested in [5]. One of the popular stabilization techniques
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STABILITY OF MOVING MESH SYSTEM 723

is Baumgarte’s method [7]. Here the constraint (3.1c) is replaced by

γg(x, u) +
d

dt
g(x, u) = 0,(3.3)

where γ is a positive constant to be chosen such that the numerical solution of (3.3) is
stable. Application of this technique to stabilize moving mesh equations is suggested
by Petzold in [16]. The partial differential form is studied in [21, 22]. If the initial
meshes satisfy the equidistribution constraint, then the solution of (3.3) also satisfies
the equidistribution constraint. Even if the initial meshes are random, asymptotically
we have equidistributing meshes for large enough γ and t.

Some initial results on convergence of the regularizations are immediately avail-
able for the discretized system via theory which has recently been developed for DAE
systems. For example, consider the regularized DAE arising from Baumgarte’s stabi-
lization

ẋ = y,(3.4a)

u̇ = f(x, u) + h(x, u)y,(3.4b)

0 = γg(x, u) +
d

dt
g(x, u).(3.4c)

We can apply the results of [6] to show that the manifold M̃ defined by g(x, u) = 0 is
an asymptotically stable invariant manifold of the ODE (2.2) combined with (2.6) for
γ > 0 and that the flow of (3.4c) on M̃ reduces to the flow of (2.2) and (2.6) restricted
to M̃ .

Let us now consider another moving mesh method, which can be written following
spatial discretization as

ẋ = y,(3.5a)

u̇ = f(x, u) + h(x, u)y,(3.5b)

1

γ
y = A−1g(x, u).(3.5c)

This method has been investigated in [1, 2, 4] for

A =


−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

 .(3.6)

A variant of this method takes A to be

A =


−2M1 M2

. . .
. . .

. . .

Mi−1 −2Mi Mi+1

. . .
. . .

. . .

(3.7)

and is closely related to the method of Hyman and Naughton [24].
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724 SHENGTAI LI, LINDA PETZOLD, AND YUHE REN

The moving mesh system (3.5) can be considered to be a regularization of the
Hessenberg index-2 DAE (3.1). Applying the theory in [26], we see that the solution
to the regularized system (3.5) converges as γ →∞ to the solution of (3.1) if A−1(gx+
guh(x, u)) is negative definite in a neighborhood of the solution.

It should be noted that the solution to the DAE (3.1) may not be well defined if
gx+guh(x, u) becomes singular. At such a point, the DAE is singular and the solution
may not exist or be unique. These are places where the moving mesh method can
fail. This can happen for example with the arclength monitor at inflection points of
u.

The MMPDEs defined in [21, 22] can all be seen to be regularizations of the
type (3.4) or (3.5) of the DAE (3.1). Techniques motivated by temporal and spatial
smoothing can also be seen as regularizations to the system (3.1). The temporal
smoothing is determined by the time scale 1/γ. The spatial smoothing is determined
by the matrix A in (3.5). For example, for the method of Dorfi and Drury (see [14]),
the matrix A is of the form

Ai,i = −
(

µ
Mi(∆xi−1)2 + 1+2µ

Mi(∆xi)2 + 1+2µ
Mi−1(∆xi−1)2 + µ

Mi−1(∆xi)2

)
,

Ai,i−1 = µ
Mi(∆xi−1)2 + 1+2µ

Mi−1(∆xi−1)2 + µ
Mi−1(∆xi−2)2 ,

Ai,i−2 = − µ
Mi−1(∆xi−2)2 ,

Ai,i+1 = µ
Mi(∆xi+1)2 + 1+2µ

Mi(∆xi)2 + µ
Mi−1(∆xi)2 ,

Ai,i+2 = − µ
Mi(∆xi+1) ,

where µ = κ(κ + 1) is a spatial smoothing parameter. After introducing the spatial
smoothing operator A, the system becomes extremely nonlinear. Different γ and A
yield different condition numbers, which result in different convergence speeds when
the system is solved by a stiff ODE or DAE solver. We must be careful when we
choose γ and A. In our experience, A can be chosen independent of the problem,
while γ is often a problem-dependent parameter and determines how fast the mesh
tends to the equidistributed mesh. Generally, if strong reactions occur in a very short
time interval, a larger γ should be chosen. This often happens in reaction-diffusion
problems. However, for hyperbolic equations, a small γ often yields faster convergence
than a large one. Note also that some regularizations are less sensitive to different
parameters γ. The Dorfi and Drury method is relatively insensitive to the different
time scales, compared with the MMPDE(1-6).

We have seen how spatial discretizations of moving mesh PDE systems based on
equidistribution can be considered as a DAE or as a regularization of a DAE and
how results on the convergence of DAE regularizations can be used to give conditions
for convergence of the mesh to the equidistributing mesh (3.1). The next step is to
examine the accuracy and stability of the discretized equidistributing PDE itself. We
have already explained how the discretized PDE with equidistributing mesh (3.1) can
be considered as an index-2 Hessenberg DAE. Fortunately, a theoretical framework
has developed over the past few years to understand the stability properties of these
types of problems [5, 6, 26].

The stability of a linear index-2 Hessenberg DAE system can be investigated
by making use of the essential underlying ODE (EUODE) defined in [5]. Roughly
speaking, by using the constraints to eliminate some of the degrees of freedom of the
system, we can write a smaller ODE which shows how the DAE propagates informa-
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STABILITY OF MOVING MESH SYSTEM 725

tion from one time to the next. A model for the linearized moving mesh system based
on equidistribution can be given by

ẋ = y,(3.8a)

u̇ = Au+By,(3.8b)

0 = Cx+Du.(3.8c)

To find the EUODE, suppose [x, u] ∈ <n, y ∈ <m. Define v ∈ <n−m by

v = −Bx+ u.(3.9)

Differentiating (3.9), we obtain

v′ = −Bx′ + u′ −B′x.(3.10)

We can obtain [x, u]T in terms of v by noting that(
v
0

)
=

(−B I
C D

)(
x
u

)
.

Solving for [x, u]T ,

x = −(C +DB)−1Dv,

u = (I −B(C +DB)−1D)v.(3.11)

Multiplying (3.8a,b) by [−B, I] and rewriting in terms of v, we obtain the essential
underlying ODE for (3.8),

v′ = B′(C +DB)−1Dv +A(I −B(C +DB)−1D)v.(3.12)

Asymptotic stability of the nonlinear index-2 Hessenberg DAE (3.1) can be studied
locally via its linearization [31, 35].

For some simple and very smooth situations, we have been able to show using
the EUODE approach that the discretized moving mesh equations (3.1) inherit the
stability properties of the original discretized PDE. Huang and Russell [23]) and Smith
and Stuart [34] have derived stability bounds for continuous forms of moving mesh
PDEs based on the EP. A full analysis of the discretized moving mesh system, showing
in general how coupling between the equidistribution constraint and the original PDE
affects the stability of the moving mesh system, has yet to be accomplished.

Based on these limited results, one might hope that in general the stability of
the original discretized PDE might be retained by the discretized moving mesh PDE.
Unfortunately, these results require that the original system is dynamically stable,
and that a sufficiently large number of spatial grid points is used. For many practical
problems, in particular some strong reaction problems, the discretized moving mesh
system is no longer stable or accurate. For these problems, moving mesh methods
can bring about large errors and produce unacceptable solutions except on very fine
grids. In the following, we investigate several such problems.

4. Numerical experiments. Many problems have steep wave fronts in their
solution. Consider the class of reaction-diffusion equations

∂u

∂t
= µ

∂2u

∂x2
+ g(u).(4.1)
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726 SHENGTAI LI, LINDA PETZOLD, AND YUHE REN

We have encountered difficulties in solving these kinds of problems with moving mesh
methods. In order to have a clear understanding of the difficulties, we first consider
the following two problems for which an analytic solution can be obtained. The
moving mesh method we choose is EP with arclength monitor. The first problem is
the famous Fisher equation [15]. The general form of the Fisher equation is

∂u

∂t
= β∇2u+ αu(1− u).

In one dimension, for example, with u = 1 for x < −a and u = 0 for x > a > 0, and
some smooth function between, the time asymptotic solution to Fisher’s equation is
a front with constant thickness L = 4 ∗ (βα )

1
2 propagating to the right with constant

speed (βα)
1
2 (see [11]). We consider the following one-dimensional equation with exact

solution: 
∂u
∂t = uxx + αu(1− u),

u =

(
1

1+e

√
α
6
x− 5

6
αt

)2

, 0 ≤ x ≤ 1,
(4.2)

where the large parameter α = 104. The left boundary and initial condition are
derived from the exact solution. The right boundary is set to zero. Since the wave

velocity is c =
√

25α
6 > 0, the solution reaches the steady state very rapidly (in

about 0.005 time). In Figure 4.1, we show the reference solution computed with 200
nodes and central difference on a uniform mesh (UM), compared with a coarser grid
(40 nodes) UM solution. All time integration in this section is done via DASPK
[9, 10] with RTOL=10−6 and ATOL=10−6. We can see that the front moves too fast
using the coarser grid. Figure 4.2 shows the results using the moving mesh (Dorfi
and Drury [14]) with 40 nodes and spatial smoothing parameter κ = 2. The results
with the moving mesh are worse than with the fixed mesh. We also tried the values
of α = 0.01 and α = 0.001. The results are similar. We also tried computing the
solution on the interval −1 ≤ x ≤ 1. A wave front is formed before propagation at
x = 0. Even if we use the equidistributed initial mesh, the solution does not improve
much. At time t = 0.003 there is a strong oscillation in the solution. Results with
the MMPDEs(1-6) with large regularization parameter and with the equidistributing
DAE are similar.

The second problem is a heat conduction problem which has been considered by
Coyle, Flaherty, and Ludwig [12] and Ren [32],{

∂u
∂t = µuxx + (r2 + 2r2

1µu)(1− u2)
u = tanh(r1x+ r2t), −3 ≤ x ≤ 3,

(4.3)

with small diffusion term µ = 10−3 and r1 = r2 = 5.0. The wave velocity is c = − r2r1 <
0. The solution is a steep wave front propagating to the left side, which will reach
the left boundary at time t = 3. The boundary and initial conditions are derived
by the given exact solution. We tested it with 20 nodes and central difference in the
spatial discretization. The moving mesh method we chose is MMPDE(6). We chose
different time scales τ = 1

γ to test this problem. The time scale τ determines how
fast the mesh tends to the equidistributing mesh. The smaller the τ , the faster the
mesh tends to the equidistributing mesh. The reference solution (solid line in the
plots) is computed using the exact solution. We see that the UM method is surprising
accurate. However, for the moving mesh method, the wave front moves too fast.
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Fig. 4.1. Results of uniform grid (41 nodes) for Fisher equation; reference solution: solid line;
marked solution at t = 0.0(∗), 0.001(o), 0.002(+), 0.003(x), 0.004(∗), 0.005(o).
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Fig. 4.2. Results of moving mesh (Dorfi and Drury) method (41 nodes) for Fisher equation;
time scale τ = 10−6.

Moreover, there is a strong oscillation in the solution after time t = 1.0, which causes
much difficulty for the Newton iteration of the DAE solver. We only plot the solution
at time t = 1. The results are shown in Figure 4.3. Because in this problem the
diffusion coefficient µ is independent of the exact solution, this allows us to choose
different values of µ for the same solution. For example, we can choose µ = 1 in
(4.3). The results for the moving mesh are better than the fixed mesh now as shown
in Figure 4.4. It should be pointed out that the wave front for this problem is not
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Fig. 4.3. Results of moving mesh (21 nodes) for heat conduction problem (r1 = r2 = 5.0 and
µ = 10−3) at t = 1.0; exact solution: solid line; marked solution: o(UM), ∗(τ = 1.0), −x − (τ =
0.001).
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Fig. 4.4. Results of moving mesh (top one with 21 nodes, τ = 0.001) and UM (bottom one with
41 nodes) for heat conduction problem (r1 = r2 = 5.0, and µ = 1); exact solution: solid line. Plot
at times t = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5.

very steep. We can choose a big r1 to steepen the wave front. We also have changed
µ to other values with the new r1 and r2 and find that if

2r2 + 2r2
1µ− 6r2

1µ < 0,(4.4)

no matter how steep the wave front, the moving mesh can get good results (see Figure
4.5). Note that (4.4) is the derivative of the reaction term g(u) when u = −1.
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Fig. 4.5. Results of moving mesh for heat conduction problem (r1 = 100, r2 = 10 and
µ = 10−3, τ = 0.001) with 40 nodes; reference: solid line; marked solution plotted at times
t = 0.0, 2.0, 4.0, 6.0, 8.0, 10.

We also have experienced other problems in related numerical experiments as
follows.

1. The smaller the time scale τ , the bigger the errors, i.e., the front moves faster.
2. There is a constant time shift δt for each time interval, i.e., ui+1 ≈ u(x(t̃i+1 +

δt), t̃i+1 + δt), where t̃i+1 is the expected time with true value at ti. δt changes very
little between two adjacent intervals. The shift causes the computed solution to be
further and further from the true solution.

3. When using a more stable scheme for the discretized PDEs, such as first-
order upwinding, the results show some improvement. However, the above problems
remain.

4. If the initial mesh is chosen to be the equidistributing mesh, the results are
improved a bit, but the wave front still goes faster than expected after some time.

5. We experimented with higher-order spatial discretizations; however, the re-
sults did not improve a lot.

It should be noted that the moving mesh method does not fail for all reaction
problems. For some problems, the moving mesh method can work very well. Take
the following scalar combustion model (see [30] and [17] for details) as an example.
The equation is

∂u

∂t
=
∂2u

∂x2
+D(1 + a− u) exp(−d/u), 0 < x < 1, 0 < t,(4.5)

∂u

∂x
(0, t) = 0, u(1, t) = 1, 0 < t,

u(x, 0) = 1, 0 ≤ x ≤ 1,

where D = Red/(ad) and R, d, a are constants. In numerical testing, the parameters
are often chosen to be a = 1, d = 20, R = 5. We used the central difference for spatial
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Fig. 4.6. Results of moving mesh (τ = 0.001, 41 nodes) for scalar combustion problem. Refer-
ence: solid line; marked solution plotted at times t = 0.26, 0.27, 0.28, 0.29.

discretization and the Dorfi and Drury [14] method to control the mesh moving. The
result is good as shown in Figure 4.6. The MMPDEs (1-6) [22] achieve similarly good
results for this problem.

5. Stability and accuracy analysis for reaction-diffusion problems. In
this section, we examine the stability and accuracy of moving mesh methods applied
to reaction-diffusion equations and explain the results of the previous section. We
explain the reasons why the moving mesh methods fail for some problems and point
out the kind of problems which may not be practical to solve by moving mesh methods.

5.1. Discretization error. Suppose the coupled system of mesh equation and
physical equation is

{
u̇ = µuxx + g(u) + uxẋ = f1(x, u),
ẋ = f2(x, u).

(5.1)

The truncation error introduced by the physical equation discretization is very sig-
nificant for our problems. For moving finite-difference (MFD) methods, central space
differencing is often chosen to discretize the terms uxx and ux because of its conserva-
tive and simple form. Suppose we have three consecutive nodes: x−h2, x, and x+h1.
We know from the Taylor expansion that the central difference discretization satisfies

u′(x) = u(x+h1)−u(x−h2)
h1+h2

− 1
2 (h1 − h2)u′′(x)− 1

6
h3

1u
′′′(η1)+h3

2u
′′′(η2)

h1+h2
,

u′′(x) = u
xx̂
− 1

3 (h1 − h2)u′′′(x)− 1
12
h3

1u
(4)(ξ1)+h3

1u
(4)(ξ2)

h1+h2
,

(5.2)
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STABILITY OF MOVING MESH SYSTEM 731

where u′ here denotes the derivative of u with respect to x, and u
xx̂

denotes the
central difference approximation to uxx. Inserting (5.2) into (5.1),

du
dt = µu

xx̂
− µ

[
1
3 (h1 − h2)u′′(x) + 1

12
h3

1u
(4)(ξ1)+h3

2u
(4)(ξ2)

h1+h2

]
+g(u) + u

x̂
· ẋ−

[
1
2 (h1 − h2)u′′(x) + 1

6
h3

1u
(3)(η1)+h3

2u
(3)(η2)

h1+h2

]
ẋ

= µu
xx̂

+ g(u) + u
x̂
ẋ+ f̃1(x, u),

(5.3)

where u
x̂

denotes the central difference approximation to ux and the truncation error
term is

f̃1(x, u) = −µ
(

1
3 (h1 − h2)u′′′(x) + 1

12
h3

1u
(4)(ξ1)+h3

2u
(4)(ξ2)

h1+h2

)
− 1

2 (h1 − h2)u′′(x)ẋ− 1
6
h3

1u
(3)(η1)+h3

2u
(3)(η2)

h1+h2
· ẋ

= −(h1 − h2)( 1
2 ẋu

′′ + 1
3u
′′′µ)− 1

6
h3

1

h1+h2
(ẋu(3)(η1) + 1

2u
(4)(ξ1)µ)

− 1
6

h3
2

h1+h2
(ẋu(3)(η2) + 1

2u
(4)(ξ2)µ).

(5.4)

Because the spatial discretization error in the moving mesh equation does not affect
the accuracy of the solution variable, we can assume that there is no spatial truncation
error for the moving mesh equations and consider only the spatial discretization error
introduced in the original augmented equation.

There are two important factors which determine the size of the errors. One is
the perturbation term f̃1(x, u). The other is the stability of the equation, which we
will discuss in the next subsection. From the error term equation (5.4), we find that if
the diffusion term µuxx is much smaller than the convection term uxẋ, the truncation
error will be dominated by the discretization error of the convection term. This term
is introduced by the moving mesh and does not exist when using the UM. From (4.2)
and (4.3), we note that when implementing the moving mesh, the mesh nodes at the
wave front will move at the speed of the wave propagation velocity c. It is easily seen
that the truncation error introduced by discretization of the convection term in these
two cases is much larger than that of the diffusion term. For Fisher’s equation, the
node velocity ẋ is very large. For the heat conduction problem, the diffusion parameter
µ is very small. This explains in part why the results of the moving mesh methods
are so much worse than that of the UM for both of these problems. The second-order
derivative in the heat conduction problem has little to do with the solution in the
parameter testing. If we drop it, the problem becomes a system of uncoupled ODEs,
where no spatial truncation error is introduced.

One of the objectives of moving mesh methods is to gain accuracy. Hence, for
our two problems, we should control the truncation error introduced in the convection
term uxẋ. This can be done by redistributing mesh nodes according to the rule that
where the leading terms of the truncation error are large, the spatial grid size should
be small, whereas where the leading terms of the truncation error are small, the grid
size can be larger. However, for some equidistributing moving mesh methods this
objective is only partially realized. For example, the leading error term of the above
problems is u′′(x) where the grid size varies in space, and u′′′(x) where the grid size
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732 SHENGTAI LI, LINDA PETZOLD, AND YUHE REN

is equally spaced. We cannot expect in general that the term (h1−h2)u′′(x) is small.
We can illustrate this from another point of view. It is well known that the EP is
equivalent to the transformation from the uniform computational mesh to the physical
mesh; i.e., there exists a mapping ξ → x. From this, we get

hj = xj+1 − xj = xξ∆ξ +O(∆ξ2), hj+1 − hj = xξξ∆ξ
2 +O(∆ξ4),

so that

ui+1−ui−1

xi+1−xi−1
= ux + 1

2∆ξ2(xξξuxx + 1
3x

2
ξuxxx) + HOT

= ux + 1
2h

2
j

(
xξξ
x2
ξ

uxx + 1
3uxxx

)
+ HOT,

where HOT denotes the higher-order terms. The difference scheme is of second order
if and only if

xξξ
x2
ξ

= O(1).(5.5)

Equation (5.5) is also called the quasi-EP [25]. We can see that the first term is
proportional to the second derivative of the solution and hence represents a numerical
diffusion, which depends on the variation of the grid point spacing. This numerical
diffusion may even be negative and hence destabilizing. Attention must be therefore
be paid to the variation of the spacing. Large changes in spacing from point to
point cannot be allowed, or else significant truncation error will be introduced. If
the spacing doubles from one point to the next, i.e.,hi+1

hi
= 2, we have approximately

xξξ = 2xξ − xξ = xξ (we assume here that ∆ξ = 1), so that the ratio of (5.5) is
inversely proportional to the spacing xξ. Thus, for small spacing, such a rate of
change of spacing would clearly be much too large. The important point is that the
spacing not be allowed to change too rapidly in high gradient regions such as steep
wave fronts or shocks. Because the local stretching factor rj = hj+1/hj is

rj =
hj+1

hj
=
xξ∆ξ + 1

2∆ξ2xξξ

xξ∆ξ − 1
2∆ξ2xξξ

+ HOT

or

rj = 1 + hjxξξ/x
2
ξ + HOT,

condition (5.5) implies that the stretching is quasi-uniform; i.e., the mesh should
be smooth enough that it will not change greatly between two adjacent intervals.
This can be achieved, for example, by the Dorfi and Drury method [14]. However,
although this method achieves better results, the results for the first two problems are
still unsatisfactory and much inferior to the equally spaced mesh. We must examine
another important property, stability of the physical equation, to explain the poor
results of the moving mesh methods for these problems.

5.2. Stability. We have seen that the truncation error is sometimes much larger
when the moving mesh is introduced. If the resulting ODE is dynamically stable, we
can get reasonable results by controlling this error term. In this section, we will see
that stability is very significant to our problems.

From the form of the truncation error, we know that the error introduced by
discretization of the convection term is much greater than that of the diffusion term.
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STABILITY OF MOVING MESH SYSTEM 733

Since the diffusion term is much smaller than the reaction and convection terms, for
simplicity we drop this term and the truncation error introduced by it and consider
only the truncation error introduced by the convection terms in (5.1). The reduced
system is given by {

u̇ = g(u) + u
x̂
· ẋ,

ẋ = f2(x, u),
(5.6)

and the perturbed system is{
u̇ = g(u) + u

x̂
· ẋ+ f̃1(x, u),

ẋ = f2(x, u).
(5.7)

The following theorem will be used to give the difference caused by the perturbation
term f̃1(x, u). The theorem is from [38].

Theorem 5.1 (see [36, 37]). Denote by y and z the solutions of the initial value
problem

ẏ = f(t, y), y(t0) = y0,
ż = f(t, z) + g(t, z), z(t0) = y0,

respectively, and suppose that ∂f/∂y exists and is continuous. Then the solutions are
related by

z(t)− y(t) =

∫ t

t0

∂y

∂y0
(t, s, z(s)) · g(s, z(s))ds,

where the derivative with respect to initial values

∂y(t, t0, y0)

∂y0
= Φ(t)

satisfies

Φ′(t) = ∂f
∂y (t, y(t, t0, y0)) · Φ(t),

Φ(t0) = I.

From this theorem, we know that the global error is determined by the Jacobian
∂f
∂y and the perturbation term g(t, z). Applying this theorem to our problem (5.7),

the perturbation term is the truncation error f̃1(x, u). It will be very large if we use
the UM at the initial time step. That is why the initial equidistributed mesh works
better than the initial UM. When the mesh has been equidistributed, the truncation
error term f̃1(x, u) will be a function independent of time t for the wave propagation
problems. So we can think of it as a constant vector δ approximately. The Jacobian
will be

C =

(
gu + C1 C2

(f2)u (f2)x

)
,

where (C1, C2) are the Jacobian of u
x̂
ẋ with respect to (u, x), and (f2)u and (f2)x are

the Jacobian of f2 with respect to (u, x). The global truncation error is not simply
the sum of local truncation errors. To see this, we must realize that at each step, the

D
ow

nl
oa

de
d 

10
/1

6/
17

 to
 1

28
.1

11
.6

9.
85

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



734 SHENGTAI LI, LINDA PETZOLD, AND YUHE REN

numerical solution must use as its initial value the approximate ordinate computed at
the preceding step. Thus, using the above theorem and ignoring the time truncation
error, we have (

∆u
∆x

)
= eC(t−t0)

(
δ01

δ02

)
+

∫ t

t0

e(t−τ)Cdτ

(
δ
0

)
.(5.8)

The initial value

(∆u,∆x)0 = (δ01, δ02)

is due to the truncation error before reaching the state of equidistributed mesh. From
(5.7) and (5.8), we know that once gu is positive and very large, the error will grow
very rapidly. Because the meshpoints are globally equidistributed by the moving
mesh, the error in one node in the turning point or wave front can cause a similar
error for its neighbor and then the truncation error will propagate quickly to all nodes.
The truncation error, which is large at the turning points (for our two problems, this
happens at the bottom corner of the wave front) will cause the nodes in that area to
advance faster than expected.

We now analyze our problems. For the Fisher equation, ∂g
∂u = α(1 − 2u); when

α is very large, it is strongly unstable at the bottom corner around u = 0.1 For the
heat conduction problem,

∂g

∂u
= −2r2u+ 2r2

1µ− 6r2
1µu

2.

When µ is very small, gu ' 2r2 at the bottom corner around u = −1, which can cause
strong instability in that area. So the truncation error will soon become large in that
region and propagate to other regions. In contrast, for the scalar combustion model
(4.5) the derivative of the reaction term is

∂g

∂u
= −D exp(−20/u) +D(2−u)(20/u2) exp(−20/u) = D exp(−20/u)

[40

u2
− 20

u
−1
]
.

It is unstable if u ≤ 1.8. However, we can see that the truncation error is very small
in that area and the instability is not so severe where there is greater truncation
error. At the bottom of the wave front (around u = 1.0), gu is very small; thus, the
truncation error will not grow as much for this problem. The diffusion term also plays
an important role in stabilizing the problem.

The importance of stability can also be seen by our second example. If we change
the parameter µ in (4.3) (because it is not related to the true solution of the equation),
we find that as soon as µ is large enough so that gu is negative or very small, i.e., the
equation is stable or mildly unstable, the moving mesh will work very well no matter
how steep the wave front is. This has been seen in Figure 4.4.

We have considered two strategies for improving the performance of moving mesh
methods based on stability and accuracy. Because stability is more important, we
would like to improve the stability first. One strategy to improve the stability of the
discretized system is to use a more stable scheme. This can be done by adopting an

1Fisher originally developed this equation as a deterministic continuous model of a stochastic
model of spread of genetic traits in a population. The unstable stationary solution was an important
part of the model; recessive genes are unstable compared with dominate genes in a population of
individuals.
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STABILITY OF MOVING MESH SYSTEM 735

upwinding scheme for the uxẋ term. From equation (5.8), we know that if gu + C1

is negative or very small, the error can be controlled. When using the first-order
upwinding scheme (without loss of generality, we assume ẋ > 0), C1 will be of the
following form:

−ẋ2

x3−x2

ẋ2

x3−x2

. . .
. . .
−ẋi

xi+1−xi
ẋi

xi+1−xi
. . .

. . .
−ẋn−1

xn−xn−1


+ diag(u

x̂
)(f2)u.

If the region of instability is very small, the stability will be improved. However, this
is at a cost of accuracy in that area. High-order upwinding schemes are considered
in [27]. These offer a substantial improvement for the moving mesh method applied
to convection-dominated problems but cannot stabilize the moving mesh method for
problems like the Fisher equation so that it is competitive with a fixed grid method.
Another approach is to use more nodes in the unstable area so that the spacing is small
enough for stability of the stable difference schemes to dominant the instability due
to the reaction terms. When the spacing is very small, the diffusion term contributes
more to the stability (because the eigenvalues for it are proportional to 1

(∆x)2 ). We

can use the monitor to distribute the nodes to the area where we want. One kind
of monitor for our problem to distribute more nodes to the unstable region is to
incorporate the reaction term into the monitor function, i.e., to choose the monitor
as

M(x, u) =

(
1 +

1

2
(gu(u) + |gu(u)|)

)√
1 + u2

x.(5.9)

This has a down side that the top corner is not resolved very well.
The next step is to reduce the truncation error. There are also two ways. One is

to use higher-order schemes. However, the high-order accuracy schemes often decrease
the stability of the systems. This is in contradiction to our objective of the first step,
so we do not recommend it. Another is to place many nodes at the location where the
spatial truncation error is large. This can reduce the truncation error sharply. This
can be achieved by choosing a monitor function which includes some measurement
of truncation error. Numerical experiments show that if we choose the curvature
monitor instead of the arclength monitor, we can get a better result. We would
like to use truncation error expressions in our monitor to distribute the nodes and
get better accuracy. However, it is well known that numerical evaluation of higher-
order derivatives can be subject to considerable computational noise. Therefore, it
is usually not practical to use formal truncation error expressions in the monitor
function in dynamic mesh moving. Hence lower-order derivative expressions are often
adopted such as the arclength or curvature monitors. Some problems may arise even
with solution curvature, i.e., with second derivatives, in rough transit. Numerical
experiments [8] also show that implementations of the moving mesh methods with
the curvature monitor are much less efficient than those with the arclength monitor.
We have tested the Fisher equation using the strategies we have given. To reduce the
truncation error due to using a uniform initial mesh, we use an equidistributed initial
mesh. We use the interval −1 ≤ x ≤ 1 as our computing domain. We first use the
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Fig. 5.1. The results of moving mesh with monitor function (5.9) for the Fisher equation. The
moving mesh still does not work even with the improved monitor.

first-order upwinding scheme with the arclength monitor. The result is very bad. So
we change to our new monitor (5.9). The result is still not very good as shown in
Figure 5.1. Even for a small parameter, α = 100, the front moves too rapidly.

Although all the strategies can be used for our problems, the result does not
improve a lot if we do not use many nodes. However, the moving mesh methods are
no longer advantageous for so many nodes. Therefore, for problems with strongly
unstable regions, if the diffusion is much smaller than the reaction term, the fixed
mesh method is recommended. Because there is no convection term appearing in
the equation and the truncation error is relatively smaller and fast convergence can
be obtained, the fixed mesh in this case can gain a better result than the moving
mesh even if the wave front is very steep. When we use the moving mesh to solve a
physical problem, we must be careful to observe whether the moving mesh term could
introduce large truncation errors (compared with the original truncation error) and if
the resulting system is strongly unstable. If either is true, the moving mesh methods
cannot be recommended.
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ese for relating to us the history of the Fisher equation.

REFERENCES

[1] S. Adjerid and J. E. Flaherty, A moving finite element method with error estimation and
refinement for one-dimensional time dependent partial differential equations, SIAM J.
Numer. Anal., 23 (1986), pp. 778–795.

[2] S. Adjerid and J. E. Flaherty, A moving-mesh finite element method with local refine-
ment for parabolic partial differential equations, Comput. Methods Appl. Mech. Engrg.,
55 (1986), pp. 3–26.

[3] V. W. Alekseev, An estimate for the perturbations of the solutions of ordinary differential
equations, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 2 (1961), pp. 28–36 (in Russian).

[4] D. C. Arney and J. E. Flaherty, A two-dimensional mesh moving technique for time-
dependent partial differential equations, J. Comput. Phys., 67 (1986), pp. 124–144.

D
ow

nl
oa

de
d 

10
/1

6/
17

 to
 1

28
.1

11
.6

9.
85

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



STABILITY OF MOVING MESH SYSTEM 737

[5] U. Ascher and L. Petzold, Stability of computational methods for constrained dynamics
systems, SIAM J. Sci. Comput., 14 (1993), pp. 95–120.

[6] U. Ascher, H. Qin, and S. Reich, Stabilization of DAE and invariant manifolds, Numer.
Math., 69 (1994), pp. 131–149.

[7] J. Baumgarte, Stabilization of constraints and integrals of motion in dynamical systems,
Comput. Methods Appl. Mech. Engrg., 1 (1972), pp. 1–16.

[8] J. G. Blom and J. G. Verwer, On the use of arc length and curvature in a moving-grid
method which is based on the method of lines, Report NM-N8402, CWI, Amsterdam, 1989.

[9] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations, 2nd ed., SIAM, Philadelphia, 1995.

[10] P. N. Brown, A. C. Hindmarsh, and L. R. Petzold, Using Krylov methods in the solution of
large-scale differential-algebraic systems, SIAM J. Sci. Comput., 15 (1994), pp. 1467–1488.

[11] J. Canosa, On a nonlinear diffusion equation describing population growth, IBM Journal of
Research and Development, 17 (1973), pp. 307–313.

[12] J. M. Coyle, J. E. Flaherty, and R. Ludwig, On the stability of mesh equidistribution
strategies for time-dependent partial differential equations, J. Comput. Phys., 62 (1986),
pp. 26–39.

[13] C. De Boor, Good approximation by splines with variable knots. II, in Conf. on the Numerical
Solution of Differential Equations, Lecture Notes in Math. 363, Springer-Verlag, Berlin,
1973, pp. 12–20.

[14] E. A. Dorfi and L. O’c. Drury, Simple adaptive grids for 1-D initial value problems, J.
Comput. Phys., 69 (1987), pp. 175–195.

[15] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), pp. 353–
369.

[16] J. E. Flaherty, J. M. Coyle, R. Ludwig, and S. F. Davis, Adaptive finite element methods
for parabolic partial differential equations, in Adaptive Computational Methods for Partial
Differential Equations, I. Babuska et al., eds., SIAM, Philadelphia, 1983, pp. 144–164.

[17] R. M. Furzeland, J. G. Verwer, and P. A. Zegeling, A numerical study of three moving
grid methods for one-dimensional partial differential equations which are based on the
method of lines, J. Comput. Phys., 89 (1990), pp. 349–388.

[18] R. J. Gelinas, S. K. Doss, and K. Miller, The moving finite-element method: Applications
to general partial differential equations with multiple large gradients, J. Comput. Phys., 50
(1981), pp. 202–268.

[19] W. Grobner, Die Lie-reihen und ihre Anwendungen, VEB Deutsche Verlag der Wis-
senschaften, Berlin, 2nd ed., 1967.

[20] E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I, Nons-
tiff problems, Springer Ser. Comput. Math. 8, Springer-Verlag, Berlin, 1987, second revised
edition, 1993.

[21] W. Z. Huang, Y. Ren, and R. D. Russell, Moving mesh partial differential equations (MM-
PDEs) based on the equidistribution principle, SIAM J. Numer. Anal., 31 (1994), pp. 709–
730.

[22] W. Z. Huang, Y. Ren, and R. D. Russell, Moving mesh methods based on moving mesh
partial differential equations, J. Comput. Phys., 113 (1994), pp. 279–290.

[23] W. Z. Huang and R. D. Russell, Analysis of moving mesh partial differential equations with
spatial smoothing, SIAM J. Numer. Anal., 34 (1997), pp. 1106–1126.

[24] J. M. Hyman and M. J. Naughton, Static rezone methods for tensor-product grids, in Proceed-
ings of SIAM-AMS Conference on Large Scale Computations in Fluid Mechanics, SIAM,
Philadelphia, 1984.

[25] I. W. Johnson, A. J. Wathen, and M. J. Baines, Moving finite element methods for evolu-
tionary problems II. Applications, J. Comput. Phys., 79 (1988), pp. 270–297.

[26] L. Kalachev and R. E. O’Malley, Jr., Regularization of nonlinear differential-algebraic
equations, SIAM J. Math. Anal., 25 (1994), pp. 615–629.

[27] S. T. Li and L. R. Petzold, Moving mesh methods with upwinding schemes for time-dependent
PDEs, J. Comput. Phys., 131 (1997), pp. 368–377.

[28] K. Miller and R. N. Miller, Moving finite elements I, SIAM J. Numer. Anal., 18 (1981),
pp. 1019–1032.

[29] K. Miller, Moving finite elements II, SIAM J. Numer. Anal., 18 (1981), pp. 1033–1057.
[30] L. R. Petzold, Observations on an adaptive moving grid method for one-dimensional systems

of partial differential equations, Appl. Numer. Math., 3 (1987), pp. 347–360.
[31] S. Reich, On the local qualitative behavior of differential-algebraic equations, Circuits Systems

Signal Process., 14 (1995), pp. 427–443.
[32] Y. Ren, Theory and Computation of Moving Mesh Methods for Solving Time-Dependent Par-

D
ow

nl
oa

de
d 

10
/1

6/
17

 to
 1

28
.1

11
.6

9.
85

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



738 SHENGTAI LI, LINDA PETZOLD, AND YUHE REN

tial Differential Equations, Ph.D. thesis, Simon Fraser University, Burnaby, B.C., 1991.
[33] Y. Ren and R. D. Russell, Moving mesh techniques based upon equidistribution, and their

stability, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 1265–1286.
[34] J. H. Smith and A. M. Stuart, Analysis of Continuous Moving Mesh Equations, Technical

Report, SCCM Program, Stanford University, Stanford, CA, 1996.
[35] D. Wang and N. H. McClamroch, Stability analysis of the equilibrium of constrained me-

chanical systems, Internat. J. Control, 60 (1994), pp. 733–746.
[36] A. J. Wathen and M. J. Baines, On the structure of the moving finite-element equations,

IMA J. Numer. Anal., 5 (1985), pp. 161–182.
[37] A. J. Wathen, Mesh-independent spectra in the moving finite element equations, SIAM J.

Numer. Anal., 23 (1986), pp. 797–814.
[38] A. B. White, Jr., On the numerical solution of initial/boundary-value problems in one space

dimension, SIAM J. Numer. Anal., 19 (1982), pp. 683–697.

D
ow

nl
oa

de
d 

10
/1

6/
17

 to
 1

28
.1

11
.6

9.
85

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p


