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Abstract. The use of reduced-order models to describe a dynamical system is pervasive in science
and engineering. Often these models are used without an estimate of their error or range
of validity. In this paper we consider dynamical systems and reduced models built using
proper orthogonal decomposition. We show how to compute estimates and bounds for
these errors by a combination of small sample statistical condition estimation and error
estimation using the adjoint method. Most important, the proposed approach allows the
assessment of regions of validity for reduced models, i.e., ranges of perturbations in the
original system over which the reduced model is still appropriate. Numerical examples
validate our approach: the error norm estimates approximate well the forward error, while
the derived bounds are within an order of magnitude.
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1. Introduction. Model reduction of dynamical systems described by differential
equations is ubiquitous in science and engineering [2]. Reduced-order models (ROMs)
are used for efficient simulation [17, 32] and control [18, 28]. Moreover, the process of
creating low-order models forces the researcher to isolate and quantify the dominant
physical mechanisms, revealing effective design decisions that would not have been
identified through numerical simulation, experiments, or “black box” optimization
methods [31].

The proper orthogonal decomposition (POD) method has been used extensively
in a variety of fields including fluid dynamics [23], identification of coherent struc-
tures [12, 21], and control [27] and inverse problems [19]. The method has been em-
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ployed for industrial applications such as supersonic jet modeling [5], turbine flows [6],
thermal processing of foods [3], and study of the dynamic wind pressures acting on
buildings [16], to name only a few.

Depending on the field of research, POD is also known as principal component
analysis (statistics [14]), Karhunen–Loève decomposition (signal analysis and pattern
recognition [9]), and the method of empirical orthogonal functions (EOFs) in geophys-
ical fluid dynamics [7, 24] and meteorology [1, 8, 29]. Techniques based on principal
component analysis (PCA) are the main dimension-reduction methods in analysis of
multivariate data, addressing the need to compress or decompose data for eliminating
the redundancy of high throughput measurements such as spatial, spectra, or image
data. PCA involves a mathematical procedure that transforms a number of (possibly)
correlated variables into a (smaller) number of uncorrelated variables called principal
components. The PCA components account for as much of the variability in the data
as possible. The EOFs form a set of basis functions which specify a transformation
on a set of empirical signals. The result is a set of signals that, phenomenologically
speaking, are statistically independent, i.e., have maximum variance. Thus, informa-
tion is evenly distributed among the signals, as well as the equally measurable values
of each signal, resulting in maximum information entropy and robustness to noise.

All the above reduction methods attempt to maximize the expectation of the en-
ergy in a basis set. It was shown that such an optimal basis is given by the eigenfunc-
tions of the integral equation whose kernel is the averaged autocorrelation function. In
practice, the covariance matrix is constructed based on measurements of the state, and
the existing model projected onto those eigenvectors which correspond to the largest
eigenvalues. Assessing the optimality of these reduction methods (POD, PCA, and
EOF) is a norm-dependent statement. For example, it was shown in [12] that for a
given number of modes, POD is the most efficient choice among all linear decompo-
sitions in the sense that it retains, on average, the greatest possible kinetic energy.

For analyses that require numerous and repeated solutions of the dynamical sys-
tem (such as dynamic optimization, control, etc.), ROMs are particularly appealing for
efficiency considerations. The reduction in dimension—and thus cost of simulation—
can be dramatic, and yet the resulting ROM can very accurately reproduce the so-
lution of the full-scale model. For example, Ma and Karniadakis [23] report on a
POD-based ROM for the flow past a circular cylinder which, with as few as 40 modes,
can accurately reproduce limit cycles and bifurcations obtained with a high-resolution
direct numerical simulation using hundreds of thousands of degrees of freedom.

However, an important property of nonlinear ROMs is that they are necessarily
based on a nominal set of parameters but are commonly used to obtain the system
solution at a different set of parameters. As such, as soon as one contemplates the
use of a reduced model, questions concerning the quality of the approximation (par-
ticularly under perturbations of the nominal parameters used in building the ROM)
become paramount. To judge the quality of the reduced model, it is important to
estimate its error.

An algorithm for estimating the error of a class of reduction methods based on
projection techniques was presented in [33]. In this approach, the original problem
is linearized around the initial time. The resulting first-order error estimates are
valid for only a small number of time steps (during which the Jacobian matrix can
be considered constant). First-order estimates of POD errors were used in [20] to
extend the concept of domain decomposition as a dynamic a posteriori verification
and, if necessary, correction of the approximate solution. Error estimates for reduced
models, more precisely the error for certain functionals of the solution, were obtained
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in [25]. The authors employed the dual-weighted-residual method, which makes use
of the solution of an adjoint system.

In the context of fluid dynamics, bounds for the errors resulting from POD model
reduction of two-dimensional Navier–Stokes equations were computed in [19]. In that
work, the approximation error was decomposed into a contribution that arises due to
the POD spatial approximation (measured in terms of the spectral properties speci-
fying the POD basis) and the approximation error due to the backward Euler scheme
for time integration. The resulting estimates made use of certain inequalities that,
although valid for the nonlinear evolution problem considered, may not be satisfied
for other examples. For models that contain discontinuities, for example, if the solu-
tion involves shocks, it was found in [22] that the POD reduced model was able to
represent a shock in a given location only if one of the snapshots used to build the
model had a discontinuity in the same location. This may require an unacceptably
large number of snapshots to achieve sufficient accuracy of the approximate solution.
To overcome this limitation a domain decomposition technique was introduced, using
a reduced-order model over the majority of the computational domain while solving
the full equations in a small region. Given an approximate solution (with unknown
accuracy) generated with a set of POD basis functions, the error is estimated by aug-
menting the POD basis with top hat basis functions and computing the first-order
change in the solution due to the additional basis functions. By comparing against
the results from a solution of known accuracy, such as one of the snapshots used to
generate the POD basis, the need for domain decomposition and its spatial extent
can be determined.

Bounds of POD errors, but not estimates, were considered in [26], as well as
effects (on the reduced-order model) of small perturbations in the ensemble of data
from which the POD reduced-order model was constructed.

In the present work we take the analysis of reduced models one step further by
analyzing the influence of perturbations to the original system on the quality of the
approximation given by the reduced model. This question is of particular interest
in applications (such as control and inverse problems) in which reduced models are
used not just to approximate the solution of the original system that provided the
data used in constructing the reduced model, but rather to approximate the solution
of systems perturbed from the original one. To the best of our knowledge, there are
no published results that address the estimation of the model reduction error of such
perturbed systems.

We base our approach on a combination of the small sample statistical condition
estimation (SCE) method [15] and error estimation using the adjoint method. Using
this framework, we define regions of validity of the reduced models, that is, ranges of
perturbations in the original system over which the reduced model is still appropriate.
We consider perturbations in both the initial conditions and in parameters describing
the dynamical system itself. The proposed approach is particularly attractive because
the resulting error bounds do not rely on the solution of the perturbed system. In
this sense, we provide an a priori assessment of the validity of the model-reduction
approximation. We note that our approach is based on linearization. For large enough
perturbations, knowledge of the solution of the perturbed system would be required.

Unlike the method presented in [33], our estimates and bounds are valid over the
entire time interval considered, not in a neighborhood of the initial time. Moreover,
we obtain estimates for the continuous error, as opposed to its discrete approxima-
tion. Although we study only a particular projection-based model reduction technique
(POD) among those considered in [33], the methodology developed here for POD can
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be easily extended to other types of projection. Compared to the approach taken
in [19], our method is applicable to a larger class of problems, our main requirement
being that the norm of the POD-based error is small enough for the linearized error
equation to be a good enough approximation. Furthermore, our estimates are inde-
pendent of the time integration method. We note also that our use of adjoint models
for error estimation is similar to that employed in [25]. However, as will be seen below,
the use of the SCE method enables the derivation of error “condition numbers” and
allows effective treatment of the region of validity problem.

In the context of integration of ordinary differential equations (ODE), the SCE
method combined with the adjoint approach has been used in [4] for estimation and
control of the global integration error.

The remainder of this paper is organized as follows. In sections 2 and 3 we briefly
describe the use of POD for model reduction and, respectively, the SCE method for
norm estimation. In section 3.1 we motivate our proposed approach of using SCE,
combined with error estimation using the adjoint method, to estimate the errors due
to the use of a reduced-order model. In section 4 we analyze errors arising purely from
the model reduction itself: the total approximation error and the subspace integration
error. In section 5 we analyze regions of validity of POD reduced models. In section 6
we present numerical results for two example problems. The first one is obtained from
the semidiscretization of time-dependent partial differential equation (PDE), namely,
advection-diffusion, while the second example models a pollution chemical reaction
mechanism. Finally, section 7 summarizes our results and describes our plans for
future research.

2. POD-Based Reduced Models. POD provides a method for finding the best
approximating affine subspace to a given set of data. When using POD for model
reduction of dynamical systems, the data are time snapshots of the solution obtained
via numerical simulations or from experiments. Consider the ODE system

dy

dt
= f(y, t) , y(t0) = y0 ,(2.1)

for t ∈ [t0, tf ], with y, y0 ∈ Rn and f : Rn × R → Rn. Consider next the solutions
of (2.1) at m time points, collected in the n × m matrix Y = [y(t1) − ȳ, y(t2) −
ȳ, . . . , y(tm) − ȳ], where ȳ is the mean of these observations. POD seeks a subspace
S ∈ Rn and the corresponding projection matrix PS so that the total square distance

‖Y − PY‖2 =
m∑
i=1

‖ (y(ti)− ȳ)− P (y(ti)− ȳ) ‖2

is minimized. Let λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 be the ordered eigenvalues of the correla-
tion matrix R = YYT . Then the minimum value of ‖Y −PY‖2 over all k-dimensional
subspaces S, with k ≤ n, is given by

∑n
j=k+1 λj . Moreover, the minimizing S is

the invariant subspace corresponding to the eigenvalues λ1, . . . , λk. Using the sin-
gular value decomposition (SVD) [10] of the observation matrix, UTYV = Σ, the
projection matrix corresponding to the optimal POD subspace S is obtained as

P = ρρT ∈ Rn×n ,(2.2)

where ρ is the matrix of projection onto S, the subspace spanned by the reduced basis
obtained from the SVD. The matrix ρ ∈ Rn×k consists of the columns Vi (i = 1, . . . , k),
the singular vectors corresponding to the k largest singular values.
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Without loss of generality, for the sake of simplicity in presentation we assume in
what follows that ȳ = 0.

In a coordinate system embedded in S, the projection of a point y ∈ Rn onto S is
represented by z = ρTy ∈ Rk, while in the full space the same projection is expressed
as ρz = Py ∈ Rn.

A POD-based reduced model that approximates the original problem (2.1) can
then be constructed [26] by projecting onto S the vector field f(y, t) at each point
y ∈ S. Therefore

dz

dt
= ρTf(ρz, t) , z(t0) = ρTy0 .(2.3)

In full space, the approximate solution ∼y is the solution of the ODE initial-value
problem (IVP)

d
∼
y

dt
= Pf(∼y, t) , ∼

y(t0) = Py0 .(2.4)

3. Small Sample StatisticalMethod forConditionEstimation. The SCE meth-
od, originally proposed in [15], offers an efficient means for condition estimation for
general matrix functions, at the cost of allowing moderate relative errors in the esti-
mate. The basic idea is described below (for complete details, see [11, 15]).

For any vector x ∈ Rn, if u is selected uniformly and randomly from the unit
sphere Sn−1, the expected value of uTx is proportional to the norm of x:

E(|uTx|) = Wn‖x‖ .

The Wallis factor Wn is defined as

W1 = 1 , Wn =




1 · 3 · · · (n− 2)
2 · 4 · · · (n− 1)

, n odd,

2
π

2 · 4 · · · (n− 2)
1 · 3 · · · (n− 1)

, n even,

and can be approximated with Wn ≈
√
2/(π(n− 1/2)). Therefore ξ = |uTx|/Wn

is an estimate for the norm ‖x‖. This estimate is first order in the sense that the
probability of a relative error in the estimate is inversely proportional to the size of
the error. That is, for γ > 1,

Pr
(
‖x‖
γ
≤ ξ ≤ γ‖x‖

)
≥ 1− 2

πγ
+O

(
γ−2) .

Additional function evaluations can improve the estimation procedure. Suppose that
we obtain estimates ξ1, ξ2, . . . , ξq corresponding to orthogonal vectors u1, u2, . . . , uq
selected uniformly and randomly from the unit sphere Sn−1. The expected value of
the norm of the projection of x onto the span U generated by u1, u2, . . . , uq is

E

(√
|uT1 x|2 + |uT2 x|2 + · · ·+ |uTq x|2

)
=

Wn

Wq
‖x‖ .

The analysis in [15] shows that the estimate ν(q) = (Wq/Wn)
√
|uT1 x|2 + · · ·+ |uTq x|2

is qth order accurate; i.e., a relative error of size γ in the estimate occurs with prob-
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ability proportional to γ−q. For example,

Pr
(
‖x‖
γ
≤ ν(2) ≤ γ‖x‖

)
≈ 1− π

4γ2 ,

Pr
(
‖x‖
γ
≤ ν(3) ≤ γ‖x‖

)
≈ 1− 32

3π2γ3 ,

Pr
(
‖x‖
γ
≤ ν(4) ≤ γ‖x‖

)
≈ 1− 81π2

512γ4 .

3.1. SCE for Estimation of Approximation Errors in Model Reduction. All
error estimates derived in this paper begin with the linearizations of one of the ODEs
(2.1), (2.3), or (2.4), or perturbations of these. Thus the error estimates are based on
solutions of linear error equations. To estimate the norm ‖e(tf )‖ of an error vector
e(t) ∈ Rn at t = tf , we need to evaluate quantities uTj e(tf ) for some random vector
uj selected uniformly from the unit sphere Sn−1. The norm estimate is then

‖e(tf )‖ ≈
Wq

Wn

√√√√ q∑
j=1

|uTj e(tf )|2 .(3.1)

The scalar products uTj e(tf ) can be computed efficiently using an adjoint model (to
the corresponding linear error equation) with final conditions at tf based on the vector
uj . However, this approach naturally raises the question: “What is the advantage of
using (typically more than one) solution(s) of the adjoint system to estimate the norm
of a quantity that can be otherwise obtained with only one forward ODE solution (of
the error equation)?” Our method is motivated by the fact that we are interested not
only in estimating the error for one given ODE system, but rather in estimating (as
efficiently as possible) the behavior of such errors for families of related ODE systems,
based on different values of problem parameters. In section 5 we study the concept
of regions of validity of reduced models, i.e., the range of perturbations in the original
ODE (2.1) over which the reduced model (2.3) is still appropriate. An approach based
on forward error equations involves solving repeatedly such error equations (for each
value of interest of the perturbation). On the other hand, an approach combining
SCE estimates and adjoint models (as described in our paper) can be used to define
what we term “condition numbers” for these error equations. While these condition
numbers can provide only approximate upper bounds for the norms of the errors under
investigation, they have the undeniable advantage of allowing a priori estimates of the
errors induced by perturbations, i.e., before having to solve such a perturbed system
(or even a reduced perturbed system).

4. Estimation of the Approximation Error. We begin by estimating the differ-
ence between the solution of the POD-reduced model (2.4) and the solution of the
original equation (2.1). The total approximation error e = ∼

y − y can be split [26]
into the subspace approximation error e⊥ = ρTy − y and the error introduced by the
integration in the subspace S, eS = ∼y − ρTy:

e = ∼y − y =
(
∼
y − ρTy

)
+
(
ρTy − y

)
= eS + e⊥ .(4.1)

The error component e⊥ is orthogonal to S, while the component eS is parallel to S
(see Figure 1). Algebraically, this is expressed as Pe⊥(t) = 0 and PeS(t) = eS(t).
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Fig. 1 Solution and error components for POD-reduced models. y is the solution of the original
ODE, z = ρTy is its projection on the subspace S, and ∼y is the solution of the reduced model.
The error component e⊥ ∈ S⊥, while the subspace integration error component eS ∈ S.

4.1. Total Approximation Error. Subtracting (2.1) from (2.4) yields an equation
for the total error e,

de

dt
= Pf(∼y, t)− f(y, t) = Pf(∼y, t)− f(∼y, t) + f(∼y, t)− f(y, t)

= (P − I)f(∼y, t)− J(∼y, t)(y − ∼y) +O(‖e‖) ,

where J is the Jacobian of the function f , i.e., J = ∂f/∂y, and we define Q = I − P .
Thus, to a first-order approximation, the error function satisfies

de

dt
= J(∼y, t)e(t)−Qf(∼y, t) , e(t0) = −Qy0 .(4.2)

Let the matrix function Φ(t) ∈ Rn×n satisfy

dΦ
dt

= J(∼y, t)Φ , Φ(t0) = In .

Then

e(tf ) = −
∫ tf

t0

Φ(tf )Φ−1(τ)Qf(∼y (τ), τ) dτ − Φ(tf )Qy0 .

For a random vector u uniformly selected from the unit sphere Sn−1, we have

uT e(tf ) = −
∫ tf

t0

uTΦ(tf )Φ−1(τ)Qf(∼y (τ), τ) dτ − uTΦ(tf )Qy0 .

It is straightforward to verify that the solution λ ∈ Rn of the adjoint system,

dλ

dt
= −JT (∼y, t)λ , λ(tf ) = u,(4.3)

satisfies λT (s) = uTΦ(tf )Φ−1(s) and λT (t0) = zTΦ(tf ). Therefore the quantity
uT e(tf ) is simply

uT e(tf ) = −
∫ tf

t0

λT (τ)Qf(∼y (τ), τ) dτ − λT (t0)Qy0 .(4.4)
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The SCE estimate for the norm of e(tf ) is obtained by combining (3.1) and (4.4):

‖e(tf )‖ ≈
Wq

Wn

√√√√ q∑
j=1

∣∣∣∣
∫ tf

t0

λT (τ)Qf(∼y (τ), τ) dτ + λT (t0)TQy0

∣∣∣∣
2

.(4.5)

The value of the integral is ξ(t0), where ξ satisfies the quadrature equation

dξ

dt
= −λT (t)Qf(∼y (t), t) , ξ(tf ) = 0 .(4.6)

Algorithm 1 summarizes our approach.

Algorithm 1. Estimate for the total approximation error.
Provide the matrix of measurement data Y
Set the POD dimension k
Construct POD projection matrices ρ and P
Select uniformly and randomly q orthogonal vectors ui from the unit sphere Sn−1

Solve (2.3) for z and compute ∼y(t) = ρz(t)
Initialize s = 0
for i = 1 to q do
Set λ(tf ) = ui and ξ(tf ) = 0
Solve (4.3)+(4.6) for λ and ξ

Update s← s+
[
ψ(t0) + λT (t0)TQy0

]2
end for
Compute Wallis factors Wq and Wn

Compute the SCE norm estimate ‖e‖ = (Wq/Wn) ·
√
s

It may seem more efficient to compute the SCE norm estimate using a POD-
reduced adjoint system to evaluate λ in (4.5). Although the same projection can
be used to model-reduce the adjoint system, this approach still requires knowledge
of the mean of the adjoint solution, which is unavailable without a solution of the
adjoint system (4.3). In other words, the approximation subspace is parallel to S
but not identical to it. This issue can be circumvented if we are not considering
error components outside the subspace S. This estimate is presented next. Its main
advantage is given by the fact that the differential equations are solved in a space of
dimension k � n, where n is the dimension of the solution for the original problem.

4.2. Subspace Integration Error. Starting with its definition, eS = ∼y− ρTy, the
subspace integration error is readily found to obey, in a first-order approximation, the
following ODE:

deS
dt

=
d
∼
y

dt
− P

dy

dt
= P

(
f(∼y, t)− f(y, t)

)
≈ PJ(∼y, t)e(t) = PJ(∼y, t) (eS + e⊥) .

The starting point ∼y (t0) is the projection ρTy(t0) of y(t0) onto S, yielding the
initial condition eS(t0) = 0. Thus, the subspace integration error is governed by an
ODE with the subspace approximation error e⊥(t) as forcing term,

deS
dt

= PJ(∼y, t)eS + PJ(∼y, t)e⊥ , eS(t− 0) = 0 .(4.7)

We note that the linearization in (4.7) is directly related (through the projection
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matrix P ) to the linearization of the full model, f(∼y, t)−f(y, t) ≈ J(∼y, t)(∼y −y). Since
we assume that we operate in a region where the full model linearization is valid, this
implies that the linearization in (4.7) is valid for the region considered.

If h are the S-coordinates of eS , i.e., h = ρTeS ∈ Rk, we have eS = ρh and
therefore

dh

dt
= ρTJ(∼y, t)ρh+ ρTJ(∼y, t)e⊥ , h(t0) = 0 ,(4.8)

where we have used that ρTρ = Ik. Now let ψ ∈ Rk×k be the fundamental matrix of
(4.8); i.e.,

dψ

dt
= ρTJ(∼y, t)ρψ , ψ(t0) = Ik .

Then, for a random vector v uniformly selected from the unit sphere Sk−1, we have

vTh(tf ) =
∫ tf

t0

vTψ(tf )ψ−1(τ)ρTJ(∼y (τ), τ)e⊥(τ) dτ .

The solution µ of the adjoint system
dµ

dt
= −ρTJT (∼y, t)ρµ , µ(tf ) = v,(4.9)

satisfies µT (τ) = vTψ(tf )ψ−1(τ) for all τ ∈ [t0, tf ], and therefore

vTh(tf ) =
∫ tf

t0

µT (τ)ρTJ(∼y (τ), τ)e⊥(τ) dτ ,

yielding the following SCE estimate for the norm of the subspace integration error:

‖eS(tf )‖ = ‖h(tf )‖ ≈
Wq

Wn

√√√√ q∑
j=1

∣∣∣∣
∫ tf

t0

µTj (τ)ρTJ(
∼
y (τ), τ)e⊥(τ) dτ

∣∣∣∣
2

,(4.10)

where µj is the solution of (4.9) with final condition µ(tf ) = vj .
Bounds for the subspace integration error can be obtained as follows. We have∣∣∣∣

∫ tf

t0

µT (τ)ρTJ(∼y (τ), τ)e⊥(τ) dτ
∣∣∣∣ ≤

∫ tf

t0

∣∣∣µT (τ)ρTJ(∼y (τ), τ)e⊥(τ)
∣∣∣ dτ

≤ ‖JT ρµ‖L1 · ‖e⊥‖L∞ ,

where the last inequality is Hölder’s inequality, ‖fT g‖L1 ≤ ‖f‖Lp ·‖g‖Lq , 1/p+1/q = 1,
for p = 1 and q =∞, applied to vector-valued functions f, g : [t0, tf ]→ Rn for which
the Lp norm is defined as

‖f‖Lp =
(∫ tf

t0

‖f(τ)‖pp dτ
)1/p

, where ‖f(τ)‖p =
(

n∑
i=1

|fi(τ)|p
)1/p

.

Therefore

‖eS(tf )‖ ≤ κ(eS) · ‖e⊥‖L∞ ,(4.11)
where

κ(eS) =
Wq

Wn

√√√√ q∑
j=1

‖JT ρµj‖2L1
=

√√√√ q∑
j=1

(∫ tf

t0

∣∣∣JT (∼y (τ), τ)ρµj(τ)
∣∣∣ dτ)2

.

The quantity κ(eS) can be seen as a “condition number” for the subspace integration
error.
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The expressions derived above require knowledge of the projection error e⊥ at all
times in [t0, tf ]. While the projection error may not be readily available, its norm can
be easily related to the error associated with the choice of the POD subspace. For
this, a more convenient formulation of the POD approximation is to find a subspace
S ⊂ Rn which minimizes the total square distance defined as

d2 = ‖y − Py‖2L2
=
∫ tf

t0

‖y(τ)− Py(τ)‖22 dτ .(4.12)

The solution to this problem requires the construction of the correlation matrix R =∫ tf
t0

y(τ)y(τ)T dτ . If λ1 ≥ · · · ≥ λm ≥ 0 are the ordered eigenvalues of the symmetric
positive semidefinite matrix R, then the minimum value of d2 over all k-dimensional
affine subspaces S passing through ȳ is given by

∑n
j=k+1 λj . The minimizing S is the

invariant subspace corresponding to the eigenvalues λ1, . . . , λk, while the projection
matrix ρ consists of the unit eigenvectors corresponding to these k largest eigenvalues.
We also have that

‖e⊥‖L∞ ≤ ‖e⊥‖L2
≡

√√√√ n∑
j=k+1

λj .

Employing observations as data points for a trapezoidal approximation for the integral
(4.12) leads to the same subspace S as the one obtained with the POD definition in
section 2, while the corresponding optimal total square distances will be proportional.

5. Regions of Validity for POD-Reduced Models. Once a reduced model is con-
structed, we wish to apply it to simulate systems that are close in some sense to the
system that was used for generating the reduced model. This raises the issue of defin-
ing the range of initial conditions and parameters over which the reduced model can
be used with acceptable accuracy.

In the following section we denote by a lowercase letter (e.g., y) any solution of
the unperturbed system and by a capital letter (e.g., Y ) any solution of a perturbed
system.

If Y ∈ Rn is the solution of an ODE obtained by applying a perturbation to
(2.1), either in the initial conditions or in the right-hand side, the issue of the errors
introduced by this perturbation, in addition to the model reduction error e(t), can be
addressed from two different perspectives:

• When the reduced model, with a POD projection matrix based on the solution
of the unperturbed ODE, is used to approximate the perturbed solution Y ,
it is of interest to estimate the error E1 =

∼
Y − Y , where

∼
Y is the solution of

an ODE of the form (2.4), with P based on y.
• Alternatively, we may want estimates for the cumulative error (due to the
POD model reduction and the perturbation in the original ODE), E2 =

∼
Y −y.

Note that calculating E2 =
∼
Y −y is completely equivalent to computing ∼y−Y

(by considering y to be a perturbation to Y ).
It is important to realize that useful estimates should not rely on the solution Y (or∼
Y ) of the perturbed system (or its POD reduction). Indeed, such error estimates are
desired with the sole objective of deciding whether or not to solve these systems.

In this section we begin by analyzing the errors E1 and E2 induced by a perturba-
tion δy0 in the initial conditions of (2.1) and then by treating the case of perturbations
δp in model parameters affecting the right-hand side. For each of these two cases,
Figure 2 illustrates the solutions of the unperturbed and perturbed full- and reduced-
order models, as well as the corresponding errors e, E1, and E2.



ERROR ESTIMATION FOR REDUCED-ORDER MODELS 287

yδ
0

y~

Y
~

yTρ

Y

y

S

E

E 2

1

YTρ

(a) Perturbation in initial conditions

y~

Y
~

yTρ

Y

y

S

E

E2

1

YTρ
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Fig. 2 Error components in model reduction of perturbed systems. The solution of the perturbed
system and the solution of the reduced perturbed system are denoted by Y and

∼
Y, respectively.

The error E1 represents the error committed in reducing the perturbed model, while E2 is
the cumulative error (perturbation + model reduction).

5.1. Perturbations in Initial Conditions. Here, Y and
∼
Y are solutions of the

ODEs

dY

dt
= f(Y, t) , Y (t0) = Y0 = y0 + δy0 ,(5.1)

d
∼
Y

dt
= Pf(

∼
Y, t) ,

∼
Y (t0) = PY0 = P (y0 + δy0),(5.2)

which were obtained by perturbing the initial conditions of (2.1).

5.1.1. Estimation of E1 = Ỹ − Y. An SCE estimate like (4.5) is not useful in
the sense described above, as it would be based on the error equation

dE1

dt
= J(

∼
Y, t)E1 −Qf(

∼
Y, t) , E1(t0) = −Q(y0 + δy0 − ȳ) ,(5.3)

which is a linearization around the (unknown) trajectory
∼
Y (t).
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Instead, let us focus on estimating the norm of ∆(tf ) = E1(tf )−e(tf ), with which
the norm ‖E1(tf )‖ could be bounded by∣∣‖e(tf )‖ − ‖∆(tf )‖

∣∣ ≤ ‖E1(tf )‖ ≤ ‖e(tf )‖+ ‖∆(tf )‖ .(5.4)

Any estimates of ‖∆(tf )‖ would require solving the POD-reduced perturbed system
(5.2). However, as in section 4.2, this problem can be circumvented by splitting the
error ∆ into two components: ∆⊥ orthogonal to S and ∆S parallel to S. Using the
fact that Q

∼
Y = Q

∼
y = 0, we have

∆⊥ = Q∆ = Q(
∼
Y −∼y )− (Y − y) = −Q(Y − y)

and

∆S = ∆−∆⊥ = (
∼
Y −∼y )− P (Y − y) .

We evaluate the influence of δy0 on each component separately. Retaining only the
first-order term of a Taylor series for ∆⊥ around δy0 = 0 and using the fact that
∆⊥ = 0 for δy0 = 0, we get

∆⊥ = −Q dY

dδy0

∣∣∣∣
δy0=0

δy0 .

The sensitivity matrix dY/dy0 is nothing but the fundamental matrix corresponding
to the linearization of (2.1). It is then easy to see that if λ is now the solution of

dλ

dt
= −JT (y, t)λ , λ(tf ) = Qu for some u ∈ Rn ,(5.5)

then uT∆⊥(tf ) = −λT (t0) · δy0.
Therefore, an SCE estimate of ‖∆⊥(tf )‖ can be based on the solutions of systems

(5.5) with vectors uj uniformly and randomly selected from the unit sphere Sn−1.
However, taking into account that ∆⊥ is orthogonal to S, a more accurate estimate
can be obtained by using vectors from the sphere Sn−k−1 embedded in S⊥, instead of
selecting vectors u ∈ Sn−1 and projecting them onto S⊥, the orthogonal complement
of S. If u′ is the representation in Rn of such a vector, then Qu′ = u′. Thus we
have the same adjoint system (5.5), but the probability that the estimate lies within
a given factor γ of the true norm ‖∆⊥(tf )‖ is now higher (see section 3).

In practice we use the approximation y ≈ ∼y in evaluating the Jacobian in (5.5),
with ∼y computed from the solution z of the k-dimensional ODE (2.3), and obtain the
following SCE estimate:

‖∆⊥(tf )‖ ≈
Wq

Wn

√√√√ q∑
j=1

|u′Tj ∆⊥(tf )|2 =
Wq

Wn

√√√√ q∑
j=1

|λT (t0)δy0|2,

where λ is the solution of dλ/dt = −JT (∼y, t)λ, λ(tf ) = Qu′j . Hölder’s inequality (for
p = q = 2) gives |λT (t0)δy0| ≤ ‖λ(t0)‖2 · ‖δy0‖2, which implies

‖∆⊥(tf )‖ ≤ κ1 · ‖δy0‖ ,(5.6)

where the “condition number” for the orthogonal component of ∆ is defined as

κ1 =
Wq

Wn

√√√√ q∑
j=1

‖λ(t0)‖22 .
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With the assumption J(y, t) ≈ J(∼y , t), the ∆ component parallel to S, ∆S =
∆−∆⊥ = (

∼
Y − ∼y )− P (Y − y), satisfies, up to first order,

d∆S

dt
=
(
Pf(

∼
Y, t)− Pf(∼y, t)

)
− P (f(Y, t)− f(y, t)) ≈ PJ(∼y, t)∆S .

Since at the initial time ∆S(t0) = 0, to a first-order approximation ∆S(t) = 0 for
all t ≥ t0. In other words, a perturbation to the initial conditions of the original
ODE does not introduce additional subspace integration errors. As a consequence,
∆(tf ) ≈ ∆⊥(tf ) and, combining (5.4) and (5.6), we have

‖E1(tf )‖ ≤ ‖e(tf )‖+ κ1 · ‖δy0‖.(5.7)

Note that when using SCE estimates for the norms involved in the above bounds, the
true value of ‖E1(tf )‖ may not be bracketed by these bounds.

5.1.2. Estimation of E2 = ỹ − Y. Subtracting the ODEs satisfied by ∼y and Y ,
the error E2 satisfies, to a first-order approximation,

dE2

dt
= J(∼y, t)E2 −Qf(∼y, t) , E2(t0) = −Qy0 − δy0 .(5.8)

For a uniformly selected random vector u ∈ Sn−1 and with λ the solution of (4.3), we
have

uTE2(tf ) = −
∫ tf

t0

λT (τ)Qf(∼y (τ), τ) dτ − λT (t0) (Qy0 + δy0)
(5.9)

= uT e(tf )− λT (t0)δy0 ,

where e(tf ) is the approximation error for the original system, defined by (4.1).
Straightforward calculations yield

‖E2(tf )‖ ≤ ‖e(tf )‖+ κ2 · ‖δy0‖ ,(5.10)

where

κ2 =
Wq

Wn

√√√√ q∑
j=1

‖λ(t0)‖22 .

We first note that the new condition number κ2 has the exact same form as κ1
obtained in section 5.1.1, the only difference being in the final conditions used for the
adjoint variables λj . Second, the SCE bound estimate (5.10) is more accurate than
the SCE bound estimate for the norm of E1(tf ) (which is based on the additional
approximation E1 ≈ e + ∆⊥, ignoring ∆S and using y ≈ ∼y in the adjoint system).
Furthermore, as seen from (5.9), an SCE estimate for ‖E2(tf )‖ can be computed
without need for Y or

∼
Y , unlike for ‖E1(tf )‖.

5.2. Perturbations inModel Parameters. Now let Y be the solution of the ODE
system

dY

dt
= f(Y, t, p+ δp) , Y (t0) = y0 ,(5.11)

representing a perturbation in some model parameters affecting the right-hand side
of (2.1). As in section 5.1, let

∼
Y be the solution of a POD-based reduced-order model

obtained from (5.11) using the same POD projection matrix as for the model reduction
of the unperturbed system. Then

∼
Y satisfies

d
∼
Y

dt
= Pf(

∼
Y, t, p+ δp) ,

∼
Y (t0) = Py0 .
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5.2.1. Estimation of E1 = Ỹ − Y. Similar to section 5.1.1, we decompose the
error ∆ = E1 − e into its components ∆⊥ ∈ S⊥ and ∆S ∈ S. We retain only the
first-order term from the Taylor expansion of ∆⊥ around δp = 0,

∆⊥ = −Q dY

dδp

∣∣∣∣
δp=0

δp .

The sensitivity matrix Ψ = dY/dδp satisfies

dΨ
dt

= J(y, t, p)Ψ + K(y, t, p) , Ψ(t0) = 0 ,

where K = ∂f/∂p is the Jacobian of f with respect to p. In terms of the fundamental
matrix Φ of the linearization of (2.1), we have

Ψ(tf ) =
∫ tf

t0

Φ(tf )Φ−1(τ)K(y(τ), τ, p) dτ,

and thus

uT∆⊥(tf ) = −
(∫ tf

t0

λT (τ)K(y(τ), τ, p) dτ
)
· δp ,

where λ is the solution of (5.5) and u ∈ Rn.
The observations in section 5.1.1 remain valid: (a) using vectors u′ from the

Sn−k−1 sphere embedded in S⊥ gives a more accurate SCE error norm estimate; (b)
a more efficient adjoint solution can be obtained assuming J(y, t, p) ≈ J(∼y, t, p) and
K(y, t, p) ≈ K(∼y, t, p).

The SCE estimate of the norm of ∆⊥ is then

‖∆⊥(tf )‖ ≈
Wq

Wn

√√√√ q∑
j=1

∣∣∣∣
∫ tf

t0

λT (τ)K(∼y (τ), τ, p) δp dτ

∣∣∣∣
2

,

bounded by ‖∆⊥(tf )‖ ≤ κ1 · ‖δp‖, where κ1 is now defined as

κ1 =
Wq

Wn

q∑
j=1

‖λTK‖2L1
.

In complete analogy with section 5.1.1, if J(y, t, p) ≈ J(∼y, t, p) and K(y, t, p) ≈
K(∼y, t, p), the component ∆S parallel to S satisfies to a first-order approximation

d∆S

dt
= PJ(∼y, t, p)∆S , ∆S(t0) = 0,

and therefore ∆S(t) = 0 for all t ≥ t0. As a consequence, ∆(tf ) ≈ ∆⊥(tf ) and

‖E1(tf )‖ ≤ ‖e(tf )‖+ κ1 · ‖δp‖∞ .

5.2.2. Estimation of E2 = ỹ − Y. Following a similar approach to section 5.2.1,
for a uniformly selected random vector u ∈ Sn−1 and with λ∼y the solution of (4.3),

uTE2(tf ) = −
∫ tf

t0

λT(τ)
[
Qf(∼y (τ), τ, p) + K(∼y (τ), τ, p) δp

]
dτ

−λT(t0)Qy0(5.12)

= uTe(tf )−
∫ tf

t0

λT(τ)K(∼y (τ), τ, p) δp dτ ,
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where e(tf ) is the approximation error for the original system, defined by (4.1). As
in section 5.1.2, it follows that

‖E2(tf )‖ ≤ ‖e(tf )‖+ κ2 · ‖δp‖∞ ,(5.13)

where the condition number κ2 is now

κ2 =
Wq

Wn

√√√√ q∑
j=1

‖λTK‖2L1
.

The above SCE bound estimate for the norm of E2(tf ) is again more accurate than
the one derived in section 5.2.1 for the bound on the norm of E1(tf ). Furthermore,
starting from (5.12), an SCE estimate for ‖E2(tf )‖ can be computed without need
for Y or

∼
Y , unlike for ‖E1(tf )‖ in section 5.2.1.

6. Examples. We consider reduced-order ODE examples that are representative
of problems derived from spatial discretization of PDEs (linear advection-diffusion) or
directly obtained from physical phenomena (a pollution model). Additional examples
are described in [13].

For each example, two figures with numerical results are provided (Figures 4 and
5 for the first example and Figures 6 and 7 for the second one). The estimates (and
bounds) were obtained using q = 1 (blue), q = 2 (green), and q = 3 (red), where q is
the number of orthogonal vectors used by the SCE.

Figure 4 contains POD approximation errors as functions of the dimension of the
subspace S. The norm of the total approximation error at the final time, ‖e(tf )‖ =
‖∼y(tf )− y(tf )‖, is given in plot (a), while the norm of the subspace integration error
at the final time, computed in the subspace S, i.e., ‖eS(tf )‖, is presented in plot (b).
The solid (black) lines represent the corresponding norms computed by the forward
integration of the error equations (4.2) and (4.8), respectively. The dotted (colored)
lines describe SCE estimates (4.5) and (4.10), respectively, for different values of q.
The dashed (colored) lines appear only in plot (b) and represent the bounds of (4.11)
for different values of q.

The first four plots in Figure 5 contain estimates of errors induced by a perturba-
tion δy0 in the initial conditions. Plot (a) presents the norm of the total approximation
error of the perturbed system at the final time, ‖E1(tf )‖ = ‖

∼
Y (tf ) − Y (tf )‖, as a

function of the subspace dimension k. Plot (b) contains the norm of the cumulative
error of the perturbed system at the final time, ‖E2(tf )‖ = ‖∼y(tf ) − Y (tf )‖, as a
function of the subspace dimension k. Plots (c) and (d) present the error bounds for
‖E1(tf )‖ and ‖E2(tf )‖, respectively, as predicted by the condition numbers κ1 and κ2
over a range of perturbations δy0, for a given value of k. The solid (black) line repre-
sents the norm computed by the forward integration of the error equations (5.3) and
(5.8), respectively. For different values of q, the dashed (colored) lines represent SCE
estimates of the upper bound of (5.7) in plots (a) and (b), and of (5.10) in plots (c)
and (d). For different values of q, the dotted (colored) lines represent SCE estimates
for ‖E1(tf )‖ in plot (a) and for ‖E2(tf )‖ in plot (b).

The last four plots in Figure 5 contain estimates of errors induced by a pertur-
bation δp in the model parameters. The corresponding plots (e), (f), (g), and (h) are
in a format which is analogous to the one above.

The (blue) line made of circles represents the norm of the true (nonlinear) error,
e(t) = ∼y(t)− y(t), where ∼y is the solution of (2.4) and y is the solution of (2.1).
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Table 1 The sum of ignored eigenvalues Λk and their relative size Λ.

Example 1: Advection-diffusion Example 2: Pollution model
k Λk Λ Λk Λ
5 1.803561e-01 5.890413e-06 6.341930e-13 2.652438e-12
6 2.831234e-02 9.246781e-07 6.971282e-14 2.915657e-13
7 4.193422e-03 1.369567e-07 1.139176e-15 4.764470e-15
8 5.662276e-04 1.849294e-08 1.175776e-16 4.917547e-16
9 6.944298e-05 2.268001e-09 4.938977e-17 2.065669e-16
10 7.716002e-06 2.520038e-10 9.158667e-18 3.830506e-17

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
10– 3

10– 2

10– 1

100

time

k=5
k=6
k=7

(a) 1-D advection-diffusion example

0 0.2 0.4 0.6 0.8 1
10– 9

10– 8

10– 7

10– 6

10– 5

time

k=7
k=8
k=9

(b) Pollution example

Fig. 3 The norm of the total model-reduction error ‖e‖ = ‖y − ∼y ‖ vs. time, with y the solution of
the full model and

∼
y the solution of the reduced model.

Dimension of the POD Subspace. Let Λk =
∑n
i=k+1 λi be the sum of the eigenval-

ues ignored in the construction of the POD-reduced model and let Λ = Λk/
∑n
i=1 λi

be its relative size compared to the sum of all eigenvalues. The POD subspace dimen-
sion k is selected such that the relative error is very close to one, yet k is sufficiently
small. A relative error near zero means that a high percentage of the energy for the
full model was captured by the reduced-order model. The values of Λk and Λ, for the
numerical examples considered in this paper, are presented in Table 1.

To assess how well the full model is approximated by the POD-based reduced
model, we present in Figure 3 the behavior of the norm of the total error over the
given time interval for both examples considered in the paper. The dimension of the
POD subspace is denoted by k and has values (5, 6, 7) for the one-dimensional (1-D)
advection-diffusion example and (7, 8, 9) for the pollution example.

Number of Orthogonal Vectors for the SCE Estimate. We considered one, two,
and three SCE vectors for our numerical examples. As expected, having just one
SCE vector yielded the worst estimate in most of the cases. Nevertheless, even that
estimate was, in many cases, good enough to warrant its inclusion in our results.

6.1. Linear Advection-Diffusion Model. We consider the 1-D problem

ut = p1uxx + p2ux

with boundary conditions u(0, t) = u(2, t) = 0
and initial conditions u(x, 0) = u0(x) = x(2− x)e2x .
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(b) Subspace integration error

Fig. 4 1-D advection-diffusion example. Model-reduction error.

The PDE is discretized on a uniform grid of size n+2 with central differencing. With
yi(t) = u(xi, t) and eliminating boundary values, we obtain the following size n ODE
system:

dyi
dt

= p1
yi+1 − 2yi + yi−1

∆x2 + p2
yi+1 − yi−1

2∆x
, yi(0) = u0(xi) .

The problem parameters were p1 = 0.5, p2 = 1.0, and N = 100. Results for this
problem are shown in Figures 4 and 5. The POD projection matrices were based on
m = 100 data points equally spaced in the interval [t0, tf ] = [0.0, 0.3]. The estimate of
the total error is consistently close to the exact value, with the estimates corresponding
to q = 2, 3 almost identical to the subspace integration error. The bounds are within
an order of magnitude for both initial conditions and right-hand side perturbations.
The right-hand side perturbation increases the distance between the bounds and the
forward error. That was expected, since the right-hand side perturbation changes the
advection coefficient p2, which is dominant for the time window considered.

6.2. Pollution Model. Next we consider the chemical reactions from an air pol-
lution model described in [34]. This is a highly nonlinear stiff ODE system consisting
of 25 reactions and 20 species. The problem is of the form

dy

dt
= f(y) , y(0) = y0, y ∈ R20,

where the function f(y) is defined by

f1 = −
∑
j∈{1,10,14,23,24} rj +

∑
j∈{2,3,9,11,12,22,25} rj , f12 = r9,

f2 = −r2 − r3 − r9 − r12 + r1 + r21, f14 = −r13 + r12,
f3 = −r15 + r1 + r17 + r19 + r22, f18 = r20,
f4 = −r2 − r16 − r17 − r23 + r15, f13 = −r11 + r10,
f5 = −r3 + r4 + r4 + r6 + r7 + r13 + r20, f17 = −r20,
f6 = −r6 − r8 − r14 − r20 + r3 + 2r18, f15 = r14,
f7 = −r4 − r5 − r6 + r13, f16 = −r18 − r19 + r16,
f8 = r4 + r5 + r6 + r7, f10 = −r12 + r7 + r9,
f11 = −r9 − r10 + r8 + r11, f9 = −r7 − r8,
f19 = −r21 − r22 + r22 − r24 + r25, f20 = −r25 + r24,
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(e) E1 for perturbations in model
parameters vs. k (δp = 1.0%)
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Fig. 5 1-D advection-diffusion example. Regions of validity.
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Table 2 Auxiliary variables (rj) and model parameters (kj) for the pollution model.

r1 = k1y1 r7 = k7y9 r13 = k13y14 r19 = k19y16

r2 = k2y2y4 r8 = k8y9y6 r14 = k14y1y6 r20 = k20y17y6

r3 = k3y5y2 r9 = k9y11y2 r15 = k15y3 r21 = k21y19

r4 = k4y7 r10 = k10y11y1 r16 = k16y4 r22 = k22y19

r5 = k5y7 r11 = k11y13 r17 = k17y4 r23 = k23y1y4

r6 = k6y7y6 r12 = k12y10y2 r18 = k18y16 r24 = k24y19y1

r25 = k25y20

k1 = 0.350 · 100 k7 = .130 · 10−3 k13 = .188 · 101 k19 = .444 · 1012

k2 = 0.266 · 102 k8 = .240 · 105 k14 = .163 · 105 k20 = .124 · 104

k3 = .123 · 105 k9 = .165 · 105 k15 = .480 · 107 k21 = .210 · 101

k4 = .860 · 10−3 k10 = .900 · 104 k16 = .350 · 10−3 k22 = .578 · 101

k5 = .820 · 10−3 k11 = .220 · 10−1 k17 = .175 · 10−1 k23 = .474 · 10−1

k6 = .150 · 105 k12 = .120 · 105 k18 = .100 · 109 k24 = .178 · 104

k25 = .312 · 101
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Fig. 6 Pollution example. Model-reduction error.

and y0 = [0, 0.2, 0, 0.04, 0, 0, 0.1, 0.3, 0.01, 0.0, 0, 0, 0, 0, 0, 0.007, 0, 0, 0]T . The auxiliary
variables rj and the model parameters kj are given in Table 2.

Numerical results depicting the approximation errors and the regions of validity
at tf = 1.0 are presented in Figures 6 and 7, respectively. The POD projection matrix
was based on m = 1000 data points equally spaced in the interval [t0, tf ] = [0.0, 1.0].

For k = 5, 6, 7 the total error and the subspace integration error are very well
approximated by estimates corresponding to q = 2 or 3. For k = 8, 9, 10 the estimates
are not as good, although they remain within an order of magnitude. We believe that
this behavior is related to the fact that the POD error (either absolute or relative)
is very small. We note that the problem was solved using relative tolerances of 10−4

and absolute tolerance of 10−7. Thus one can expect a less uniform behavior if the
results are in the neighborhood of 10−7.

Finally, we note that due to the fact that the problem parameters kj have or-
ders of magnitude ranging from 10−3 to 1012, we have limited the right-hand side
perturbation only to perturbations in k4, k5, and k7.
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Fig. 7 Pollution example. Regions of validity.
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6.3. More Examples. In [13] we include more test problems derived from spatial
discretization of PDEs (Burgers’ PDE or the Brusselator PDE) or directly obtained
from physical phenomena (HIRES High Irradiance Response). The results obtained
for those examples confirm our approach, in the sense that the SCE estimates offer a
good approximation for the errors of the POD-reduced models. For more details, the
reader may consult [13], which is available online.

7. Conclusions and Future Work. We have presented effective methods for es-
timating approximation errors due to the use of POD-based reduced-order models
and for evaluating regions of validity of such reduced models. The bounds defining
these regions of validity are a priori, in the sense that they do not rely on the solu-
tion of the perturbed system. The proposed approach, based on SCE norm estimates
combined with the adjoint method, allows the definition and construction of so-called
error condition numbers which can be used to assess the size of errors induced by
perturbations (in initial conditions or in the model itself) without having to solve the
perturbed system. The effectiveness of the proposed methods was demonstrated on
several test problems.

We are currently investigating the applicability of this technique to the estimation
of errors from other types of reduced-order models, as well as considering more com-
plex models than those presented both in this paper and in [13]. Thus we will consider
models which exhibit more interesting (e.g., oscillatory or chaotic) behavior in their
POD-reduced model. For example, we think that our method to efficiently compute
the error corresponding to different perturbations may be useful in conjunction with
reduced models in oceanography or atmospheric sciences (recent advances [21] present
POD-based reduced models that can approximate well even the bifurcation behavior
of the flow).

Note Added to SIGEST Paper. Recently [30] we have extended this work to
estimation of the validity of general nonlinear ROMs of dynamical systems described
by ODEs and differential algebraic equations (DAEs). The proposed technique is
applicable as long as adjoint models can be defined for both the full and reduced sys-
tems. The resulting estimates, based on a combination of adjoint sensitivity analysis
and SCE norm estimates, quantify how well a given ROM captures the changes in
the output functional of the full system that result from perturbations in the problem
parameters. We introduce two types of similarity indices to measure the extent to
which the ROM preserves the value of maximum perturbation-induced error (and/or
the direction of the perturbations that induce it). The direction in parameter space
of maximum error growth in the output functional is efficiently computed within the
framework of singular vector analysis, using the SCE estimate for the error norm.

The numerical examples presented in [30] show that the similarity index concept
is very effective for detecting situations where the ROM fails to capture the behavior
of the full model when the parameters are slightly perturbed. They also indicate that
it is quite possible, particularly when the reduced model is constructed via automatic
procedures (e.g., POD), to generate reduced models that agree well with the original
data but are not robust to even small perturbations in the system parameters.

REFERENCES

[1] U. Achatz and G. Branstator, A two-layer model with empirical linear corrections and
reduced order for studies of internal climate variability, J. Atmospheric Sci., 56 (1999),
pp. 3140–3160.



298 CHRIS HOMESCU, LINDA R. PETZOLD, AND RADU SERBAN

[2] A.C. Antoulas and D.C. Sorensen, Approximation of Large-Scale Dynamical Systems: An
Overview, Tech. report TR0101, Rice University, Houston, TX, 2001.

[3] E. Balsa-Canto, A.A. Alonso, and J.R. Banga, A novel, efficient and reliable method for
thermal process design and optimization, J. Food Engrg., 52 (2002), pp. 227–247.

[4] Y. Cao and L. Petzold, A posteriori error estimation and global error control for ordinary
differential equations by the adjoint method, SIAM J. Sci. Comput., 26 (2004), pp. 359–374.

[5] E. Caraballo, M. Saminy, J. Scott, S. Narayan, and J. DeBonis, Application of proper
orthogonal decomposition to a supersonic axisymmetric jet, AIAA J., 41 (2003), pp. 866–
877.

[6] P.G.A. Cizmas and A. Palacios, Proper orthogonal decomposition of turbine rotor-stator
interaction, J. Propul. Power, 19 (2003), pp. 268–281.

[7] D.T. Crommelin and A.J. Majda, Strategies for model reduction: Comparing different opti-
mal bases, J. Atmospheric Sci., 61 (2004), pp. 2206–2217.

[8] F. D’Andrea and R. Vautard, Extratropical low-frequency variability as a low-dimensional
problem I: A simplified model, Q. J. R. Meterol. Soc., 127 (2001), pp. 1357–1375.

[9] K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, San Diego,
CA, 1990.

[10] G.H. Golub and C.F. Van Loan, Matrix Computations, The Johns Hopkins University Press,
Baltimore, MD, 1996.

[11] T. Gudmundsson, C.S. Kenney, and A.J. Laub, Small-sample statistical estimates for matrix
norms, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 776–792.

[12] P. Holmes, J.L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical
Systems and Symmetry, Cambridge University Press, Cambridge, UK, 1998.

[13] C. Homescu, L.R. Petzold, and R. Serban, Error Estimation for Reduced Order Models of
Dynamical Systems, Tech. report UCRL-TR-201494, Lawrence Livermore National Labo-
ratory, Livermore, CA, 2003.

[14] I.T. Jolliffe, Principal Component Analysis, Springer-Verlag, New York, 2002.
[15] C.S. Kenney and A.J. Laub, Small-sample statistical condition estimates for general matrix

functions, SIAM J. Sci. Comput., 15 (1994), pp. 36–61.
[16] H. Kikuchi, Y. Tamura, H. Ueda, and K. Hibi, Dynamic wind pressures acting on a tall

building model—proper orthogonal decomposition, J. Wind Eng. Ind. Aerod., 71 (1997),
pp. 631–646.

[17] M.E. Kowalski and H.M. Jin, Model-order reduction of nonlinear models of electromagnetic
phased-array hyperthermia, IEEE T. Bio-Med. Eng., 50 (2003), pp. 1243–1254.

[18] K. Kunisch and S. Volkwein, Control of the Burgers equation by a reduced-order approach
using proper orthogonal decomposition, J. Optim. Theory Appl., 102 (1999), pp. 345–371.

[19] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a general
equation in fluid dynamics, SIAM J. Numer. Anal., 40 (2002), pp. 492–515.

[20] P.A. LeGresley and J.J. Alonso, Dynamic Domain Decomposition and Error Correction for
Reduced Order Models, AIAA Paper 2003-0250, 41st AIAA Aerospace Sciences Meeting &
Exhibit, Reno, NV, 2003.

[21] C. Lopez and E. Garcia-Hernández, Low-dimensional dynamical system model for observed
coherent structures in ocean satellite data, Phys. A, 328 (2003), pp. 233–250.

[22] D.J. Lucia, P.I. King, M.E. Oxley, and P.S. Beran, Reduced Order Modeling for a One-
Dimensional Nozzle Flow with Moving Shocks, AIAA Paper 01-2602, AIAA 15th Compu-
tational Fluid Dynamics Conference, Anaheim, CA, 2001.

[23] X. Ma and G.E. Karniadakis, A low-dimensional model for simulating three-dimensional
cylinder flow, J. Fluid Mech., 458 (2002), pp. 181–190.

[24] A.J. Majda, I. Timofeyev, and E. Vanden-Eijnden, Systematic strategies for stochastic
mode reduction in climate, J. Atmospheric Sci., 60 (2003), pp. 1705–1722.

[25] M. Meyer and H.G. Matthies, Efficient model reduction in non-linear dynamics using
the Karhunen–Loeve expansion and dual-weighted-residual methods, Comput. Mech., 31
(2003), pp. 179–191.

[26] M. Rathinam and L.R. Petzold, A new look at proper orthogonal decomposition, SIAM J.
Numer. Anal., 41 (2003), pp. 1893–1925.

[27] S.S. Ravindran, A reduced-order approach for optimal control of fluids using proper orthogonal
decomposition, Internat. J. Numer. Methods Fluids, 34 (2000), pp. 425–448.

[28] J.A. Rule, R.E. Richard, and R.L. Clark, Design of an aeroelastic delta wing model for
active flutter control, J. Guid. Control Dynam., 24 (2001), pp. 918–924.

[29] F.M. Selten, Baroclinic empirical orthogonal functions as basis functions in an atmospheric
model, J. Atmospheric Sci., 54 (1997), pp. 2100–2114.



ERROR ESTIMATION FOR REDUCED-ORDER MODELS 299

[30] R. Serban, L.R. Petzold, and C. Homescu, The effect of problem perturbations on nonlin-
ear dynamical systems and their reduced order models, SIAM J. Sci. Comput., submitted
(2006).

[31] B. Shapiro, Creating compact models of complex electronic systems: An overview and sug-
gested use of existing model reduction and experimental system identification tools, IEEE
T. Comp. Pack. T., 26 (2003), pp. 165–172.

[32] Y. Shin and T. Sakurai, Power distribution analysis of VLSI interconnects using model order
reduction, IEEE T. Comput. Aid. D., 21 (2002), pp. 739–745.

[33] S. Utku, J.L.M. Clemente, and M. Salama, Errors in reduction methods, Comput. & Struc-
tures, 21 (1985), pp. 1153–1157.

[34] J.G. Verwer, Gauss–Seidel iteration for stiff ODEs from chemical kinetics, SIAM J. Sci.
Comput., 15 (1994), pp. 1243–1250.


