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Abstract

We present a projection method for the solution of the diffusive transport and
reaction equations of electrochemical systems on irregular time-dependent domains.
Specific applications include electrodeposition of copper in sub-micron trenches, as
well as any other electrochemical system with an arbitrarily shaped bulk region of
dilute electrolyte solution. Our method uses a finite volume spatial discretization
that is second-order accurate throughout, including a nonuniform region used as a
transition to the far-field chemical concentrations. Time integration is performed
with a splitting technique that includes a projection step to solve for the electric
potential. The resulting method is first order accurate in time, and is observed to be
stable for relatively large time steps. Furthermore, the algorithm complexity scales
very respectably with grid refinement and is naturally parallelizable.

Key words: electrochemical systems, irregular domain, splitting method,
projection method
PACS: 82.47.a

1 Introduction

1.1 Overview

The purpose of this paper is to present a novel methodology for solving the
governing equations of electrochemistry under conditions of dilute electrolyte
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Fig. 1. Schematic of a multiscale simulation of the electrochemical process for man-
ufacturing on-chip copper interconnects. The dots represent Cu2+ ions in solution,
with the film on the surface being metallic copper.

solution. Such systems, with irregular and moving boundaries, are of interest
in copper electrodeposition and play an important role in the fabrication of
interconnects for the next generation of computer processors [1].

Our interest is to simulate copper infill of sub-micron scale trenches. This
problem is inherently multiscale because the chemical reactions at the cop-
per surface represent a length scale of nanometers (surface roughness) and a
timescale of nanoseconds to microseconds, while the diffusion and migration
processes in the electrolyte solution occur at the micrometer to millimeter
length scale and millisecond to seconds time scale [2]. A hybrid simulation
methodology was proposed and implemented in [3] and was used to study
trench infill. This approach consisted of two codes linked together: a finite
difference code in the electrolyte region and a kinetic monte-carlo code at
the copper surface. Subsequent refinements of this method have been made
including the development of finite volume spatial discretization to address
unphysical numerical errors (negative chemical concentrations) [6] and con-
trol systems analysis of code linkage to minimize instabilities and improve
accuracy [4].

Despite the progress that has been made, these simulation methods still suffer
from high computational cost. Two dimensional simulations of modest resolu-
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tion (100 x 100) take days to perform, scale poorly with grid refinement and
are not readily parallelizable [3]. Specifically, the simulation in the electrolyte
region has been a serious bottleneck. In this paper, we will present a numerical
method which takes advantage of the structure of the problem to achieve a
considerable gain in efficiency.

This paper is organized as follows. In Section 2, we describe the governing
equations for the electrolyte region, and discuss the existing numerical ap-
proaches and their observed shortcomings. In Section 3, we derive our numer-
ical method directly from the governing equations. This is done in two parts:
first the spatial discretization is derived by integrating the governing equations
over grid-sized cells; second the temporal discretization is derived by splitting
the total time derivative into groups of physically related terms, and applying
the Implicit Euler method to two terms and a projection method to the third
term. Section 4 briefly addresses issues involved in the implementation. We
assess the performance of our method in Section 5 by studying three sam-
ple problems. The order of accuracy is confirmed and a point is made about
the spatial and temporal refinement required to achieve a given accuracy of
the numerical solution. Also, we measure the computational complexity of our
method for these three problems, and find that it scales very well as the grid is
refined. We conclude the paper by summarizing our findings and highlighting
areas of possible future work.

2 Governing equations

The governing equations are stiff nonlinear partial differential equations with
algebraic constraints [10]. These equations describe the time evolution of the
concentrations of each chemical species, ck. They are derived by conservation
of mass with chemical reactions, diffusion and migration due to electric fields,

∂ck

∂t
= Rk

(
{ck′}

)
− ~∇ · ~Nk (1a)

∑

k

zkck = 0 (1b)

where Rk is the net rate of production of chemcial species k due to chemical
reactions, and is a function of all the other chemical species concentrations,
{ck′}. And ~Nk is the flux of chemical species k due to diffusion and migration.

The detailed form of Rk is given by considering Nrxns elementary reactions,
where reaction j is given by
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∑

k′

aLHS
j,k′ [ck′]

kF
j

−⇀↽−
kB

j

∑

k′

aRHS
j,k′ [ck′]. (2)

Then the net rate of production of species k due to reaction j satisfies

R
(j)
k = (aLHS

j,k − aRHS
j,k )

(
− kF

j

∏

k′

c
aLHS

j,k′

k′ + kB
j

∏

k′

c
aRHS

j,k′

k′

)
. (3)

Summing over all chemical reactions, the total rate of production of chemical
species k is

Rk

(
{ck′}

)
=

Nrxns∑

j=1

R
(j)
k . (4)

The detailed form of ~Nk is given by

~Nk = −Dk
~∇ck − zkukFck

~∇Φ, (5)

where Φ is the electric potential, Dk is the diffusion coefficient for species k,
zk is the charge of species k, uk is the mobility constant for species k, and F
is Faraday’s constant. The algebraic constraint (equation (1b)) enforces zero
net charge density for the electrolyte solution.

Substituting equation (5) into equation (1a) yields

∂ck

∂t
= Rk

(
{ck′}

)
+ Dk∇

2ck + (zkukF ) ~∇ ·
(
ck

~∇Φ
)
, (6)

which, together with the electroneutrality constraint (equation 1b), defines
our system.

Convective transport may also be included by coupling these equations to the
Navier-Stokes equations [9], but this is often neglected for systems with di-
mensions below 1µm. For these systems, which will be our focus here, diffusion
dominates because the Peclet number is small.

The boundary conditions are application dependent, so we focus now on our
present application: electrodeposition. In electrodeposition, there is an active
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Fig. 2. Boundary conditions shown in diagram above.

copper boundary where chemical reactions occur on the surface, creating a
flux of each chemical species into the electrolyte solution,

− ~Nk · n̂ = Jk, (7)

where n̂ is the outward normal direction along the active boundary. Jk is
calculated from a separate surface reaction model using the Kinetic Monte
Carlo (KMC) method, and is a function of the surface concentrations of the

chemical species, {ck′}
∣∣∣
surface

. For details of the KMC surface reaction model

and its linkage with continuum simulations in the electrolyte region, see [3],[4].
For our purposes, we regard Jk as a changing but known quantity at any given
time.

At the upper boundary there is a far-field set of fixed values for each of
the chemical species concentrations and the electric potential, represented by
Dirichlet boundary conditions,

ck = cFF
k (8)

Φ = ΦFF . (9)

On the sides of the physical domain one can assume either zero flux or periodic
boundary conditions, depending on the shape of the active copper boundary.
In this paper we will assume without loss of generality a nonperiodic trench-
shaped active copper boundary with zero flux boundary condition on the sides,
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~Nk · n̂ = 0. (10)

The active boundary moves due to the deposition of copper resulting from
surface reactions, and is tracked implicitly by a level set method. In the level
set method, a signed distance function, φ, is defined in the vicinity of the
active boundary. The φ = 0 contour implicitly defines the active boundary
and is tracked by solving the advection equation

∂φ

∂t
= −~v · ~∇φ = −vn, (11)

where

vn =
JCu

ρCu
(12)

is the velocity of the active boundary, computed by the flux of copper divided
by the density of copper. This velocity is directed normal to the interface and
is extended along lines parallel to the ~∇φ using the closest point fast marching
method. Details on implementation of the level set and fast marching methods
may be found elsewhere [13], [14], [15], [16].

As mentioned above, attempts have been made to solve these equations by
Drews, Li, Braatz, Alkire [5],[6]. Their approach has been to use the method
of lines (MOL) to transform the PDE system into an ODE system with al-
gebraic constraints, i.e. differential algebraic equations (DAEs). The resulting
index-2 DAE system was then solved using DASPK3 [7],[8]. Although this
strategy works, it was not very computationally efficient due to difficulties
with finding an effective preconditioner, which causes the code to run slowly
even for modest size spatial grids (100 x 100) and a few chemical species. Much
effort has been put into trying to design better preconditioners for use with
DASPK in order to improve efficiency, but without much success [6]. The prob-
lem becomes more severe as one refines the grid; code profiling reveals that
the computation time scales as (Neqns)

p, where Neqns is the total number of
grid variables and p ≈ 2, making highly resolved simulations computationally
infeasible.

The goal of this work has been to develop a computational algorithm for the
solution of equations (1a) and (1b) on irregular domains with a moving active
boundary that is efficient, scales well with grid refinement, and is easy to
parallelize. In the remainder of this paper, we will describe our algorithm in
detail, apply it to sample problems and measure its accuracy and efficiency,
thus demonstrating that we have achieved this goal.
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3 Numerical Solution

The governing equations of Section 2 are solved numerically by discretizing
the spatial and temporal domains. Details of the discretization are provided
in the appendix. Here we briefly describe the important points.

3.1 Spatial Discretization

The spatial domain is divided into cells of finite volume (FV). All spatial
derivatives in equation (6) are computed with O(∆x2) accuracy, including
boundary cells.
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Fig. 3. Three types of finite volume cells shown in figure above.

In our algorithm, we define two regions of cells: uniform and nonuniform. The
uniform cells form the lower region of the computational domain, and include
the trench and active boundary, since all such points require roughly the same
resolution. The nonuniform cells above the trench serve as a transition zone
from the trench region to the far-field. Since this transition length is often
much greater than the trench length scale, a uniform grid here would add
unnecessary computational expense. As a result, there are three distinct types
of FV cells, as shown in figure (3): uniform region cells, boundary cells and
nonuniform region cells.

To obtain the finite volume equations, we begin in the standard way by inte-
grating the governing PDE, equations (1a) and (1b), over a small cell in our
domain. After applying the divergence theorem and approximating boundary
integrals by products of average values (at boundary midpoints) multiplied
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by boundary length and area integrals by average values (at cell centroids)
multiplied by area, we obtain an equation of the form:

V rel
i,j

∂(ck)i,j

∂t
= (RHS)(rxns) + (RHS)(diff) +

(RHS)(migration) + (RHS)(boundaryflux), (13)

where (ck)i,j is the concentration of chemical species k at the centroid of cell
(i, j).

(RHS)(rxns), (RHS)(diff), (RHS)(migration) and (RHS)(boundaryflux) are the
cell-integrated reaction, diffusion, migration and boundary flux terms, given
by

(RHS)(rxns) = V rel
i,j Rk

(
{(ck′)i,j}

)
(14)

(RHS)(diff) =
Dk

∆xi

(
∂ck

∂x

∣∣∣∣∣
right

θright −
∂ck

∂x

∣∣∣∣∣
left

θleft

)

+
Dk

∆yj

(
∂ck

∂y

∣∣∣∣∣
up

θup −
∂ck

∂y

∣∣∣∣∣
down

θdown

)
(15)

(RHS)(migration) =
(zkukF )

∆xi

((
ck

∂Φ

∂x

)∣∣∣∣∣
right

θright −
(
ck

∂Φ

∂x

)∣∣∣∣∣
left

θleft

)

+
(zkukF )

∆yj

((
ck

∂Φ

∂y

)∣∣∣∣∣
up

θup −
(
ck

∂Φ

∂y

)∣∣∣∣∣
down

θdown

)
(16)

(RHS)(boundaryflux) =
∆si,j

∆xi∆yj

(
Dk

∂ck

∂n

∣∣∣∣∣
active

+ (zkukF )
(
ck

∂Φ

∂n

)∣∣∣∣∣
active

)
,(17)

where ∆xi×∆yj are the dimensions of the FV cell, V rel
i,j is the volume fraction

of the cell in solution, ∆s is the active boundary length and θup, θdown, θleft, θright

are the fractions of the cell faces in solution (see figure (4)).

Finally, we note that similar spatial discretizations have been used to solve
the heat and Poisson equations on irregular domains with moving boundaries
[11], [12].
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Fig. 4. Figure shows location of cell centroid and boundary element midpoints for
a boundary cell

3.2 Temporal Discretization

Temporal discretization is accomplished via a splitting technique that uses
the Backward (implicit) Euler method combined with a projection step. We
split the right hand side of equation (13) into three sets of terms: 1) reaction
terms, 2) diffusion terms (plus boundary flux terms), and 3) migration terms,
as indicated by the superscript used. To advance the concentration fields,
(ck)i,j, from time tn to tn+1 = tn +∆t, two intermediate values, (ck)

(∗,rxns)
i,j and

(ck)
(∗,diff)
i,j , are calculated. Schematically, we do the following:

(ck)
(n)
i,j

reaction
−−−−→ (ck)

(∗,rxns)
i,j

diffusion
−−−−−→ (ck)

(∗,diff)
i,j

projection
−−−−−−→ Φi,j

migration
−−−−−→ (ck)

(n+1)
i,j . (18)

By projection, what is meant is that Φi,j is computed such that after migration,
the charge neutrality constraint is satisfied at every solution-containing cell
center.

Starting from equation (13), with the left hand side discretized in time, the
algorithm proceeds as follows:

1) Reaction terms

V rel
i,j

(
(ck)

(∗,rxns)

i,j − (ck)
(n)

i,j

)

∆t
= (RHS)(∗,rxns) (19)

2) Diffusion terms (plus boundary flux)
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V rel
i,j

(
(ck)

(∗,diff)

i,j − (ck)
(∗,rxns)

i,j

)

∆t
= (RHS)(∗,diff) + (RHS)(boundaryflux) (20)

3) Projection step

∑

k

zkV
rel
i,j

(
(ck)

(n+1)

i,j − (ck)
(∗,diff)

i,j

)

∆t
=
∑

k

zk(RHS)(migration) (21)

Equation (21), together with the charge neutrality condition,
∑

k zk(ck)
(n+1)

i,j =
0, leads to an implicit Poisson-like equation for the electric potential, Φi,j

(contained in (RHS)(migration)):

∆t
∑

k

zk(RHS)(migration) = −V rel
i,j

∑

k

zk(ck)
(∗,diff)

i,j . (22)

4) Migration terms (using Φi,j obtained in step 3)

V rel
i,j

(
(ck)

(n+1)

i,j − (ck)
(∗,diff)

i,j

)

∆t
= (RHS)(migration) (23)

The resulting concentrations, (ck)
(n+1)
i,j , are O(∆t) accurate and satisfy the

charge neutrality condition,
∑

k zk(ck)
(n+1)
i,j = 0, to machine precision.

To see that this method is convergent with O(∆t) accuracy, we need to ver-
ify that the discretization is O(∆t)-consistent and 0-stable [7]. We begin by
writing the FV equations as a DAE system,

dc

dt
= R(c) + D(c) + GT (c)λ (24a)

Ac = 0. (24b)

Using the algebraic constraint (equation 24b), we solve for λ to obtain the
underlying ODE system,

dc

dt
= R(c) + D(c) − GT (c)

(
AGT (c)

)
−1

A
(
R(c) + D(c)

)
. (25)
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Now, consider our numerical method. We have

c(∗) − c(n)

∆t
= R(c(∗)), (26)

c(∗∗) − c(∗)

∆t
= D(c(∗∗)), (27)

c(n+1) − c(∗∗)

∆t
= GT (c(∗∗))λ, (28)

where λ is computed by pre-multiplying equation (28) by A and solving for λ
to obtain

λ = −

(
AGT (c(∗∗))

)
−1

Ac(∗∗)

∆t
, (29)

which may be expressed as (using equations (26), (27) and Ac(n) = 0)

λ = −
(
AGT (c(∗∗))

)
−1

A
(
R(c(∗)) + D(c(∗∗))

)
. (30)

Finally, substituting equation (30) into equation (28) and summing equations
(26), (27) and (28) gives

c(n+1) − c(n)

∆t
= R(c(∗)) + D(c(∗∗)) −

GT (c(∗∗))
(
AGT (c(∗∗))

)
−1

A
(
R(c(∗)) + D(c(∗∗))

)
. (31)

Since c(∗) = c(n) + O(∆t) and c(∗∗) = c(n) + O(∆t), equation (31) may be
expressed as

c(n+1) − c(n)

∆t
= R(c(n)) + D(c(n)) −

GT (c(n))
(
AGT (c(n))

)
−1

A
(
R(c(n)) + D(c(n))

)
+ O(∆t). (32)
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Comparing equations (32) and (25), we see that our method is O(∆t)-consistent.
To see 0-stability, start with equation (32) and simply refer to the proof for
the forward Euler method as given in [7].

4 Notes on Implementation

In this section we highlight some of the properties of the equations to be solved
in our numerical method and present our implementation strategies. Consider
each of the four steps of the time-splitting algorithm, in turn.

1) Reaction terms

For the reaction terms we obtain Ncells independent nonlinear systems of
Nspecies equations each for (ck)

(∗,rxns)
i,j . These systems are solved by Newton’s

method with an LU-decomposition of the Jacobian matrix (computed ana-
lytically), which is saved from adjacent FV cells and is updated only when
the method fails to converge after a predefined number of iterations. Initial
guesses for the solutions to these systems are taken to be the current time
step solution at an already computed adjacent FV cell, if one is available, or
the solution at the previous time step for the current FV cell.

2) Diffusion terms

For the diffusion terms we obtain Nspecies independent linear systems of Ncells

equations each for (ck)
(∗,diff)
i,j . The matrices corresponding to these linear sys-

tems are symmetric for the uniform cell equations, slightly asymmetric for
the nonuniform cell equations (as long as the ratio of adjacent cell sizes is
close to one) and completely asymmetric for boundary cell equations. These
systems are easily and efficiently solved by a general preconditioned iterative
linear solver. We use BICGSTAB with ILU preconditioning, as implemented
in SPARSEKIT2 [18]. Maximum efficiency is found empirically by tuning the
ILU parameters, drop tolerance and fill level to 10−4 and 15, respectively.

3) Projection step

The projection step requires the solution of a single linear system of Ncells

equations for Φi,j , with matrix symmetry similar in form to the matrix involv-
ing the diffusion terms.

4) Migration terms

The migration terms require the electric potential, Φi,j, computed in the pro-
jection step. Once obtained, the equations for the new chemical concentra-
tions, (ck)

(n+1)
i,j , are fully explicit everywhere except along the active boundary.
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Fig. 5. The plot above shows the computationally efficiency of our algorithm. CPU
time on a P4-3.4GHz machine is given for one time step vs. total number of equations
solved, corresponding to trench-shaped grids ranging from 20×20 to 640×640. The
result is a power law of 1.22, where 1.0 is optimal.

There, we get Nspecies small independent linear systems of Nboundary equations
each, one for each chemical species, k.

We note that steps 1,2 and 4 are easily parallelizable, owing to the indepen-
dence of the equation systems that are solved. We plan to explore this in a
future paper.

5 Numerical Results

5.1 Efficiency Results

To test the efficiency of our algorithm, we measure CPU time over 1000 time
steps for different sized grids, ranging from 20 × 20 to 640 × 640, with ∆t =
0.0001 for each grid. In figure (5), we plot average time for one time step
versus number of grid variables. The CPU time vs. problem size appears to
obey a power law, which we compute as:

p =
log
(

T640

T40

)

log
(

6402

402

) , (33)

where T40 and T640 are the CPU times for the 40 × 40 and 640 × 640 grids,
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respectively. From our measurements, we computed a value of p = 1.22. Note
that the parameter values used for this test were the same as those given in
section 5.2.

5.2 Convergence Results

We perform three sets of tests to validate the accuracy of our method. In all
tests, we use 3 chemical species with diffusion coefficients D1 = 1.0, D2 =
10.0, D3 = 100.0, mobility constants u1 = 1.0, u2 = 10.0, u3 = 100.0, and
charge z1 = 1.0, z2 = −2.0, z3 = −1.0. Also, in all tests, we set the top Dirich-
let boundaries to cFF

1 = 3.0, cFF
2 = 1.0, cFF

3 = 1.0 and let the initial species
concentrations be given by a narrowly peaked two-dimensional Gaussian dis-
tribution,

c0
k(x, y) =

(
5e

((x−0.5)2+(y−0.5)2)

0.12 + 1
)
cFF
k . (34)

The time scale, τ , for the evolution of the chemical concentration fields is

determined by the largest diffusion coefficient, τ =
√

L
max Dk

, where L is the

length scale of the physical domain. Thus, we get τ =
√

1
100.0

= 0.1. Note
that these parameters have been nondimensionalized and represent a range of
physical values that might be used in a typical simulation. For example, diffu-
sion coeffients for various ions in aqueous solution (Cu2+, H+, etc.) typically
range from 10−10 to 10−8 m2/s [3]. Length scales are of order 10−6 m and time
scales vary from 10−3 to 102 s [2]. The reason for using an initial Gaussian dis-
tribution, however, is for generating nontrivial numerical solutions for testing
our algorithm.

We compute the numerical solutions from t0 = 0 to t1 = τ = 0.1 for grids
ranging from 20× 20, 40× 40, 80× 80, 160× 160, 320× 320 to 640× 640. For
each grid, the time step ∆t ranges from 0.00512 to 0.000005, being decreased
by a factor of 4 successively. The numerical solution on the 640 × 640 grid
with ∆t = 0.000005 is taken to approximate the exact solution for purposes
of error calculation.

For each of our numerical solutions, we calculate the relative error in both
the L2 and L∞ norms as follows. First, the most refined numerical solution
(∆x = 1/640, ∆t = 0.000005) is averaged onto the coarser grids, giving an

approximation to the exact solution on these grids, i.e. (ck)
(exact)
i,j . Then the

errors are computed as:
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EL2 =

(∑Nspecies

k=1

∑Nx

i=1

∑Ny

j=1

(
(ck)i,j−(ck)

(exact)
i,j

)2

NspeciesNxNy

)1/2

(∑Nspecies

k=1

∑Nx

i=1

∑Ny

j=1

(
(ck)

(exact)
i,j

)2

NspeciesNxNy

)1/2
(35)

EL∞
=

maxk,i,j

∣∣∣(ck)i,j − (ck)
(exact)
i,j

∣∣∣

maxk,i,j

∣∣∣(ck)
(exact)
i,j

∣∣∣
. (36)

In our first test, we use a rectangular grid with no chemical reactions and no
influx along the active boundary, Jk = 0. This test is chosen as a preliminary
validation of the accuracy of our spatial discretization, projection scheme and
linear solvers. Our results are plotted in figure (7). We find that the method
is indeed O(∆t, ∆x2) accurate, as expected. Also, the charge neutrality con-
dition, equation (1b), is satisfied to the precision set for our linear solvers.

In our second test, we use a trench-shaped grid with one chemical reaction,

[1] + [2]
10.0
−−⇀↽−−
30.0

[3]. The active boundary influx, Jk, is set to the same value

for each chemical species and is increased during a series of four subtests:
Jk = 0.0, 1.0, 10.0, 100.0. The purpose of these subtests is to understand how
large values of Jk can degrade the accuracy of our numerical solutions. Our
results are plotted in figure (8). Notice that for Jk ≫ 1.0, our numerical
solutions lose accuracy and converge slower than expected.

The conclusions we draw from this second test are as follows. First, our
method retains O(∆t, ∆x2) accuracy in the presence of chemical reactions and
a trench-shaped grid. For moderate values of Jk (≈ 1.0 − 10.0), our method
approaches O(∆t, ∆x2) accuracy as we refine ∆t and ∆x to the smallest tested
values. Slower convergence is observed for larger ∆t and ∆x and is more pro-
nounced in the L∞-norm. As Jk is increased further (to 100.0), the loss of
accuracy becomes more severe. An explanation for this is that the exact so-
lution exhibits a thin boundary layer near the active boundary that becomes
steeper as Jk is increased. This boundary layer is difficult to resolve even on
the most refined uniform grids, thus degrading the overall accuracy. The so-
lution to this problem is simple in principle: use a nonuniform grid near the
active boundary. And since the active boundary moves, the grid would have
to be refined adaptively. This is an area of possible future work.

Our third test is designed to verify the accuracy of our method with a mov-
ing boundary. For this, we couple our numerical method to a simple surface
reaction model using the level set method, as described in [6]. In our imple-
mentation of the level set method, we use a closest point algorithm to prevent
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our solutions from degrading to O(∆x) accuracy near the moving boundary
[17]. Our results are plotted in figure (9). Since we moved our boundary slowly
(a distance of approximately 0.2 cells per timestep for the coarsest grids) and
chose parameter values yielding relatively small boundary flux (Jk ≤ 1), we
observe O(∆t, ∆x2) accuracy, as expected.

Overall, our algorithm exhibits small relative errors for moderately refined
grids and time steps in most cases. For example, we often would like to obtain
a numerical solution with less than 1% relative error. From figure (8), we see
that this is achieved with an 80 × 80 grid and ∆t = 0.00032, which means
≈ 300 time steps to integrate from t0 = 0.0 to t1 = 0.1 for Jk = 0.0, 1.0. The
same 80×80 grid will work with ∆t = 0.00008 for Jk = 10.0 and ∆t = 0.00002
for Jk = 100.0. Notice from the plots that for practical values of ∆t and ∆x,
accuracy is improved most by refining ∆t rather than ∆x.

6 Conclusions and Future Work

The algorithm described here provides a general numerical strategy for solv-
ing equations (1a) and (1b) on irregular domains with moving boundaries. We
split the right hand side of equation (1a) into three groups of physically related
terms: reaction, diffusion and migration. We then integrate the chemical con-
centration fields corresponding to each set of terms in turn. Similar splitting
techniques are commonly used to solve systems with reaction and diffusion
only and have been extended to higher order accuracy [19]. However, splitting
methods have not been combined with migration and the charge neutrality
constraint (equation (1b)) to our knowledge. The advantage of our method
over others is in its efficiency, scalability, and ease of parallelization. It also
appears to be very stable, which is the result of using the fully Implicit Euler
method to integrate the potentially stiff reaction and diffusion terms. These
properties will prove most useful when extending the algorithm to three di-
mensions. Since these equations are common to most electrochemical systems,
we believe our method will be useful in many applications.

A Appendix

A.1 Spatial Discretization

The finite volume equations are derived by integrating equation (6) over the
region contained within cell (i, j), Ωi,j:
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∂

∂t

(∫

Ωi,j

ck

)
=

( ∫

Ωi,j

Rk

(
{ck′}

))
+

Dk

(∫

Ωi,j

~∇ · ~∇ck

)
+ (zkukF )

(∫

Ωi,j

~∇ ·
(
ck

~∇Φ
))

. (A.1)

Applying the Divergence Theorem to the last two terms, equation (A.1) may
be written as

∂

∂t

(∫

Ωi,j

ck

)
=

(∫

Ωi,j

Rk

(
{ck′}

))
+

Dk

(∫

∂Ωi,j

~∇ck · n̂

)
+ (zkukF )

(∫

∂Ωi,j

(
ck

~∇Φ
)
· n̂

)
. (A.2)

Next, we make a series of O(∆x2) approximations for the terms in equation
(A.2). We begin by defining (ck)i,j to be the concentration of chemical species

k at the centroid of cell (i, j), which may be expressed with O(∆x2) accuracy
by

(ck)i,j =

(
∫
Ωi,j

ck

)

Vi,j
, (A.3)

where

Vi,j =
(
∆xi∆yj

)
V rel

i,j (A.4)

is the volume of Ωi,j, and V rel
i,j is the volume fraction of a boundary cell occu-

pied by solution.

Furthermore, for the chemical reaction term,

Rk

(
{(ck′)i,j}

)
=

(
∫
Ωi,j

Rk

(
{ck′}

))

Vi,j
(A.5)

is O(∆x2) accurate.

The boundary integrals may be broken into right, left, up, down and active
boundary terms for a general cell:
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∫

∂Ω

~A · n̂ =
∫

right

~A · x̂ −
∫

left

~A · x̂ +
∫

up

~A · ŷ −
∫

down

~A · ŷ +
∫

active

~A · n̂. (A.6)

Equation (A.6) may be written approximately with O(∆x2) accuracy as

∫

∂Ω

~A · n̂ = ∆y
(
Ax

∣∣∣
right

θright − Ax

∣∣∣
left

θleft

)

+∆x
(
Ay

∣∣∣
up

θup − Ay

∣∣∣
down

θdown

)
+ ∆sAn

∣∣∣
active

, (A.7)

where θright, θleft, θup, θdown are the fractions of the right, left, up, down cell
faces that are in contact with an adjacent cell. ∆s is the length of the active
boundary element (∆s = 0 for non-boundary cells). Ax

∣∣∣
right

, Ax

∣∣∣
left

, Ay

∣∣∣
up

,

Ay

∣∣∣
down

are the x and y components of ~A evaluated at the corresponding

boundary element midpoints.

Substituting equations (A.3) - (A.7) into equation (A.2), we get a very useful
equation that gives the general form of the O(∆x2) accurate spatial discretiza-
tion for all three types of FV cells:

V rel
i,j

∂(ck)i,j

∂t
= V rel

i,j Rk

(
{(ck′)i,j}

)
+

Dk

∆xi

(
∂ck

∂x

∣∣∣∣∣
right

θright −
∂ck

∂x

∣∣∣∣∣
left

θleft

)
+

Dk

∆yj

(
∂ck

∂y

∣∣∣∣∣
up

θup −
∂ck

∂y

∣∣∣∣∣
down

θdown

)
+

(zkukF )

∆xi

((
ck

∂Φ

∂x

)∣∣∣∣∣
right

θright −
(
ck

∂Φ

∂x

)∣∣∣∣∣
left

θleft

)
+

(zkukF )

∆yj

((
ck

∂Φ

∂y

)∣∣∣∣∣
up

θup −
(
ck

∂Φ

∂y

)∣∣∣∣∣
down

θdown

)
+

∆si,j

∆xi∆yj

(
Dk

∂ck

∂n

∣∣∣∣∣
active

+ (zkukF )
(
ck

∂Φ

∂n

)∣∣∣∣∣
active

)
. (A.8)

We will now describe how to apply equation (A.8) to each our our three cell
types to obtain the equations for our numerical method.

During a simulation the active boundary of the domain changes, and thus the
locations of the cell centroids change. In order to avoid the need to interpolate
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near the boundary between time steps, we express all quantities in equation
(A.8) in terms of cell center variables. That is, we define for each solution
containing cell (i, j), (ck)i,j is the concentration of chemical species k at the
center of cell, and Φi,j is the electric potential at the center of cell.

For non-boundary cells in the uniform cell region, the cell centroid and cell
center are identical, and so forming O(∆x2) accurate equations for these cells
becomes trivial and will be given in detail in the next subsection.

For boundary cells the situation is more delicate. We may express the cell
centroid variables in equation (A.8) with O(∆x2) accuracy in terms of the cell
center variables via bilinear interpolation:

(ck)i,j = αi,jβi,j(ck)i,j + (1 − αi,j)βi,j(ck)i+̃i,j

+αi,j(1 − βi,j)(ck)i,j+j̃
+ (1 − αi,j)(1 − βi,j)(ck)i+̃i,j+j̃

, (A.9)

where αi,j, βi,j are the bilinear interpolation weights, and ĩ, j̃ ∈ {−1, 1}.

Next, the terms ∂ck

∂x

∣∣∣∣∣
left

, etc., which are understood to be evaluated at the

boundary midpoint (see figure 6), may be expressed with O(∆x2) accuracy in
terms of cell center variables using linear interpolation:

∂ck

∂x

∣∣∣∣∣
left

=
1∑

jj=−1

b
(left)
jj

(
(ck)i,j+jj − (ck)i−1,j+jj

)

∆x
. (A.10)

Similarly,

(
ck

∂Φ

∂x

)∣∣∣∣∣
left

= ck

∣∣∣
left

∂Φ

∂x

∣∣∣∣∣
left

=

1∑

jj=−1

b
(left)
jj

(
(ck)i,j+jj + (ck)i−1,j+jj

)

2

1∑

jj=−1

b
(left)
jj

(
Φi,j+jj − Φi−1,j+jj

)

∆x
,(A.11)

where b
(left)
jj are the linear interpolation weights for the midpoint of the left

boundary element of cell (i, j) in contact with adjacent cell (i−1, j). Analogous

expressions are derived for
(
· · ·

)∣∣∣
right

,
(
· · ·

)∣∣∣
up

and
(
· · ·

)∣∣∣
down

.

Last, we need to treat cells in the nonuniform region. The only difference be-
tween these cells and uniform non-boundary cells is the treatment of terms of

19



Fig. 6. Figure shows location of cell centroid and boundary element midpoints for
a boundary cell.

the form
(
· · ·

)∣∣∣
up

and
(
· · ·

)∣∣∣
down

required to achieve O(∆y2) accuracy. Con-

sider a cell in the nonuniform region, (i, j), for which the following inequalities
hold:

∆yj−2 ≤ yj−1 ≤ yj ≤ yj+1. (A.12)

One can show, via linear interpolation, that the corresponding expressions are
given by

ck

∣∣∣
up

=

(
∆yj+1

∆yj

)

(
1 +

∆yj+1

∆yj

)(ck)i,j +
1(

1 +
∆yj+1

∆yj

)(ck)i,j+1, (A.13)

ck

∣∣∣
down

=

(
∆yj

∆yj−1

)

(
1 +

∆yj

∆yj−1

)(ck)i,j−1 +
1(

1 +
∆yj

∆yj−1

)(ck)i,j, (A.14)

∂ck

∂y

∣∣∣∣∣
up

=

(
(ck)i,j+1 − (ck)i,j

)

∆yj
p+ +

(
(ck)i,j − (ck)i,j−1

)

∆yj
q+, (A.15)

∂ck

∂y

∣∣∣∣∣
down

=

(
(ck)i,j − (ck)i,j−1

)

∆yj−1

p− +

(
(ck)i,j−1 − (ck)i,j−2

)

∆yj−1

q−, (A.16)

where p+, q+, p−, q− are the weights that result from interpolation:
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p+ =
2(

1 +
∆yj+1

∆yj

)

(
∆yj−1

∆yj
+ 3

)

(
∆yj−1

∆yj
+ 2 +

∆yj+1

∆yj

) , (A.17)

q+ =
2(

∆yj−1

∆yj
+ 1

)

(
− 1 +

∆yj+1

∆yj

)

(
∆yj−1

∆yj
+ 2 + ∆yj+1

∆yj

) , (A.18)

p− =
2(

1 +
∆yj

∆yj−1

)

(
∆yj−2

∆yj−1
+ 3

)

(
∆yj−2

∆yj−1
+ 2 +

∆yj

∆yj−1

) , (A.19)

q− =
2(

∆yj−2

∆yj−1
+ 1

)

(
− 1 + ∆yj

∆yj−1

)

(
∆yj−2

∆yj−1
+ 2 +

∆yj

∆yj−1

) . (A.20)

Finally, observe that the last term of equation (A.8) is nothing but

∆si,j

∆xi∆yj

(
Dk

∂ck

∂n

∣∣∣∣∣
active

+ (zkukF )
(
ck

∂Φ

∂n

)∣∣∣∣∣
active

)
= −

∆si,j

∆xi∆yj
Jk, (A.21)

which can be seen by recalling the definition of Jk, the flux of chemical species
k, given in equation (7). Jk is evaluated at the active boundary element mid-
point and is provided as a boundary condition, as discussed earlier.

A.2 Temporal Discretization

Referring to our general description given above, we now include all the details
of the equations solved using our algorithm.

For the reaction terms, we have from equation (19) the following system solved
via Backward Euler:

V rel
i,j

(
(ck)

(∗,rxns)

i,j − (ck)
(n)

i,j

)

∆t
= V rel

i,j Rk

(
{(ck′)

(∗,rxns)

i,j }
)
. (A.22)

This is equivalent to solving the corresponding cell-center equations, cell-by-
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cell:

(
(ck)

(∗,rxns)
i,j − (ck)

(n)
i,j

)

∆t
= Rk

(
{(ck′)

(∗,rxns)
i,j }

)
. (A.23)

Using equations (3) and (4) to expand the right hand side of equation (A.23)
gives:

(
(ck)

(∗,rxns)
i,j − (ck)

(n)
i,j

)

∆t
=

Nrxns∑

j=1

aLHS
j,k

(
− kF

j

∏

k′

(
(ck′)

(∗,rxns)
i,j

)aLHS
j,k′ + kB

j

∏

k′

(
(ck′)

(∗,rxns)
i,j

)aRHS
j,k′

)
+

Nrxns∑

j=1

aRHS
j,k

(
kF

j

∏

k′

(
(ck′)

(∗,rxns)
i,j

)aLHS
j,k′ − kB

j

∏

k′

(
(ck′)

(∗,rxns)
i,j

)aRHS
j,k′

)
.(A.24)

The result is a nonlinear system of Nspecies equations for each FV cell, where
Nspecies is the number of chemical species. Note that equations for different
FV cells are decoupled. Note that since no spatial derivatives are involved,
equation (A.24) is valid for all three types of FV cells.

Next, we solve equation (20) for the diffusion terms (plus boundary flux),
again using Backward Euler:

V rel
i,j

(
(ck)

(∗,diff)

i,j − (ck)
(∗,rxns)

i,j

)

∆t
=

Dk

∆xi

(
∂ck

∂x

∣∣∣∣∣
right

θright −
∂ck

∂x

∣∣∣∣∣
left

θleft

)
+

Dk

∆yj

(
∂ck

∂y

∣∣∣∣∣
up

θup −
∂ck

∂y

∣∣∣∣∣
down

θdown

)
+

∆si,j

∆xi∆yj

(
Dk

∂ck

∂n

∣∣∣∣∣
active

+ (zkukF )
(
ck

∂Φ

∂n

)∣∣∣∣∣
active

)
. (A.25)

Expressing each of the cell centroid and boundary derivative terms above with
cell center variables (equations (A.9) and (A.10)) and setting the flux term to
−(Jk)i,j, we get (for uniform region cells):
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V rel
i,j

(
αi,jβi,j(ck)

(∗,diff)
i,j + (1 − αi,j)βi,j(ck)

(∗,diff)

i+̃i,j

+αi,j(1 − βi,j)(ck)
(∗,diff)

i,j+j̃
+ (1 − αi,j)(1 − βi,j)(ck)

(∗,diff)

i+̃i,j+j̃

)

−
∆tDkθright

(∆xi)2

1∑

jj=−1

b
(right)
jj

(
(ck)

(∗,diff)
i+1,j+jj − (ck)

(∗,diff)
i,j+jj

)

+
∆tDkθleft

(∆xi)2

1∑

jj=−1

b
(left)
jj

(
(ck)

(∗,diff)
i,j+jj − (ck)

(∗,diff)
i−1,j+jj

)

−
∆tDkθup

(∆yj)2

1∑

ii=−1

b
(up)
ii

(
(ck)

(∗,diff)
i+ii,j+1 − (ck)

(∗,diff)
i+ii,j

)

+
∆tDkθdown

(∆yj)2

1∑

ii=−1

b
(down)
ii

(
(ck)

(∗,diff)
i+ii,j − (ck)

(∗,diff)
i+ii,j−1

)
=

V rel
i,j

(
αi,jβi,j(ck)

(∗,rxns)
i,j + (1 − αi,j)βi,j(ck)

(∗,rxns)

i+̃i,j

+αi,j(1 − βi,j)(ck)
(∗,rxns)

i,j+j̃
+ (1 − αi,j)(1 − βi,j)(ck)

(∗,rxns)

i+̃i,j+j̃

)

−
∆t∆si,j

∆xi∆yj
(Jk)i,j (A.26)

In the nonuniform cell region, the equations have a more complicated y-
gradient term, but the cells are not cut by the active boundary, so overall
they are simpler:

(ck)
(∗,diff)
i,j −

∆tDk

(∆xi)2

(
(ck)

(∗,diff)
i+1,j − 2(ck)

(∗,diff)
i,j + (ck)

(∗,diff)
i−1,j

)

−
∆tDk

∆yj

(
∂ck

∂y

∣∣∣∣∣
up

−
∂ck

∂y

∣∣∣∣∣
down

)
= (ck)

(∗,rxns)
i,j , (A.27)

where

∂ck

∂y

∣∣∣∣∣
up

=

(
(ck)

(∗,diff)
i,j+1 − (ck)

(∗,diff)
i,j

)

∆yj

p+ +

(
(ck)

(∗,diff)
i,j − (ck)

(∗,diff)
i,j−1

)

∆yj

q+, (A.28)

∂ck

∂y

∣∣∣∣∣
down

=

(
(ck)

(∗,diff)
i,j − (ck)

(∗,diff)
i,j−1

)

∆yj−1
p− +

(
(ck)

(∗,diff)
i,j−1 − (ck)

(∗,diff)
i,j−2

)

∆yj−1
q−, (A.29)
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and p+, q+, p−, q− are as given by equations (A.17) - (A.20).

The required boundary conditions are the following. At the top boundary, we
have the inhomogeneous Dirichlet boundary (equation (8)). Thus, we define
adjacent ghost cells just above the top boundary,

(ck)
(∗,diff)
i,NY +1 = 2c∞k − (ck)

(∗,diff)
i,NY . (A.30)

Along the side boundaries, we have the zero flux condition (equation (10)). We
assume that this zero total flux results from zero diffusion flux and zero migra-
tion flux, independently. Thus, ∂ck

∂x
= 0 along the sides, giving the numerical

condition for left and right ghost cells:

(ck)
(∗,diff)
0,j = (ck)

(∗,diff)
1,j

(ck)
(∗,diff)
NX+1,j = (ck)

(∗,diff)
NX,j . (A.31)

Notice that this system of equations is decoupled for each chemical species,
k. That is, there are Nspecies independent systems of Ncells equations to be
solved, where Ncells is the number of solution containing FV cells.

Next is the projection step, where we solve for the electric potential, Φi,j, such
that after migration terms are included, charge neutrality is satisfied for every
FV cell. Expanding equation (22), we get:

∆t
∑

k

zk
(zkukF )

∆xi

((
ck

∂Φ

∂x

)∣∣∣∣∣
right

θright −
(
ck

∂Φ

∂x

)∣∣∣∣∣
left

θleft

)
+

∆t
∑

k

zk
(zkukF )

∆yj

((
ck

∂Φ

∂y

)∣∣∣∣∣
up

θup −
(
ck

∂Φ

∂y

)∣∣∣∣∣
down

θdown

)

= −V rel
i,j

∑

k

zk(ck)
(∗,diff)

i,j . (A.32)

Note that for ck above, we can use (ck)
(n), (ck)

(∗,rxns) or (ck)
(∗,diff); all choices

resulting in O(∆t) accuracy. We use (ck)
(∗,diff) since it is empirically observed

to give smooth, stable solutions everywhere, while (ck)
(n), for example, leads

to numerical cell sized oscillations near the top spatial boundary.

Expressing each of the terms in equation (A.32) with the cell centered variables
(for uniform region cells), as described earlier, gives:
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∆tFθright

2(∆xi)2

(
∑

k

z2
kuk

1∑

jj=−1

b
(right)
jj

(
(ck)

(∗,diff)
i,j+jj + (ck)

(∗,diff)
i+1,j+jj

))

·
1∑

jj=−1

b
(right)
jj

(
Φi+1,j+jj − Φi,j+jj

)

−
∆tFθleft

2(∆xi)2

(
∑

k

z2
kuk

1∑

jj=−1

b
(left)
jj

(
(ck)

(∗,diff)
i−1,j+jj + (ck)

(∗,diff)
i,j+jj

))

·
1∑

jj=−1

b
(left)
jj

(
Φi,j+jj − Φi−1,j+jj

)

+
∆tFθup

2(∆yj)2

(
∑

k

z2
kuk

1∑

ii=−1

b
(up)
ii

(
(ck)

(∗,diff)
i+ii,j + (ck)

(∗,diff)
i+ii,j+1

))

·
1∑

ii=−1

b
(up)
ii

(
Φi+ii,j+1 − Φi+ii,j

)

−
∆tFθdown

2(∆yj)2

(
∑

k

z2
kuk

1∑

ii=−1

b
(down)
ii

(
(ck)

(∗,diff)
i+ii,j−1 + (ck)

(∗,diff)
i+ii,j

))

·
1∑

ii=−1

b
(down)
ii

(
Φi+ii,j − Φi+ii,j−1

)

= V rel
i,j

(
αi,jβi,j(ck)

(∗,diff)
i,j + (1 − αi,j)βi,j(ck)

(∗,diff)

i+̃i,j

+αi,j(1 − βi,j)(ck)
(∗,diff)

i,j+j̃
+ (1 − αi,j)(1 − βi,j)(ck)

(∗,diff)

i+̃i,j+j̃

)
(A.33)

In the nonuniform cell region, equation (A.32) becomes:

∆tF

2(∆xi)2

(
∑

k

z2
kuk

(
(ck)

(∗,diff)
i,j + (ck)

(∗,diff)
i+1,j

))
·
(
Φi+1,j − Φi,j

)

−
∆tF

2(∆xi)2

(
∑

k

z2
kuk

(
(ck)

(∗,diff)
i−1,j + (ck)

(∗,diff)
i,j

))
·
(
Φi,j − Φi−1,j

)

+
∆tF

∆yj

∑

k

z2
kuk

((
ck

∂Φ

∂y

)∣∣∣∣∣
up

−
(
ck

∂Φ

∂y

)∣∣∣∣∣
down

)

= −
∑

k

zk(ck)
(∗,diff)
i,j , (A.34)

where
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(
ck

∂Φ

∂y

)∣∣∣∣∣
up

= (ck)
∣∣∣
up

∂Φ

∂y

∣∣∣∣∣
up

(A.35)

(
ck

∂Φ

∂y

)∣∣∣∣∣
down

= (ck)
∣∣∣
down

∂Φ

∂y

∣∣∣∣∣
down

, (A.36)

and

ck

∣∣∣
up

=

(
∆yj+1

∆yj

)

(
1 + ∆yj+1

∆yj

)(ck)
(∗,diff)
i,j +

1(
1 + ∆yj+1

∆yj

)(ck)
(∗,diff)
i,j+1 , (A.37)

ck

∣∣∣
down

=

(
∆yj

∆yj−1

)

(
1 +

∆yj

∆yj−1

)(ck)
(∗,diff)
i,j−1 +

1(
1 +

∆yj

∆yj−1

)(ck)
(∗,diff)
i,j , (A.38)

∂Φ

∂y

∣∣∣∣∣
up

=

(
Φi,j+1 − Φi,j

)

∆yj
p+ +

(
Φi,j − Φi,j−1

)

∆yj
q+, (A.39)

∂Φ

∂y

∣∣∣∣∣
down

=

(
Φi,j − Φi,j−1

)

∆yj−1
p− +

(
Φi,j−1 − Φi,j−2

)

∆yj−1
q−, (A.40)

and, again, p+, q+, p−, q− are as given by equations (A.17) - (A.20).

The required boundary conditions are the same as those given for the diffu-
sion step. We have the inhomogeneous Dirichlet boundary at the top (from
equation (9)), giving the numerical condition for the top ghost cells:

Φi,NY +1 = 2Φ∞ − Φi,NY . (A.41)

And, along the sides we have zero flux, which combined with ∂ck

∂x
= 0, gives

∂Φ
∂x

= 0. Numerically, this gives the condition for side ghost cells:

Φ0,j = Φ1,j

ΦNX+1,j = ΦNX,j . (A.42)

The resulting system of equations for the projection step is a fully coupled
set of size Ncells. Notice that the coefficients of this system depend on all the
previously computed intermediate values, (ck)

(∗,diff)
i,j .
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Last, we include the migration terms by solving equation (23) using Φi,j ob-
tained in the projection step. Expanding equation (23), we get:

V rel
i,j

(
(ck)

(n+1)

i,j − (ck)
(∗,diff)

i,j

)

∆t
=

(zkukF )

∆xi

((
ck

∂Φ

∂x

)∣∣∣∣∣
right

θright −
(
ck

∂Φ

∂x

)∣∣∣∣∣
left

θleft

)
+

(zkukF )

∆yj

((
ck

∂Φ

∂y

)∣∣∣∣∣
up

θup −
(
ck

∂Φ

∂y

)∣∣∣∣∣
down

θdown

)
. (A.43)

Once again, expressing each of the terms in equation (A.43) with the cell
centered variables (for uniform region cells) gives:

V rel
i,j

(
αi,jβi,j(ck)

(n+1)
i,j + (1 − αi,j)βi,j(ck)

(n+1)

i+̃i,j

+αi,j(1 − βi,j)(ck)
(n+1)

i,j+j̃
+ (1 − αi,j)(1 − βi,j)(ck)

(n+1)

i+̃i,j+j̃

)

= V rel
i,j

(
αi,jβi,j(ck)

(∗,diff)
i,j + (1 − αi,j)βi,j(ck)

(∗,diff)

i+̃i,j

+αi,j(1 − βi,j)(ck)
(∗,diff)

i,j+j̃
+ (1 − αi,j)(1 − βi,j)(ck)

(∗,diff)

i+̃i,j+j̃

)

+
∆tFθright

2(∆xi)2
· zkuk
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jj=−1

b
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jj
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)

·
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jj=−1

b
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jj

(
Φi+1,j+jj − Φi,j+jj

)

−
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2(∆xi)2
· zkuk

1∑

jj=−1
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jj

(
(ck)
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i−1,j+jj + (ck)

(∗,diff)
i,j+jj

)

·
1∑

jj=−1

b
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jj

(
Φi,j+jj − Φi−1,j+jj

)

+
∆tFθup

2(∆yj)2
· zkuk

1∑

ii=−1

b
(up)
ii

(
(ck)

(∗,diff)
i+ii,j + (ck)

(∗,diff)
i+ii,j+1

)

·
1∑

ii=−1

b
(up)
ii

(
Φi+ii,j+1 − Φi+ii,j

)

−
∆tFθdown

2(∆yj)2
· zkuk

1∑

ii=−1

b
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ii

(
(ck)

(∗,diff)
i+ii,j−1 + (ck)
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)

·
1∑

ii=−1

b
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ii
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)
(A.44)
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And, in the nonuniform cell region, equation (A.43) becomes:

(ck)
(n+1)
i,j = (ck)

(∗,diff)
i,j

+
∆tF

2(∆xi)2
· zkuk

(
(ck)

(∗,diff)
i,j + (ck)

(∗,diff)
i+1,j

)
·
(
Φi+1,j − Φi,j

)

−
∆tF

2(∆xi)2
· zkuk

(
(ck)

(∗,diff)
i−1,j + (ck)

(∗,diff)
i,j

)
·
(
Φi,j − Φi−1,j

)

+
∆t(zkukF )

∆yj

((
ck

∂Φ

∂y

)∣∣∣∣∣
up

−
(
ck

∂Φ

∂y

)∣∣∣∣∣
down

)
, (A.45)

with
(
ck

∂Φ
∂y

)∣∣∣∣∣
up

and
(
ck

∂Φ
∂y

)∣∣∣∣∣
down

given by equations (A.35) and (A.36), respec-

tively.

Notice that the migration step is fully explicit only for non-boundary cells.
The cells cut by the boundary form Nspecies small systems of Nboundary (=
number of boundary cells) equations each that must be solved implicitly for

the new chemical concentration fields, (ck)
(n+1)
i,j .
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Fig. 7. Figure shows convergence (L2-norm - left, L∞-norm - right) of numerical
method in time (top) and space (bottom) for a rectangular domain with no chemical
reactions and active boundary influx, Jk = 0. The straight lines with slopes 1 and
2 indicate O(∆t) and O(∆x2) accuracy, respectively.
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Fig. 8. Figure shows convergence (L2-norm - left, L∞-norm - right) of numerical
method in time (top) and space (bottom) for a trench-shaped domain with one
chemical reaction and active boundary influx, Jk = 0, 1, 10, 100. The straight lines
with slopes 1 and 2 indicate O(∆t) and O(∆x2) accuracy, respectively.
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Fig. 9. Figure shows convergence (L2-norm - left, L∞-norm - right) of numerical
method in time (top) and space (bottom) for a moving boundary domain, where
the boundary is advected via the level set method. The straight lines with slopes 1
and 2 indicate O(∆t) and O(∆x2) accuracy, respectively.

32


