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Reaction-diffusion master equation in the microscopic limit
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Stochastic modeling of reaction-diffusion kinetics has emerged as a powerful theoretical tool in the study
of biochemical reaction networks. Two frequently employed models are the particle-tracking Smoluchowski
framework and the on-lattice reaction-diffusion master equation (RDME) framework. As the mesh size goes
from coarse to fine, the RDME initially becomes more accurate. However, recent developments have shown that
it will become increasingly inaccurate compared to the Smoluchowski model as the lattice spacing becomes very
fine. Here we give a general and simple argument for why the RDME breaks down. Our analysis reveals a hard
limit on the voxel size for which no local RDME can agree with the Smoluchowski model and lets us quantify
this limit in two and three dimensions. In this light we review and discuss recent work in which the RDME has
been modified in different ways in order to better agree with the microscale model for very small voxel sizes.
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A prevalent view in molecular systems biology is that
the noise in cellular reaction networks, arising intrinsically
from low copy numbers of macromolecules, can have a
substantial impact on function [1,2]. Two frequently used
models for simulating stochastic reaction-diffusion systems
are the reaction-diffusion master equation (RDME) [3,4]
and the Smoluchowski model [5], which we will refer to
as the mesoscopic and microscopic models, respectively. In
the RDME the computational domain is divided into voxels.
The RDME is attractive from a computational perspective; it
is the logical extension of spatially homogenous simulations
based on the Gillespie algorithm [6], and keeps track of the
location of molecules only up to the resolution of the mesh,
hence allowing for coarse graining.

On a finer modeling level, the Smoluchowski model treats
diffusion and reactions in continuous space, with molecules
explicitly represented as spheres with a certain interaction
radius. As such, itis an example of a model commonly referred
to as particle tracking. Software for simulations using the
different modeling frameworks is publicly available [7-14].

A well-known property of the mesoscopic model is that it
converges to the classical reaction-diffusion partial differential
equation in the macroscopic limit. For a system approaching
the microscopic regime, it is tempting to think of the RDME as
a better and better approximation to the Smoluchowski model
for finer and finer mesh resolutions. This picture is misleading,
as it has been shown that, as the size of the voxels in an infinite
three-dimensional (3D) domain decreases, all bimolecular
reactions are eventually lost in the mesoscopic model [15].
Recent work has demonstrated that fast, microscopic rebinding
events can substantially affect the macroscopic properties of a
biochemical signal cascade when reactions are highly diffusion
limited [16]. To accurately simulate such systems requires
a fine spatial resolution. On these scales, the conventional
RDME may be too inaccurate to capture even the qualitative
behavior predicted by the microscopic model [17].

The fact that the conventional mesoscopic model becomes
inaccurate as we approach the microscopic level is not
surprising, as we are moving out of the domain of validity for
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which it was derived. However, it can pose a real practical
problem, as it is hard to know a priori if a simulation
with the RDME will yield useful or misleading results. This
is especially true for biochemical models with multiscale
properties, which are frequently encountered in molecular
biology. Simply resorting to simulations on the microscopic
scale whenever in doubt is currently not feasible in general
due to the high computational cost for systems with many
particles. A natural approach to remedy this problem is to try
to extend the domain of validity of the RDME as the mesh
size tends to zero. Isaacson [15] suggests that one way of
doing this would be to let the association rate constants depend
explicitly on the mesh size. Recently, approaches to make such
corrections to the RDME have been proposed [17,18] based
on different optimization criteria. The corrected mesoscopic
association rate in 3D in [18] is derived based on an ansatz
about the steady-state distribution for a model problem in the
mesoscopic model and only works above a certain critical size
of the mesh. The association rate in [17] is derived by matching
the mesoscopic equilibration time for a reversible reaction to
the microscopic one and has no such property. Instead it is
observed that for small voxel sizes the RDME needs to be
extended to a nonlocal setting to give accurate results.

In this paper we add to the analysis of Isaacson [15] and
show, by a simple and intuitive argument, how and when the
RDME breaks down. Our results extends those of Isaacson
in that they are valid for finite domains in 2D and 3D and
independent of the choice of the mesoscopic association rates.
In addition, we prove that below a certain critical size of
the mesh it will be impossible to make the local RDME
consistent with the Smoluchowski model for any choice of
the mesoscopic association rate. For a simple model problem
we derive optimal mesoscopic association rates in both 2D
and 3D, compute the critical size of the mesh, and show that
it can be considerably larger than the interaction radii of the
molecules.

The reaction-diffusion master equation. In the mesoscopic
model, the computational domain is divided into nonover-
lapping voxels. Inside voxels, the molecules react according
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to a prespecified set of rules. In a small time interval dr,
a bimolecular reaction A + B — C, for example, occurs
with probability k,abdt/V, where k, is the mesoscopic rate
constant for the reaction, a and b are the discrete copy numbers
of A and B in that voxel, and V is the volume of the voxel.
Diffusion is modeled as jumps between adjacent voxels. For a
Cartesian mesh with mesh spacing 4, the rate for a diffusive
jump is given by D/h?, where D is the diffusion constant.
The time evolution of the system is described as a Markov
process, and the probability density function (PDF) of the
system evolves according to the RDME [3,4]. Realizations of
the process can be generated efficiently using kinetic Monte
Carlo methodology [19].

The Smoluchowski model. In the Smoluchowski model
two molecules A and B are assumed to move by Brownian
motion with diffusion constants D4 and Dpg, and react with
a certain probability at a distance determined by the sum
of their reaction radii p. For two molecules A and B, the
probability of a bimolecular reaction is governed by the
Smoluchowski equation. Given an initial relative position rg
at time f(, the equation for the PDF p of the new relative
position [in a spherical coordinate system r = (,0,¢) is given
by d; p = D Ap with initial condition p(r,ty) = §(r — ry) and
boundary conditions

0
lim p(r,t) =0, 471,02D B_p
,

|r|—>o00

== krp(r»t)|r:pa
r=p

where D = D4 + Dp and k, is the microscopic association
rate. It can be shown that a weighted mean R of the positions
will be normally distributed [13], and by sampling a new r and
R we obtain the new positions of the molecules at some time ¢.

An efficient method for simulating systems of molecules
is the Green’s function reaction dynamics (GFRD) [13,14]
method.

Breakdown of the mesoscopic model. Recent work has
demonstrated that the RDME breaks down in the limit of
infinitesimal voxels. Isaacson [15] shows that the proba-
bility for the occurrence of bimolecular reactions vanishes
with decreasing voxel size for molecules on a lattice in
an infinite 3D domain. The study is restricted to the case
where the mesoscopic reaction rates are not dependent on
the size of the voxels. Here we present an intuitive way to
understand the degeneration of the mesoscopic model in finite
domains in 2D and 3D, and with mesoscopic reaction rates
that depend explicitly on the mesh. Our analysis will also
provide additional insight into why and when this breakdown
occurs.

To see why the RDME model cannot work for very
small voxels, it is illustrative to consider the simple process

of bimolecular association A + B k—) C. In 3D, the con-
ventional mesoscopic reaction rate k, is defined by k, =
@rpDk,)/(4rwpD + k) =: kmeso [20,21]. It is valid for large
enough voxels, and in 2D no analogous expression is well
defined. We will refer to the conventional mesoscopic rate
constant as kpeso and to any mesoscopic rate constant as k.
In a Cartesian coordinate system, consider one A molecule
and one B molecule. Without loss of generality we may assume
that the A molecule is stationary in some voxel V4 and that
the B molecule diffuses with diffusion constant Dp. Let the
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domain be a square or a cube with side length L. We will restrict
ourselves to periodic boundary conditions. The correct choice
of other boundary conditions on the meso- and microscale is
studied in [22].

Assume that the B molecule has a uniformly distributed
initial position. Now let 7,5, be the average time until the two
molecules react, let k; = 2dD/ h? (where d is the dimension)
be the rate for a diffusive jump, and let k, be the mesoscopic
reaction rate.

First assume that the molecules do not start in the same
voxel. Before the molecules can react they have to diffuse to
the same voxel. The average time for the B molecule to diffuse
to V4 is denoted by tp. Now, given that the two molecules are
in the same voxel, the average time until an event occurs is
T, = (k, + k j)’l. With probability P, = k,/(k, + k;) the next
event will be a reaction event, and if the molecules do not react
they will diffuse apart one voxel. The average number of times
the molecules have to be in the same voxel before they react is
thus P!, and if we then define 7)) to be the average time for
the B molecule to diffuse to V4 given that it starts one voxel
away, we obtain

Tmeso = Tp + (Pfl - 1)(1:3 + rll)) + 7.
= 1p + k(1 + Nyeps)- (1)
where Nslteps
[23,24].
Theorem 1. Assume that the molecule B has a uniformly
distributed random starting position xg on the lattice, xp not

equal to x4, and that the molecules can move to nearest
neighbors only (as in the RDME). Then the following holds:

Nyeps = 7~ 'NIn(N) + 0.1951N + O(1)(2D),
Nyeps = 1.5164N + O(N'/*)(3D),

= k;t},. The following theorem was proven in

where Ny.ps is the average number of steps until xz = x4 for
the first time and N is the number of voxels in the domain.
Furthermore, N!._ = N — 1 in 2D and 3D, where N

steps steps
k;t), is the average number of steps until x5 = x, given that
A and B start one voxel apart.

Corollary 1. Let tp be the time until A and B are in the
same voxel for the first time. Then

L () 4000515 h — 0(2D)
~ n|— : — — ,
™o "\ n i ®

3

L

D 1.51646Dh as
where £ is the voxel size.

This follows immediately from Theorem 1 and the fact that
p = %Nswpskj_l, where the factor (N — 1)/N is because
the molecules start in the same voxel with probability 1/N.

From Corollary 1 and Eq. (1) we conclude that for a suffi-
ciently small voxel size in the discrete space model, we will
have Timeso > Tp > Tmicro (Where Thicro 1S the average time until
two uniformly distributed molecules react in the microscopic
model), for any choice of the mesoscopic rate constant, since
ki '(14 Nygeps) > 0 for all k, > 0. Eventually, as & — 0, no
bimolecular reactions will occur since molecules can react
only when they are in the same voxel and tp — oo, hence
Tmeso — 00. Note that the reason for this effect is not that

h — 0(3D),
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No local correction
possible

Conventional RDME gives useful results
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FIG. 1. (Color online) The expected time until the molecules are
in the same voxel for the first time, 7, is computed with the RDME on
a Cartesian grid on a square (a) and a cube (b) with reflective boundary
conditions. To the right of the vertical line we have Tp < Tiicro- In
that region the mesoscopic reaction rate can be corrected so that
the expected time until the molecules react matches the expected
time in the microscale model. To the left of the vertical line we
have 7p > Tyicro, and no such correction is possible. We have used
the parameters p =2 x 107 m, D = 107> m*>s~' (3D), and D =
107 m?s~! (2D).

the diffusion process is inaccurately described at these length
scales but rather that molecules react only after having diffused
to the same voxel.

No local correction to the association rates can make the
RDME consistent with the microscopic model. Due to the
computational advantage of using the conventional RDME
over the microscopic model, it is natural to try to modify
the RDME to agree better with the Smoluchowski model
for fine lattice spacings. A natural approach is to correct the
mesoscopic association rate constants in the RDME by letting
them depend on the discretization. This would preserve the
local nature of the reactions and the low computational cost.
However, one immediate consequence of the analysis in the
previous section is that below a certain mesh size A* no such
local correction can make the mean association rate between
two molecules agree with that in the microscopic model. In
fact, for a given domain and model, this happens precisely
when Tp > Tmicro- This is illustrated in Fig. 1 for the case of
a square with side length L = 250p and a cubic domain with
side length L = 100p, with k., — oo.

Aslongas Tp < Tmicro, thatis i > h*, itis possible to mod-
ify the association rate, i.e., derive a discretization-dependent
rate constant that will give the same mean association time as
the microscopic model. To give the correct binding times for
as large a regime as possible, a modified reaction propensity
q(h) needs to have the property g — oo for Tp — Tpicro (and
hence h — h™*).

While our analysis does not preclude the possibility of
better matching the mean association time by increasing D and
thus decreasing tp, this would make the effective diffusion too
fast and thus introduce another source of error.

Discussion. Figure 2 shows a schematic representation of
the RDME’s behavior as a function of the mesh size. For
h < p, the RDME makes little sense and we cannot expect
the model to work in this regime. In the other extreme,
above hy,y, discretization errors due to large voxels will
be unacceptably high. For Ay, < & < hmax the conventional
mesoscopic rate constants will work well, but for 4 < A, the
RDME will become increasingly inaccurate. For h* < h <
hmin it is possible to derive mesh- and problem-dependent

T I | 1
himax hmin h* p h—0

Local correction possible, but model
and geometry dependent

FIG. 2. (Color online) Schematic representation of the RDME’s
behavior as a function of 4. For & < h*, no local correction to the
conventional mesoscopic reaction rates exists for the simple problem
of diffusion to a target.

reaction rates that make the RDME agree better with the
microscopic model. The precise locations of the critical values
Nmins Bmax, and A* are model and geometry dependent.

In [15,25] the analytical solutions of the RDME and the
Smoluchowski equation for a single bimolecular association
reaction are expanded in a series and the three leading terms
in h are computed. It is shown that the two first terms will
converge to the same value as & tends to zero, but that the
difference between the third terms will diverge. There is an
h that minimizes the difference between the first terms of the
expansion. This illustrates that for some 2 < hy,;, the reaction
rates will need to be modified to make the mesoscopic model
accurate. However, as we have shown here, one will eventually
reach i* and the difference between the models will inevitably
increase, independent on the choice of k.

Recently, two different corrections to the mesoscopic rate
constant have been proposed [17,18]. In the 3D case with a
cubic domain and a uniform, Cartesian discretization, Erban

and Chapman [18] consider the model problem A + B k—>

B, ¥ LNy They derive a mesh-dependent rate expression
by matching the true steady-state distribution (which can
be obtained analytically for this simple problem) to the
distribution obtained using a mesh size /. They arrive at

q(h) = Dk, /(Dh* — Bkh?). 2)

They also find a critical mesh size iy = Boo/(kqs D) under
which no further correction can be made, where B, ~
0.25272 is a unitless constant valid for L > h. g satisfies the
basic requirements of our analysis: the existence of a critical
mesh size and the correct limiting behavior as the mesh size
tends to that critical value. Substituting k, for the conventional
expression ks, and taking k, — 0o, we obtain Ay ~ wp.

Fange et al. pursue a similar idea in [17]. They study
a reversible reaction and derive mesoscopic reaction rates
such that the equilibration time of the system matches the
equilibration time in the Smoluchowski model. They carry out
this analysis in 2D and 3D and obtain

p(h) = k, /{1 + e In[1 + 0.544(1 — y)/y1}2D),
p(h) = k1 +a(1 — y)(1 — 0.58y)1(3D),

where y = p/(p + £), p + £is the radius of a disk with area />
in 2D and a sphere with volume %% in 3D, @ = k. /(4w pD) in
3D,and ¢ = k, /(27 D) in 2D. These expressions do not predict
acritical mesh size, but have the property p(h) — k. as h — 0
in both 2D and 3D.

Based on our analysis we obtain another correction in both
2D and 3D. From Eq. (1) it follows that k, = N /(Tmicro —
Tp) in order to have Tmeso = Tmicro (Where we have used that

042901-3



BRIEF REPORTS

k
meso

——p

——r

micro

0.2

5 10 15 20 25 30
Grid size h (multiples of p)

10 15 20 25
Grid size h (multiples of p)

FIG. 3. (Color online) The average mesoscopic association time
using different reaction rates, compared to the average microscopic
association time. The expressions for the discretization-dependent
mesocopic reaction rates from [17,18] and those obtained here all
depend on the ansatz used to derive them. All expressions produce
more accurate results than the conventional expression for our model
problem for h > h*.

Nslteps = N — 1). For h sufficiently small we can approximate

Tp interms of L, i, and D using Corollary 1, and a reasonable
choice of k, would therefore be

(L/h)? D
mm—[%ln(%”%]( ),
r(L,h) = )
(L/h)} 3D).

Toiero— 1516413 /(6 Dh)

From these expressions we obtain 2* ~ /7 exp(0.19517/2 +
3/4)p ~5.1p (2D) and h* ~ wp (3D). These values make
the denominator zero if Tyico 1S approximated by the an-
alytical expressions for a disk derived in [17] (2D) or by
(kmeso/ L3>~ (3D), in good agreement with the simulations in
Fig. 1.

The corrections obtained by Erban and Chapman do not
coincide with the corrections obtained by Fange et al.,
illustrating how the corrections are dependent on the ansatz
used to derive them. On the other hand, for 4 small and
the special case k; = kmeso and Tpicro approximated by the
value obtained from the conventional mesoscopic expression
(kmeso/ L*™!, our corrections given by (3) agree with Erban
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and Chapman’s in 3D, and predict the same i*. We emphasize
that our formula (3) makes the relationship of the critical mesh
size and the microscopic binding time explicit, in contrast
to (2), and can in principle be used to obtain corrected rates
and critical voxel sizes for matching any microscopic model,
as long as an analytical or numerical method to approximate
Tmicro 1S available. As can be seen in Fig. 3, our corrections
match the mean association time well in 2D [Fig. 3(a)]
and all corrections give better results than the conventional
expression kmeso in 3D [Fig. 3(b)]. Interestingly, Fange et al.
find experimentally for their example that they cannot match
the Smoluchowski model in [[17], Fig. 3] perfectly using
the conventional RDME with the local corrections p(h) even
for h ~ 5p. Instead they modify the lattice model to allow
for reactions between molecules in immediately neighboring
voxels. In doing so they match the models all the way down
to h = 2p. Our analysis explains why the local corrections
alone were not sufficient, and their results demonstrate the
possibility of better agreement with the microscopic model
by a generalization of the conventional RDME to allow for
neighbor interactions. Another approach that has potential to
circumvent the problem are hybrid methods [26,27] where the
microscopic model is applied locally in space or for certain
chemical species.

In conclusion, the conventional RDME cannot be made
consistent with the Smoluchowski model since there will
always be a mesh size for which no local correction to the
reaction rate can give the correct mean association time. Above
h* local corrections can extend the domain where the RDME
works well. However, the corrections will inevitably be model
and geometry dependent.
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