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Abstract
Machine learning is increasingly recognized as a promising technology in the biological, biomedical, and behavioral sci-
ences. There can be no argument that this technique is incredibly successful in image recognition with immediate applica-
tions in diagnostics including electrophysiology, radiology, or pathology, where we have access to massive amounts of 
annotated data. However, machine learning often performs poorly in prognosis, especially when dealing with sparse data. 
This is a field where classical physics-based simulation seems to remain irreplaceable. In this review, we identify areas in 
the biomedical sciences where machine learning and multiscale modeling can mutually benefit from one another: Machine 
learning can integrate physics-based knowledge in the form of governing equations, boundary conditions, or constraints to 
manage ill-posted problems and robustly handle sparse and noisy data; multiscale modeling can integrate machine learn-
ing to create surrogate models, identify system dynamics and parameters, analyze sensitivities, and quantify uncertainty 
to bridge the scales and understand the emergence of function. With a view towards applications in the life sciences, we 
discuss the state of the art of combining machine learning and multiscale modeling, identify applications and opportunities, 
raise open questions, and address potential challenges and limitations. We anticipate that it will stimulate discussion within 
the community of computational mechanics and reach out to other disciplines including mathematics, statistics, computer 
science, artificial intelligence, biomedicine, systems biology, and precision medicine to join forces towards creating robust 
and efficient models for biological systems.
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1  Motivation

Machine learning is rapidly infiltrating the biological, bio-
medical, and behavioral sciences and seems to hold limit-
less potential to transform human health [123]. It already is 
widely considered to be one of the most significant break-
throughs in medical history [27]. But can this technology 
really live up to its promise? Machine learning is the sci-
entific discipline that seeks to understand and improve how 
computers learn from data. As such, it combines elements 
from statistics, understanding relationships from data, with 
elements from computer science, developing algorithms to 
manage data. The success of machine learning relies heavily 
on our ability to collect and interpret big data. In many fields 
of medicine, we have successfully done this for multiple dec-
ades. So what’s really new? The recent excitement around 
machine learning is generally attributed to the increase 
in computational resources, cloud storage, and data shar-
ing, which we can witness in our own lives through smart 
watches, wearable electronics, or mobile devices [40]. For 
example, a recent success story of machine learning in medi-
cine has shown that it is possible to classify skin cancer into 
malignant and benign subtypes using photographic images, 
for example from smartphones [31]. Unarguably, the two 
most compelling opportunities for machine learning in bio-
medicine are diagnosis and prognosis. Potential applications 
range from identifying bone fracture, brain hemorrhages, 
and head trauma to detecting lung nodules, liver masses, 
and pancreatic cancer [123]. But is machine learning power-
ful and accurate enough that we can simply ignore physics 
based simulations entirely?

Machine learning is exceptionally good at integrat-
ing multimodality multi-fidelity data with the goal to 
reveal correlations between different features. This makes 
the technology very powerful in fields like radiology 
and pathology where we seek to classify risk or stratify 
patients based on medical images [123] and the answer is 
either binary, as in the classification of skin cancer [31], or 
a discrete number, as in a recent classification of 12 types 
of arrhythmia [38]. In fact, arrhythmia classification is an 
excellent example, because more than 300 million elec-
trocardiograms are acquired annually worldwide, and we 
have access to a vast amount of annotated data. Problems 
may arise, however, when dealing with sparse or biased 
data [98]. In these cases the naive use of machine learning 
can result in ill-posed problems and generate non-physical 
predictions. Naturally, this brings up the question that, 
provided we know the underlying physics, can we integrate 
our prior knowledge to constrain the the space of admis-
sible solutions to a manageable size [96]?

Recent trends in computational physics suggest 
that exactly this approach [13]: to create data-efficient 

physics-informed learning machines [92, 93]. Biomedi-
cine has seen several application of these techniques in 
cardiovascular flows modeling [46] or in cardiac activa-
tion mapping [105], where we already have a reasonable 
physical understanding of the system and can constrain the 
design space using the known underlying wave propaga-
tion dynamics. Another example where machine learning 
can immediately benefit from multiscale modeling and 
physics-based simulation is the generation of synthetic 
data [102], for example, to supplement sparse training sets. 
This raises the obvious question—especially within the 
computational mechanics community—where can physics-
based simulations benefit from machine learning?

Physics-based simulations are enormously successful at 
integrating multiscale, multiphysics data with the goal of 
uncovering mechanisms that explain the emergence of func-
tion [18]. In biomedicine, physics-based simulation and mul-
tiscale modeling have emerged as a promising technologies 
to build organ models by systematically integrating knowl-
edge from the molecular, cellular, and tissue levels [25, 43] 
as evidenced by initiatives like the United States Federal 
Interagency Modeling and Analysis Group IMAG [82, 
136]. Two immediate opportunities for machine learning in 
multiscale modeling include learning the underlying phys-
ics [100] and learning the parameters for a known physics-
based problem. Recent examples of learning the underlying 
physics are the data-driven solution of problems in elastic-
ity [22] and the data-driven discovery of partial differential 
equations for nonlinear dynamical systems [13, 91, 94]. This 
class of problems holds great promise, especially in combi-
nation with deep learning, but involves a thorough under-
standing and direct interaction with the underlying learning 
machines [96]. Are there also immediate opportunities for 
integrating machine learning and multiscale modeling, more 
from an end-user perspective, without having to modify the 
underlying tools and technologies at their very core?

This manuscript seeks to answer the question of how mul-
tiscale models can benefit from machine learning. As such, it 
is an extended version of a recent review article [3] and was 
inspired by a recent workshop on integrating machine learn-
ing with multiscale modeling. We have structured it around 
four methodological areas, ordinary and partial differential 
equations, and data and theory driven machine learning. For 
each area, we discuss the state of the art, identify applica-
tions and opportunities, raise open questions, and address 
potential challenges and limitations in view of specific 
examples from the life sciences. To make this work acces-
sible to a broad audience, we summarize the most important 
terms and technologies associated with machine learning 
in boxes where they are first mentioned. We envision that 
this work will stimulate discussion and inspire scientists in 
the broader field of computational mechanics to explore the 
potential of machine learning towards creating reliable and 
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robust predictive tools for biological, biomedical, and behav-
ioral systems to the benefit of human health.

2  Ordinary Differential Equations

Ordinary differential equations in time are ubiquitous in the 
biological, biomedical, and behavior sciences. At the molec-
ular, cellular, organ, or population scales it is often easier to 
make observations and acquire data associated with ordinary 
differential equations than for partial differential equations, 
since the latter encode spatial variations, which are often 
more difficult to access. Ordinary differential equation based 
models can range from single equations to large systems 
of equations or stochastic ordinary differential equations. 
This implies that the number of parameters is typically large 
and can easily reach hundreds or more. Figure 1 illustrates 
an example of ordinary differential equations to explore the 
biophysical mechanisms of development [122].

2.1  State of the Art

Assuming we have acquired adequate data, the challenge 
begins with identifying the nonlinear, coupled driving 
terms. To analyze the data, we can apply formal meth-
ods of system identification. Common techniques include 
classical regression using L1 or LASSO and L2 or ridge 
regression, as well as stepwise regression with statistical 
tests [13, 130]. These approaches are essentially nonlinear 
optimization problems that learn the set of coefficients 
by multiplying combinations of algebraic and rate terms 
that result in the best fit to the observations. For adequate 
data, the system identification problem is usually relatively 
robust and can learn a parsimonious set of coefficients, 

especially with stepwise regression. Clearly, parsimony is 
central to identifying the correct set of equations and the 
easiest strategy to satisfy this requirement is classical or 
stepwise regression. 

System identification  refers to a collection of statistical methods 
that identify the governing equations of a system from data. These 
methods can be applied to obtain either an equilibrium response 
or the dynamics of a system. Typical examples include inferring 
operators that form ordinary [68] or partial [130] differential 
equations.

 
Regression  is a statistical process of estimating the relationship 

between a dependent variable and one or more independent vari-
ables. In the context of machine learning, regression is classified 
as a supervised learning approach in which the algorithm learns 
from a training set of correctly identified observations and then 
uses this learning to evaluate new observations. The underlying 
assumption is that the output variable is continuous over the input 
space. Examples in biomedicine include predicting an individual’s 
life expectancy, identifying a tolerable dose of chemotherapy, 
or exploring the interplay between drug concentration and 
arrhythmogenic risk [102], among many others.

 Any discussion of system identification from experimental 
data should address uncertainty quantification to account for 
both measurement errors and model errors. The Bayesian 
setting provides a formal framework for this purpose [44]. 
Prior probability distribution functions must be assumed for 
the errors. In the absence of deeper insights into the meas-
urement techniques, a common choice is the Gaussian dis-
tribution. On this note, we observe that recent system iden-
tification techniques [13, 19, 68, 69, 88, 100, 130] start from 
a large space of candidate terms in the ordinary differential 
equations to systematically control and treat model errors. 
Machine learning provides a powerful approach to reduce 
the number of dynamical variables and parameters while 
maintaining the biological relevance of the model [13, 112]. 

Fig. 1  Ordinary differential equations. Biophysical mechanisms of 
development can be discerned by identifying the nonlinear driving 
terms in ordinary differential equations that govern the evolution of 
morphogen concentrations, left. Metabolic processes evolve on a free 
energy landscape g(c, �) that can be explored by Monte Carlo simula-

tions, thus generating large scale data, shown as a grey point cloud, 
that are used to train various classes of neural networks, right. The 
colored surface is an integrable deep neural network [122] representa-
tion of the metabolic data. (Color figure online)
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Uncertainty quantification  is the science of characterizing and 
reducing uncertainties. Its objective is to determine the likelihood 
of certain outcomes if some aspects of the system are not exactly 
known. Since standard variations in biomedical data are usually 
large and it is critical to know how small variations in the input 
data affect the output, uncertainty quantification is indispensable 
in medicine. The inherent nonlinearity of biological process also 
drives a need for uncertainty analysis, since noise in the inputs is 
nonlinearly propagated through the system. Sources of uncertainty 
can be experimental or computational related to the underlying 
governing equations, their parameters, and boundary conditions. 
Some examples include quantifying the effects of experimental 
uncertainties in heart failure [81], the effects of biomechanical stim-
uli in coronary artery bypass grafts [126], or the effects of material 
properties on stress profiles in reconstructive surgery [55].

2.2  Applications and Opportunities

There are numerous applications of ordinary differential 
equations that integrate machine learning and multiscale 
modeling for biological, biomedical, and behavioral systems.

Metabolic networks Machine learning has been applied 
to take advantage of large amounts of genomics and metab-
olomics data for the optimization of ordinary differential 
equation-based metabolic network models and their analysis 
[24]. For example, machine learning and genome-scale mod-
els were applied to determine the side effects of drugs [110]. 
Also, a recent study used a combination of machine learn-
ing and multiomics data, proteomics and metabolomics, to 
effectively predict pathway dynamics providing qualitative 
and quantitative predictions for guiding synthetic biology 
efforts [23]. Supervised learning methods are often used 
for finding the metabolic dynamics represented by coupled 
nonlinear ordinary differential equations to obtain the best 
fit with the provided time-series data. 

Supervised learning  defines the task of learning a function based 
on previous experience in the form of known input–output pairs 
or function evaluations. In many cases, this is a task that a trained 
person can do well, and the computer is trying to approximate 
human performance. When the input is high-dimensional, or the 
function is highly nonlinear, personal intuition may not be useful 
and supervised learning can overcome this limitation. Typical 
examples include classification and regression tasks. In biomedi-
cine, a common classification problem is pattern recognition in an 
electrocardiogram to select from a limited set of diagnoses [38]; 
other examples include detecting cancer from medical images 
[31], estimating risk scores for coronary heart disease, guid-
ing antithrombotic therapy in atrial fibrillation, and automating 
implatable defibrillators in hypertrophic cardiomyopathy [27].

 
Unsupervised learning  defines the task of identifying naturally 

occurring patterns or groupings within datasets that consisting of 
input features without labeled output responses. The most com-
mon types of unsupervised learning techniques include clustering 
and density estimation used for exploratory data analysis to iden-
tify hidden patterns or groupings. In biomedicine, a promising 
example is precision medicine [27].

Microbiology, immunology, and cancer The coupled, 
nonlinear dynamics of intracellular and extracellular sign-
aling are represented by cascades of tens of ordinary dif-
ferential equations to model the onset of tuberculosis [97]. 
The same approach is applied to modeling the interaction 
of the immune system and drugs in the mathematical biol-
ogy of cancer [74]. In this case, the major challenge is sys-
tem identification. Another application is bridging scales 
in cancer progression in specific micro-environments by 
mapping genotype to phenotype using neural networks 
[34].

Neuroscience Machine learning is applied to system 
identification of the ordinary differential equations that 
govern the neural dynamics of circadian rhythms [11, 28, 
73]. Principal component analysis and neural networks 
have been more widely applied to memory formation [79, 
87], chaotic dynamics of epileptic seizures [1, 2], Alzhei-
mers Disease, and aging.

Biomechanics The most prominent potential application 
of machine learning in biomechanics is in the determina-
tion of response functions including stress–strain relations 
or cell–scale laws in continuum theories of growth and 
remodeling [4]. These relations take the form of both ordi-
nary differential equations, for which system identification 
is of relevance, and direct response functions, for which the 
framework of deep neural networks is applicable [101]. For 
example, a recent study integrated machine learning and 
multiscale modeling to characterize the dynamic growth and 
remodeling during heart failure across the scales, from the 
molecular via the cellular to the cardiac level [81]. 

Deep neural networks  are a powerful form of machine learning 
strategies to approximate functions. The input features proceed 
through multiple hidden layers of connected neurons that progres-
sively compose these features and ultimately produce an output. 
The key feature of deep learning is that the architecture of the 
network is not determined by humans, but rather by the data 
themselves. Deep neural networks have been successfully used in 
image and speech recognition [54]. The number of examples of 
deep learning in biomedicine is rapidly increasing and includes 
interpreting medical images to classify tuberculosis, identify bone 
fracture, detect lung nodules, liver masses, and pancreatic cancer, 
identify brain hemorrhages and head trauma, and analyze mam-
mograms and electrocardiograms [123].

Public health The dynamics of disease spreading through 
a population, affected by environmental factors, has long 
been represented by cascades of ordinary differential equa-
tions. A major challenge in this application is determining 
the parameters of the ordinary differential equations by sys-
tem identification [17]. Interestingly, the ordinary differential 
equations of disease spreading have recently been adopted 
to model the prion-like spreading of neurodegenerative 
diseases [133], where the parameters could potentially be 
identified from magnetic resonance images using machine 
learning.
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2.3  Open Questions

Maximizing information gain An open question in modeling 
biological, biomedical, and behavior systems is how to best 
analyze and utilize sparse data. In such a setting, sparse 
identification techniques must be integrated with the experi-
mental program. Optimal experimental design [41] methods 
allow the most efficient choice of experiments to maximize 
the information gain using criteria such as the Kullback–Lei-
bler divergence or the Akaike Information Criterion. The 
information theoretic approach is particularly powerful to 
treat model form errors. In biological systems, where data 
may be obtained by resource-intensive wet lab experiments 
or multi-scale model simulations, the most efficient combi-
nation of such approaches could result in maximizing novel 
biological insight.

Optimizing efficiency The identification of the system of 
governing equations still leaves open the question of efficiency 
and time to solution, especially if equations are to be used in 
a sampling approach such as Monte Carlo. In this setting, the 
repeated generation of solutions inevitably suggests that we 
should circumvent the expense of time integration methods. 
Deep learning methods centered on neural networks offer a 
number of options. Particularly well-suited are recurrent neu-
ral networks, based on long short-term memory cells, which 
account for the inherent time dependence of ordinary dif-
ferential equations and their solutions. Neural networks can 
efficiently encode the complex time dependence of ordinary 
differential equations. For example, extremely high-order time 
integration schemes such as Runge–Kutta algorithms of the 
order of one hundred have been replaced successfully by tai-
lored deep neural networks [92]. The construction and use of 
such surrogate models is indispensable for sampling upward 
of tens of thousands of entire trajectories of dynamical systems 
such as reaction–diffusion of coupled ligand-morphogen pairs. 

Recurrent neural networks  are a class of neural networks that 
incorporate a notion of time by accounting not only for current 
data, but also for history with tunable extents of memory. A recent 
application is identifying unknown constitutive relations in ordi-
nary differential equation systems [36]

Combining multi-fidelity neural networks Neural net-
works can be directly trained against labels for a quantity 
of interest such as the time-averaged solution or its fre-
quency distribution. Principal component analysis can be 
applied to the dynamics to develop reduced order models. 
Deep neural networks can be combined into an approach of 
multi-fidelity learning [53] that integrates well with mul-
tiscale modeling methods. In this approach, multiple neu-
ral networks are trained. Coarse scale, but plentiful data, 
for example obtained from larger numbers of trajectories 
reported at fewer time instants, are used to train low-fidelity 
neural networks, which are typically shallow and narrow. 

Progressively finer scale data at increasing numbers of time 
instants, but for fewer trajectories and expensive to obtain, 
are used to train higher fidelity deep neural networks to 
minimize the error between the labels and the output of the 
low-fidelity neural network. The low-fidelity neural network 
resolves the low frequency components of the response, with 
the progressively higher fidelity deep neural networks repre-
senting the higher frequencies. The underlying principle is 
that the knowledge base of the response is resolved by shal-
lower and narrower neural networks, while the critical, high 
frequency response is left to the high-fidelity deep neural 
network. Developing these novel approaches is important 
to accurately resolve the dynamics of, for example, reac-
tion–diffusion systems of ligands and morphogens that 
together control patterning in developmental biology.

2.4  Potential Challenges and Limitations

Dealing with inadequate resolution The most prominent chal-
lenge facing the application of machine learning and data-
driven methods to obtaining a better understanding of bio-
logical systems is a paucity of data. In ordinary differential 
equation modeling, we often have to rely on classical data 
acquisition techniques, for example, microscopy or spectros-
copy, which are known to have limited temporal resolution. 
Obtaining time series data at a sufficiently high temporal reso-
lution to build and train mathematical models has always been 
and will likely remain a major challenge in the field.

Processing sparse data Sparse, incomplete, or heteroge-
neous data pose a natural challenge to modeling biologi-
cal, biomedical, and behavioral systems. In principle, direct 
numerical simulations can fill this gap and generate missing 
data. However, the simulations themselves can be limited 
by poorly calibrated parameter values. There is, therefore, 
a pressing need to develop robust inverse methods that are 
capable of handling sparse data. One example is robust 
system identification, the creation of mathematical models 
of dynamical systems from measured experimental data. 
This naturally implies the optimal design of experiments to 
efficiently generate informative training data and iterative 
model refinement or progressive model reduction.

3  Partial Differential Equations

Partial differential equations describe the physics that gov-
ern the evolution of biological systems in time and space. 
The interaction between the different scales, both spatial and 
temporal, coupled with the various physical and biological 
processes in these systems, is complex with many unknown 
parameters. As a consequence, modeling biological systems 
in a multi-dimensional parametric space poses challenges 
of uncertainty quantification. Moreover, modeling these 
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systems depends crucially on the available data, and new 
multi-modality data fusion methods will play a key role in 
the effective use of partial differential equation modeling of 
multiscale biological systems. An additional challenge of 
modeling complex biological phenomena stems from the 
lack of knowledge of some of the processes that need to be 
modeled. Physics-informed machine learning is beginning 
to play a central role at this front, leveraging multi-fidelity 
or multi-modality data with any known physics. These data 
can then be exploited to discover the missing physics or 
unknown processes.

3.1  State of the Art

Modeling biological, biomedical, and behavioral systems 
crucially depends on both the amount of available data and 
the complexity of the system itself. The classical paradigm 
for which many numerical methods have been developed 
over the last 50 years is shown in the top of Fig. 2, where 
we assume that the only data available are the boundary 
and initial conditions, while the specific governing partial 
differential equations and associated parameters are pre-
cisely known. On the other extreme, in the bottom of Fig. 2, 
we may have a lot of data, for example in the form of time 
series, but we do not know the governing physical law, for 
example the underlying partial differential equation at the 
continuum level.

Many problems in social dynamics fall under this cate-
gory, although work so far has focused on recovering known 
partial differential equations from data only. Perhaps the 
most interesting category for biological systems is sketched 
in the middle of Fig. 2, where we assume that we know 
the physics partially but not entirely. For example, we know 
the conservation law and not the constitutive relationship, 
but we have several scattered measurements in addition to 

the boundary and initial conditions that we can use to infer 
the missing functional terms and other parameters in the 
partial differential equation and simultaneously recover the 
solution. This middle category is the most general case. In 
fact, it is representative of the other two categories, if the 
measurements are too few or too many. This mixed case may 
lead to the significantly more complex scenarios, where the 
solution is a stochastic process due to stochastic excitation or 
an uncertain material property, for example the diffusivity in 
a tissue. Hence, we can employ stochastic partial differential 
equations to represent these stochastic solutions and other 
stochastic fields. Finally, there are many problems involv-
ing long-range spatio-temporal interactions, for example 
the viscoelasticity of arteries or the super-diffusion inside 
a cell, where fractional calculus and fractional partial dif-
ferential equations, rather than the currently common par-
tial differential equations with integer order derivatives, may 
be the proper mathematical model to adequately describe 
such phenomena. Physics-informed machine learning Prior 
physics-based information in the form of partial differential 
equations, boundary conditions and constraints regularize 
a machine learning approach in such a way that it can then 
learn from small and noisy data that can evolve in time. 
Very recently, the field has seen the leveraging of Gaussian 
process regression and deep neural networks into physics-
informed machine learning [90–96]. For Gaussian process 
regression, the partial differential equation is encoded in an 
informative function prior; for deep neural networks, the 
partial differential equation induces a new neural network 
coupled to the standard uninformed data-driven neural net-
work, see Fig. 3. We refer to this coupled data-partial dif-
ferential equation deep neural network as a physics-informed 
neural network. New approaches, for example using genera-
tive adversarial networks, will be useful in the further devel-
opment of physics-informed neural networks, for example, 
to solve stochastic partial differential equations, or fractional 
partial differential equations in systems with memory. 

Gaussian process regression  enables the creation of computation-
ally inexpensive surrogates in a Bayesian approach. These sur-
rogates do not assume a parametric form a priori and, instead, let 
the data speak for themselves. A significant advantage of Gaussian 
process surrogates is the ability to not only predict the response 
function in the parameter space, but also the associated epistemic 
uncertainty. Gaussian process regression has been used to creating 
surrogate models to characterize the effects of drugs on features of 
the electrocardiogram [102] and the effects of material properties 
on the stress profiles from reconstructive surgery [56].

Multiscale modeling for biological systems Biological 
materials are known to have a complex hierarchy of struc-
ture, mechanical properties, and biological behavior across 
spatial and temporal scales. Throughout the past two decades, 
modeling these multiscale phenomena has been a point of 
attention, which has advanced detailed deterministic models 

Fig. 2  Categories of modeling biomedical systems and associated 
available data and underlying physics. We use the term physics to 
imply the known physics for the target problem. Physics-informed 
neural networks can seamlessly integrate data and mathematical 
models, including models with missing biophysics, in a unified and 
compact way using automatic differentiation and partial differential 
equation-induced neural networks
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and their coupling across scales [25]. Strategies for multiscale 
modeling can be top down or bottom up, including: (i) models 
of representative volume elements for the microscopic scale 
coupled with the larger spatial scales through boundary condi-
tions in terms of the first derivatives of the macroscale fields, 
first order coupling, or higher derivatives, higher order cou-
pling [33, 49, 107]; (ii) micromechanics approaches [70, 89]; 
(iii) reduced order and simplified models for upscaling [108, 
120]; (iv) scale-bridging or quasi-continuum methods [111, 
129]. The explicit coupling of scales through representative 
volume elements is widely used because it can include many 
of the details and model complexities of the microscale, but 
it requires nested function evaluations such as nested finite 
element simulations or FE2 that can easily become computa-
tionally intractable [20, 32, 48]. An additional complication in 
modeling biological systems comes from the inherent source 
of uncertainty in living matter, the high heterogeneity of the 
microscale, inter-subject variability, and stochastic nature of 
biological regulatory networks [15, 35, 63].

Machine learning for multiscale systems.  Machine 
learning methods have recently permeated into composites 
research and materials design for example to enable the 
homogenization of representative volume elements with 
neural networks [51, 58, 60, 90] or the solution of high-
dimensional partial differential equations with deep learning 
methods [37, 121, 122, 134, 135]. Uncertainty quantifica-
tion in material properties is also gaining relevance, with 
examples of Bayesian model selection to calibrate of strain 
energy functions [66, 72] and uncertainty propagation with 
Gaussian processes of nonlinear mechanical systems [55, 56, 

101]. These trends for non-biological systems point towards 
immediate opportunities for integrating machine learning 
and multiscale modeling in biological, biomedical, and 
behavioral systems and open new perspectives unique to 
the living nature of biological systems.

3.2  Applications and Opportunities

From localization to homogenization This application of 
machine learning in multiscale modeling is obvious, yet 
still unaccomplished. Leveraging data-driven approaches, 
the major objectives are localization and homogenization 
of information across the scales. The localization, the map-
ping of quantities from the macroscale, for example tissue 
stress or strain, to quantities at the microscale, for example 
cellular force or deformation, is crucial to understand the 
mechanobiology of the cell. The homogenization, the iden-
tification of the constitutive behavior at macroscale from the 
detailed behavior of representative units at the microscale, 
is critical to embed this knowledge into tissue or organ level 
simulations. In biological, biomedical, and behavioral sys-
tems, localization and homogenization present additional 
challenges and opportunities including the high-dimensional 
parameter space and inherent uncertainty, features that apply 
to both ordinary and partial differential equation based mod-
els, and the high degree of heterogeneity and microstructural 
complexity, features that mainly affect partial differential 
equation based models.

From single source to multi-modality and multi-fidelity 
modeling Figure 4, left, illustrates various sources of data 

Fig. 3  Physics-informed neural networks. The left physics unin-
formed network represents the solution u(x, t) of the partial differen-
tial equation; the right physics informed network describes the resid-
ual f(x,  t) of the partial differential equation. The example illustrates 
the nonlinear Schrödinger equation with unknown parameters �1 and 
�2 to be learned. In addition to unknown parameters, we can learn 
missing functional terms in the partial differential equation. Cur-

rently, this optimization is done empirically based on trial and error 
by a human-in-the-loop. Here, the u-architecture is a fully-connected 
neural network, while the f-architecture is dictated by the partial dif-
ferential equation and is, in general, not possible to visualize explic-
itly. Its depth is proportional to the highest derivative in the partial 
differential equation times the depth of the uninformed u neural net-
work
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that that can potentially be combined with machine learning 
techniques. Biological, biomedical, and behavioral research 
crucially rely on experiments from different systems includ-
ing in vitro culture, in vivo animal models and human data, 
and in silico experiments. The underlying assumption is that 
the data associated with each type of experiment or model 
are strongly correlated, even if they are not originating from 
the same system. Learning from one type of experiment or 
computer model can be used to improve the prediction at a 
higher level of fidelity for which information is scarce or 
difficult to obtain. Nonlinear multi-modality data fusion is a 
new way to combine information of various sources towards 
creating predictive models [83]. A typical example is inte-
grating multi-omics data with biophysical models.

From parameter estimation to system identification to 
function discovery Figure 4, right, illustrates the combi-
nation of parameter estimation, system identification, and 
function discovery required to create a digital twin. The 
combination of multi-modality, multi-fidelity, data-driven 
techniques allows us to create a personalized computational 
model for an individual by combining previous observations 
from multi-scale simulations, experiments, and clinical data 
with continuously updated recordings of this individual. 
Using the digital twin, we can probe different treatment 
scenarios and screen the design parameter space to create 
personalized treatment plans.

From theoretical models to systems biology Living matter 
is characterized by its unique ability to respond and adapt to 
its environment. This can involve metabolic changes, inflam-
mation, or mechanical changes such as growth and remod-
eling. Regulation of tissue activity is ultimately encoded in 
complex cell-signaling regulatory networks that operate at 
multiple spatial and temporal scales [114]. Modeling tissue 

adaptation thus involves accounting for classical equilibrium 
principles, e.g., momentum and energy, as well as signal-
ing network dynamics often described by stochastic reac-
tive transport models with many variables and parameters. 
The complexity of the system often defies intuition [47]. 
Machine learning could enable discovery of reactions, e.g., 
coagulation cascades, the solution of inverse problems for 
parameter estimation, and the quantification of biological 
uncertainty in model predictions. Figure 5 shows a possible 
application of predicting growth and remodeling at the tissue 
level based on cell-level information.

From theoretical models to clinical applications Applica-
tion of physics-based modeling in clinical practice is cur-
rently hindered by the difficulty to generate patient-specific 
predictions. Creating personalized models is time consum-
ing and requires expert input and many different types of 
data, from multi-omics to biomechanical properties and 
measurements. On the opposite end, generic models are 
useful to understand mechanisms but are not suitable for 
planning individual interventions. Thus, there is an opportu-
nity for machine learningand transfer learning in particularto 
generate individualized models or predictions in a fast and 
reliable manner without the need to create individualized 
models from scratch. Applications could include predicting 
the course of dissections in aortic dissections or quantifying 
wall shear stresses in aneurysms near the arterial wall [95]. 
Other applications include making predictions of whether 
thrombosis embolization will occur, or predictions of other 
cardiovascular diseases using multi-modality measurements 
integrated via multi-fidelity modeling to train neural net-
works instead of intricate models. Another possible appli-
cation is optimization of surgery or prosthetic device design 

Fig. 4  Multi-modality and 
multi-fidelity modeling of 
biomedical systems. Data from 
both experiments and computa-
tional models can be combined 
through machine learning 
to create predictive models. 
The underlying assumption is 
that, for a system of interest, 
data from different sources is 
correlated and can be fused. 
Parameter estimation, system 
identification, and function 
discovery result in inverse 
problems, for example, the 
creation of a digital twin, and 
forward problems, for example, 
treatment planning
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by combining off-line generic simulations with online data 
acquisition.

3.3  Open Questions

Modeling high-dimensional systems Can we model systems 
with high-dimensional input and hundreds of parameters? 
Biological systems are characterized by heterogenous micro-
structures, spatial heterogeneity, many constituents, intricate 
and noisy cell-signaling networks, and inherent variability 
across subjects. Attempts to model these systems necessarily 
rely on a high-dimensional parametric input space. Despite 
the recent progress in uncertainty quantification methods 
and smart sampling techniques using sparse grids and poly-
nomial chaos methods, handling data in high-dimensional 
spaces remains challenging. However, deep learning tech-
niques can exploit the compositional structure of approxi-
mating functions and can, in principle, beat the curse of 
dimensionality [85]. Generative adversarial networks can 
also be useful for effective modeling of parameterized partial 
differential equations with thousands of uncertain param-
eters [140, 141].

Managing ill-posed problems Can we solve ill-posed 
inverse problems for parameter estimation or system iden-
tification? Many of the inverse problems for biological 
systems are ill posed, for example parameter estimation 
or system identification; they constitute boundary value 
problems with unknown boundary conditions. Classical 
mathematical approaches are not suitable in these cases. 
Methods for backward uncertainty quantification could 
potentially deal with the uncertainty involved in inverse 
problems, but these methods are difficult to scale to real-
istic settings. In view of the high dimensional input space 
and the inherent uncertainty of biological systems, posing 

inverse problems is challenging. For instance, it is difficult 
to determine if there are multiple solutions or no solutions 
at all, or to quantify the confidence in the prediction of an 
inverse problem with high-dimensional input data. The 
inherent regularization in the loss function of neural net-
works allows us to deal with ill-posed inverse partial dif-
ferential equations without boundary or initial conditions 
and to discover hidden states and biophysics not possible 
with classical methods. Moreover, advances in probabil-
istic programming offer a promising path for performing 
scalable statistical inference for large-scale inverse prob-
lems with a large number of uncertain parameters.

Discretizing space and time Can we remove or automate 
the tyranny of grid generation of conventional methods? 
Discretization of complex and moving three-dimensional 
domains remains challenging. It generally requires specific 
expertise and many hours of dedicated labor, and has to 
be re-done for each particular model. This is particularly 
important when creating personalized models with com-
plex geometries and multiple spatial and temporal scales. 
While many efforts in machine learning are devoted to 
solving partial differential equations in a given domain, 
new opportunities include the use of machine learning to 
deal directly with the creation of the discrete problem. 
This includes automatic mesh generation, meshless inter-
polation, and parameterization of the domain itself as one 
of the inputs for the machine learning algorithms. Inter-
estingly, some recent approaches with physics-informed 
neural networks entirely remove the notion of a mesh, and 
instead evaluate the conservation laws of mass, momen-
tum, and energy at random points that are neither con-
nected through a regular lattice nor through an unstruc-
tured grid. 

Fig. 5  Machine learning for multiscale modeling of biomedical sys-
tems. Tissues are characterized by hierarchical structure across spatial 
and temporal scales associated with inherent variability. At both the 
macroscale and microscales, biological systems satisfy physics-based 
partial differential equations for mass, momentum, and energy bal-

ance. In addition, living systems have the unique ability to grow and 
remodel over time. This introduces an inherent coupling of the phe-
nomena at the cellular and tissue scales. Machine learning enables the 
seamless integration of scales
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Physics-informed neural networks  are neural networks that solve 
supervised learning tasks while respecting physical constraints or 
encoding the partial differential equation in some way, for exam-
ple, through the loss function. This technique is particularly pow-
erful when dealing with sparse data from systems that obey known 
physical principles. Examples in biomedicine include diagnosing 
cardiovascular disorders non-invasively using four-dimensional 
magnetic resonance images of blood flow and arterial wall dis-
placements [46], creating computationally efficient surrogates for 
velocity and pressure fields in intracranial aneurysms [95], and 
using nonlinear wave propagation dynamics in cardiac activation 
mapping [105].

Combining deterministic and stochastic models Can we 
couple conventional physics, mass and momentum balance, 
with stochastic reaction–diffusion over time to model the 
adaptation of living systems? While the laws that govern 
the physics of biological systems from the cellular scale to 
the tissue scale can be considered deterministic, the cell-
signaling networks on the sub-cellular scales are inherently 
noisy [35, 109, 115]. We can model their multiphysics and 
multi-rate dynamics using neural networks by sharing the 
parameter space of coupled but separate neural networks, 
with each net representing a different multiscale process. 
This approach could alleviate some of the difficulties associ-
ated with stiff systems by exploiting the use of proper regu-
larization terms in the loss function.

3.4  Potential Challenges and Limitations

Integrating multi-modality training data Even though non-
linear data fusion algorithms are currently being developed 
and improved, in the case of biological systems, as Fig. 3 left 
suggests, the data can come from vastly different sources. 
A potential challenge is to appropriately weight the data 
from these different modalities to improve predictions. For 
instance, it remains a challenge to quantify to what extent 
an in vitro model or an animal model is representative of the 
human response. It is possible that even the most powerful 
machine learning tools cannot substantially improve predic-
tions needed in the clinical setting without high quality data 
of the human-specific response. Designing new composite 
neural networks that exploit correlations between multi-
modality and multi-fidelity data is a top priority in the near 
future. 

Multi-fidelity learning  is a supervised learning approach used 
to fuse data from different sources to create a surrogate that can 
outperform predictions based on a single data source. Often 
times there is plenty of inexpensive, low fidelity data, for example 
from a simplified computational model or a simple experiment. 
At the same time, our confidence in the accuracy of this model or 
experiment is relatively low. In contrast, there is typically sparse 
expensive, high fidelity data from more complex computational 
models or experiments. Multi-fidelity learning exploits the corre-
lations between the different fidelity levels to make predictions in 
regions of the input space for which no high fidelity data exist, but 
low fidelity measurements are easy to acquire. Recent examples 
include simulating the mixed convection flow past a cylinder [83], 
skin growth in tissue expansion [57], and cardiac electrophysiol-
ogy [103].

Tuning physics inspired neural networks for stiff mul-
tiscale systems Multiscale systems lead to very complex 
landscapes of the loss function that current optimization 
solvers cannot deal with. Hence it could be impossible to 
train such systems. A possible approach is to use classi-
cal domain decomposition methods to deal with different 
regimes of scales and design corresponding distributed 
physics-informed neural networks that can be trained more 
easily and more accurately.

Increasing rigor and reproducibility The predictive 
power of models built with machine learning algorithms 
needs to be thoroughly tested. An important challenge is 
the creation of rigorous validation tests and guidelines 
for computational models. The use of open source codes 
and data sharing by the machine learning community is 
a positive step, but more benchmarks and guidelines are 
required for physics-informed neural networks. There is 
also an urgent need of sets of benchmark problems for 
biological systems. Reproducibility has to be quantified in 
terms of statistical metrics, as many optimization methods 
are stochastic in nature and may lead to different results.

Knowing limitations The main limitation of solving 
partial differential equations with neural networks and 
adversarial networks is the training time that results from 
solving non-convex optimization problems in high-dimen-
sional spaces. This is a non-deterministic polynomial-time 
hard computational problem and one that will probably 
not be resolved in the near future. A possible solution is 
properly selecting the size of the system using domain 
decomposition techniques. Tuning the network parameters 
is a tedious and empirical job, but we can potentially adapt 
meta-learning methods that have been successfully used 
for classification problems to solve regression problems 
of partial differential equation modeling. Effective initiali-
zation, tailored to biological, biomedical, and behavioral 
systems, is a promising approach to alleviate some of these 
challenges and limitations. 
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Classification  is a supervised learning approach in which the 
algorithm learns from a training set of correctly classified obser-
vations and uses this learning to classify new observations, where 
the output variable is discrete. Examples in biomedicine include 
classifying whether a tumor is benign or malignant [31], classify-
ing the effects of individual single nucleotide polymorphisms on 
depression [7], the effects of ion channel blockage on arrhythmo-
genic risk in drug development [104], and the effects of chemo-
therapeutic agents in personalized cancer medicine [26].

4  Data‑Driven Approaches

Often considered as an extension of statistics, machine 
learning is a method for identifying correlations in data. 
Machine learning techniques are function approximators 
and not predictors. This distinguishes them immediately 
from multiscale modeling techniques, which do pro-
vide predictions that can be based on parameter changes 

suggested by particular pathological or pharmacological 
changes [42]. The advantage of machine learning over both 
manual statistics and multiscale modeling is its ability to 
directly utilize massive amounts of data through the use of 
iterative parameter changes. This ability to handle big data 
is important in view of recent developments of ultra-high 
resolution measurement techniques like cryo-EM, high-
resolution imaging flow cytometry, or four-dimensional-
flow magnetic resonance imaging. Machine learning also 
allows us to analyze massive amounts of health data from 
wearable devices and smartphone apps [40]. As a data-
mining tool, machine learning can help us bring experi-
ment and multiscale modeling closer together. Machine 
learning also allows us to leverage data to build artificial 
intelligence applications to solve biomedical problems 
[124]. Figure 6 illustrates a framework for integrating 
multiscale modeling and machine learning in data-driven 
approaches.

Fig. 6  Data-driven machine learning for multiscale modeling of bio-
medical systems. By performing organ, cellular, or molecular level 
simulations and systematically comparing the simulation results 
against experimental target data using machine learning analysis 

including clustering, regression, dimensionality reduction, reinforce-
ment learning, and deep learning we can identify model parameters 
and generate new hypotheses; adopted with permission from [3]
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4.1  State of the Art

Most existing machine learning techniques identify correla-
tions but are agnostic as to causality. In that sense, multiscale 
modeling complements machine learning: Where machine 
learning identifies a correlation, multiscale modeling can 
find causal mechanisms or a mechanistic chain [64]. Person-
alized medicine, where each patient’s disease is considered 
a unique variant, can benefit from multiscale modeling to 
follow the particular parameters unique to that patient. Per-
sonalized models can then be based on individual differences 
measured by imaging [65, 86], by genomic or proteomic 
measures in the patient, or be based on the genomes of infec-
tious agents or tumor cells. This will help in creating digital 
twins [67], models that incorporate both machine learning 
and multiscale modeling, for an organ system or a disease 
process in an individual patient. Using digital twins, we can 
identify promising therapies before trying them on the one 
patient [14]. As multiscale modeling attempts to leverage 
experimental data to gain understanding, machine learning 
provides a tool to preprocess these data, to automate the con-
struction of models, and to analyze model output [128]. In 
the following, we focus primarily on applications of machine 
learning to multiscale modeling.

4.2  Applications and Opportunities

Since machine learning involves computer-based techniques 
for predicting outcomes or classifications based on training 
data, all data-driven approaches, including mechanistic mul-
tiscale modeling, can benefit from application of machine 
learning.

From simulation experiments to animal experiments In 
biomedicine, the original area of big-data research was 
the identification of the human genome, which employed 
machine learning to construct consistent frames out of 
genome fragments. Since then, extensions of genomic stud-
ies involve large numbers of patients and controls in genome-
wide association studies, which compare single nucleotide 
polymorphisms in patients versus controls [7, 52]. Single 
nucleotide polymorphisms adjacent to coding sequences 
suggest which gene product might be involved in the disease. 
Once particular proteins are identified, multiscale modeling 
can track the effects up through the scales from molecular 
to cellular to intercellular to organ and organism. In addition 
to describing dynamics across scales, multiscale modeling 
can identify how multiple gene products may interact to 
produce the disease, given that most diseases are polygenic 
rather than being caused by a single mutation. Simulation 
experiments can also identify how other allele combinations 
would produce different disease manifestations and identify 
degrees of penetrance of a mutation. Simulation can then 
help us plan animal experiments to add further evidence.

From smaller scales to larger scales A major problem 
for multiscale modeling is the identification of appropriate 
model parameters. Ideally, multiscale modeling parameters 
are all based on consistent experimental measurements. Real-
istically, biological parameters may be measured in various 
species, in various cell types, at various temperatures, at vari-
ous ages, and in different in vivo and in vitro preparations. 
Medical multiscale modeling, and medical conclusions, are 
applied to humans, but are often based on animal models. 
Additionally, many enzymes have large numbers of isoforms 
and different phosphorylation states that make generaliza-
tion problematic. For all these reasons, it is typically nec-
essary to identify the parameters on a multiscale model to 
ensure realistic dynamics at the higher scales of organization. 
Machine learning techniques have been used extensively to 
tune the parameters to replicate these higher-level dynam-
ics. An example of this is the use of genetic algorithms and 
evolutionary algorithms in neural models [16, 29, 76]. Going 
beyond inference of parameters, recurrent neural networks 
have been used to identify unknown constitutive relations in 
ordinary differential equation systems [36]. 

Evolutionary algorithms  are generic population-based optimization 
algorithms that adopt mechanisms inspired by biological evolution 
to generate new sampling points for further function evaluation. 
Strategies include reproduction, mutation, recombination, and 
selection. Evolutionary algorithms have been used successfully for 
automatic parameter tuning in multiscale brain modeling [29].

From multiscale modeling to machine learning Multiscale 
models can provide insight into a biological, biomedical, or 
behavioral system at a high level of resolution and precision. 
They can systematically probe different conditions and treat-
ments, faster, more cost-effective, and often beyond what is 
possible experimentally. This parameter screening naturally 
produces massive output datasets, which are ideally suited to 
machine learning analysis. To no surprise, machine learning 
methods are progressively becoming part of the tool suite to 
analyze the output of multiscale models [30, 142]. A recent 
example is the study of clustering to study the effects of 
potential simulated treatments [59, 76]. 

Clustering  is an unsupervised learning method that organizes 
members of a dataset into groups that share common properties. 
Typical examples in biomedicine include clustering the effects of 
simulated treatments [59, 76].

4.3  Open Questions

Classifying simulation and experiment To what extent does 
the multiscale modeling differ from experiment? Machine 
learning tools allow us to cluster and classify the predic-
tions of the multiscale model and systematically compare 
simulated and experimental datasets. Where simulation and 
experiment differ, machine learning can identify potential 
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high-order features and suggest iterative refinements to 
improve the multiscale model.

Identifying missing information Do the chosen param-
eters provide a basis set that allows production of the needed 
higher-scale model dynamics? Multiscale simulations and 
generative networks can be set up to work in parallel, along-
side the experiment, to provide an independent confirmation 
of parameter sensitivity. For example, the circadian rhythm 
generators provide relatively simple dynamics but have very 
complex dependence on numerous underlying parameters, 
which multiscale modeling can reveal. We could then use gen-
erative models to identify both the underlying low dimension-
ality of the dynamics and the high dimensionality associated 
with parameter variation. Inadequate multiscale models could 
be identified with failure of generative model predictions. 

Generative models  are statistical models that capture the joint 
distribution between a set of observed or latent random variables. 
A recent study used deep generative models for chemical space 
exploration and matter engineering [106].

Creating surrogates How can we use generative adversarial 
networks to create new data sets for testing multiscale mod-
els? Conversely, how can we create training or test instances 
using multiscale modeling to use with deep learning models? 
A deep learning network could be deployed more widely and 
provide answers more quickly than a multiscale modeling 
dynamic simulation, permitting, for example, prediction of 
pharmaceutical efficacy for patients with particular genetic 
inheritance in personalized medicine. This would be particu-
larly important for on-body digital twins which need to func-
tion rapidly with limited computational resources

Identifying relevant processes and interactions How can 
we use machine learning to bridge scales? For example, 
machine learning could be used to explore responses of both 
immune and tumor cells in cancer based on single-cell data. 
A multiscale model could then be built on the families of 
solutions to codify the evolution of the tumor at organ- or 
metastasis-scale.

Supplementing training data Supervised learning, as used 
in deep networks, is a powerful technique but requires large 
amounts of training data. Recent studies have shown that, 
in the area of object detection in image analysis, simula-
tion augmented by domain randomization can be used suc-
cessfully as a supplement to existing training data [127]. In 
areas where multiscale models are well-developed, simula-
tion across many parameter has been used as a supplement 
to existing training data for nonlinear diffusion models to 
provide physics-informed machine learning [96, 118, 119]. 
Similarly, multiscale models can be used in biological, bio-
medical, and behavioral systems to augment insufficient 
experimental or clinical data sets. Machine learning can 
provide tools to verify the validity of the simulation results. 
Multiscale models can then expand the datasets towards 

developing machine learning and artificial intelligence 
applications. 

Domain randomization  is a technique for randomizing the field of 
an image so that the true image is also recognized as a realization 
of this space. Domain randomization has been used successfully 
to supplement training data [127].

4.4  Potential Challenges and Limitations

Developing new architectures and algorithms inspired by 
biological learning Chess and go are two games, difficult 
for humans, which have been solved successfully by artifi-
cial intelligence using deep learning. Deep learning has also 
shown success in image recognition, a function that utilizes 
large amounts of brain real estate [125]. By contrast, activi-
ties that real brains networks are very good at remain elusive. 
For example, the control systems of a mosquito engaged in 
evasion and targeting are remarkable considering the small 
neuronal network involved. This limitation provides opportu-
nities for more detailed brain models to assist in developing 
new architectures and new learning algorithms. Incorporat-
ing spiking [45] or oscillatory dynamics at the mesoscopic or 
macroscopic levels could inspire novel low-energy architec-
tures and algorithms. Deep learning and reinforcement learn-
ing were both motivated by brain mechanisms. Understand-
ing biological learning has the potential to inspire novel and 
improved machine learning architectures and algorithms [39]. 

Reinforcement learning  is a technique that circumvents the notions 
of supervised learning and unsupervised learning by exploring 
and combining decisions and actions in dynamic environments to 
maximize some notion of cumulative reward. Of broad relevance 
is understanding common learning modes in biological, cognitive, 
and artificial systems through the lens of reinforcement learning 
[12, 75].

Identifying disease progression biomarkers and mech-
anisms There are abundant challenges for data-driven 
approaches for integrating machine learning and multiscale 
modeling towards understanding and diagnosing specific 
disease states. If machine learning could identify predictive 
disease progression biomarkers, multiscale modeling could 
follow up to identify mechanisms at each stage of the disease 
with the ultimate goal to propose interventions that delay, 
prevent, or revert disease progression.

5  Theory‑Driven Approaches

Theory-driven approaches aspire to answer the following 
questions: How can we leverage structured physical laws 
and mechanistic models as informative prior information in 
a machine learning pipeline towards advancing modeling 
capabilities and expediting the simulation of multiscale 
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systems? Given imperfect and irregularly sampled data, how 
do we identify the form and parameters of a governing law, 
for example an ordinary or partial differential equation, and 
use it for forecasting? Fig. 7 illustrates a closed-loop inte-
gration of theory-driven machine learning and multiscale 
modeling to accelerate model- and data-driven discovery.

5.1  State of the Art

Theory-driven machine learning is both a decently mature 
and quickly evolving area of research. It is mature in 
that methods for learning parameters for a model such as 
dynamic programming and variational methods have been 
known and applied for a long time. Although these methods 
are generally not considered to be tools of machine learning, 
the difference between them and current machine learning 
techniques may be as simple as the difference between a 
deterministic and a stochastic search [138]. Dynamic pro-
graming and variational methods are very powerful when 
we know the form of the model and need to constrain the 
parameters within a specified range to reproduce experimen-
tal observations. Machine learning methods, however, can 
be very powerful when the model is completely unknown or 
when there is uncertainty about its form. Mixed cases can 
exist as well. For example, when modeling the dynamics of 
a cell, we may know the rate laws that need to be solved and 
obtain the rate parameters using an optimization algorithm; 
yet, which reactions are regulated under what conditions 
may be a mystery for which there are no adequate models.

Theory-driven machine learning can enable the seamless 
synthesis of physics-based models at multiple temporal and 
spatial scales. For example, multi-fidelity techniques can com-
bine coarse measurements and reduced order models to sig-
nificantly accelerate the prediction of expensive experiments 
and large-scale computations [83]. In drug development, for 
example, we can leverage theory-driven machine learning tech-
niques to integrate information across ten orders of magnitude 
in space and time towards developing interpretable classifiers 
that enable us to characterize the potency of pro-arrhythmic 
drugs [102]. Based on Gaussian process regression, these 
approaches can effectively explore the interplay between drug 
concentration and drug toxicity by probing the effect of differ-
ent drugs on ion-channel blockage, cellular action potentials, 
and electrocardiograms using coarse and low-cost models, 
anchored by a few, judiciously selected, high-resolution simu-
lations of cardiac electrophysiology [103].

Leveraging probabilistic formulations, theory-driven 
machine learning techniques can also inform the judicious 
acquisition of new data and actively expedite tasks involv-
ing the exploration of large parameter spaces or the cali-
bration of complex models. For example, we could devise 
an effective data acquisition policy for choosing the most 
informative meso-scale simulations that need to be per-
formed to recover detailed constitutive laws as appropriate 
closures for macroscopic models of complex fluids [143]. 
Building on recent advances in automatic differentiation 
[9], techniques such as neural differential equations [21] 
are also expanding our capabilities in calibrating complex 
dynamic models using noisy and irregularly sampled data. 

Fig. 7  Theory-driven machine 
learning for multiscale mod-
eling of biological systems. 
Theory-driven machine learning 
can yield data-efficient work-
flows for predictive modeling 
by synthesizing prior knowl-
edge and multi-modal data 
across the scales. Probabilistic 
formulations enable uncer-
tainty quantification and can 
guide the judicious acquisition 
of new data towards dynamic 
model-refinement; adopted with 
permission from [3]
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Automatic differentiation  is a family of techniques to efficiently 
and accurately evaluate derivatives of numeric functions 
expressed as computer programs. Not to be confused with sym-
bolic or numerical differentiation, automatic differentiation is an 
exact procedure for differentiating computer code by redefining 
the semantics of the operators, composing a complex program to 
propagate derivatives per the chain rule of differential calculus 
[9]. Along with the use of graphics processing units, automatic 
differentiation has been one of the key backbones of the current 
machine learning revolution. It significantly expedits the prototyp-
ing and deployment of predictive data-driven models.

More recently, efforts have been made to directly bake 
theory into machine learning practice [95]. This enables the 
construction of predictive models that adhere to the under-
lying physical principles, including conservation, sym-
metry, or invariance, while remaining robust even when 
the observed data are very limited. For example, a recent 
model only utilized conservation laws of reaction to model 
the metabolism of a cell. While the exact functional forms 
of the rate laws was unknown, the equations were solved 
using machine learning [23]. An intriguing implication of 
such theory-driven machine learning approaches is related 
to their ability to leverage auxiliary observations to infer 
quantities of interest that are difficult to measure in practice 
[96]. An example includes the use of physics-informed neu-
ral networks to infer the arterial blood pressure directly and 
non-invasively from four-dimensional magnetic resonance 
images of blood velocities and arterial wall displacements 
by leveraging the known dynamic correlations induced by 
first principles in fluid and solid mechanics [46]. A com-
mom thread between these approaches is that they rely on 
conventional neural network architectures, including fully 
connected or convolutional, and constrain them using physi-
cal laws as penalty terms in the loss function that drives the 
learning process. An alternative, yet more laborious route 
is to design new neural architectures that implicitly remain 
invariant with respect to the symmetry groups that char-
acterize the dynamics of a given system. A representative 
example of this school of thought can be found in covariant 
molecular neural networks; a rotationally covariant neural 
network architecture for learning the behavior and properties 
of complex many-body physical systems [6] 

Neural differential equations  are machine learning models that 
aim to identify latent dynamic processes from noisy and irregu-
larly sampled time-series data [21]. Leveraging recent advances 
in automatic differentiation [9], they can efficiently back-prop-
agate through ordinary or partial differential equation solvers 
to calibrate complex dynamic models and perform forecasting 
with quantified uncertainty. Examples in biomedicine include 
predicting in-hospital mortality from irregularly sampled time-
series containing measurements from the first 48 h of a different 
patient’s admission to the intensive care unit [99].

5.2  Applications and Opportunities

From models and patient data to personalized medicine.  
Theory-driven and computational methods have long aspired 
to provide predictive tools for patient monitoring, diagnos-
tics, and surgical planning. However, high-fidelity predictive 
models typically incur a large computational cost and rely 
on tedious calibration procedures that render them imprac-
tical for clinical use. Theory-driven machine learning, for 
example in the form of multi-fidelity or physics-informed 
approaches, has the potential to bridge the gap between mod-
eling, predictions, and clinical decision making by enabling 
the seamless and cost-effective integration of computational 
models and disparate data modalities, for example from 
medical imaging, laboratory tests, and patient records. In 
the age of the Digital Twin, this integration enables new 
capabilities for assimilating data from medical devices into 
predictive models that enable the assessment of health risks 
and inform preventative care and therapeutic strategies on a 
personalized basis.

From protein biology to physics of the cell In contrast to 
the clinical case, theory-driven computational methods have 
a long history of providing high-fidelity, predictive models 
for many fields in the basic sciences with protein biology as 
one of the most prominent examples [71, 131]. However, 
once we move to the scale where non-equilibrium phenom-
ena occur, the rate parameters necessary to solve either the 
full mass action rate law or even approximations such as the 
Michealis–Menten equation have been difficult and expen-
sive to obtain, as they depend on careful in vitro kinetic 
studies. The Costello–Garcia–Martin study mentioned above 
is a significant step, but the functional form of the rate laws, 
which describe the underlying physics remain unknown. 
Accordingly, a grand challenge application that is ripe for 
further development is combining theory-driven machine 
learning with multi-scale modeling to understand the physics 
of the cell, especially with a view towards the emergence of 
function. We could, for example, generate high-fidelity data 
from simulations based on maximum entropy assumptions, 
and then use these data to learn feasible solution spaces.

From interpolation to extrapolation When data can be 
generated from theory-driven models, machine learning 
techniques have enjoyed immense success. Such tasks are 
usually based on interpolation in that the input domain 
is well specified, and we have sufficient data to construct 
models that can interpolate between the dots. This is the 
regime where discriminative, black box methods such as 
deep learning perform best. When extrapolation is needed 
instead, the introduction of prior knowledge and appropriate 
inductive biases through theory-driven methods can effec-
tively steer a machine learning algorithm towards physi-
cally consistent solutions. Theory-driven machine learning 
approaches present a unique opportunity for leveraging the 
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domain knowledge and mechanistic insight brought by the 
multi-scale modeling community to develop novel learn-
ing algorithms with enhanced robustness, data-efficiency, 
and generalization performance in data-limited regimes. We 
anticipate such developments to be crucial for leveraging the 
full potential of machine learning in advancing multi-scale 
modeling for biological, biomedical, and behavioral systems.

5.3  Open Questions

Elucidating mechanisms Can theory-driven machine learn-
ing approaches enable the discovery of interpretable models 
that can not only explain data, but also elucidate mecha-
nisms, distill causality, and help us probe interventions 
and counterfactuals in complex multi-scale systems? For 
instance, causal inference generally uses various statistical 
measures such as partial correlation to infer causal influence. 
If instead, the appropriate statistical measure were known 
from the physics such as a statistical odds ratio from ther-
modynamics, would the causal inference be more accurate 
or interpretable as a mechanism?

Understanding the emergence of function Understanding 
the emergence of function is of critical importance in biol-
ogy and medicine, environmental studies, biotechnology and 
other biological sciences. The study of emergence necessi-
tates the ability to model collective action on a lower scale 
to predict how the phenomena on the higher scale emerge 
from the collective action. Can theory-driven machine learn-
ing, combined with sparse and indirect measurements of the 
phenomena, produce a mechanistic understanding of how 
biological phenomena emerge?

Exploring massive design spaces Can theory-driven 
machine learning approaches uncover meaningful and com-
pact representations for complex inter-connected processes, 
and, subsequently, enable the cost-effective exploration of 
vast combinatorial spaces? A typical example is the design 
of bio-molecules with target properties in drug development.

Predicting uncertainty Uncertainty quantification is the 
back-bone of decision making. Can theory-driven machine 
learning approaches enable the reliable characterization of 
predictive uncertainty and pinpoint its sources? The quanti-
fication of uncertainty has many practical applications such 
as decision making in the clinic, the robust design of syn-
thetic biology pathways, drug target identification and drug 
risk assessment, as well as guiding the informed, targeted 
acquisition of new data.

Selecting the appropriate tools Is deep learning nec-
essary in theory-driven learning? In principle, the more 
domain knowledge is incorporated into the model the less 
needs to be learned and the easier the computing task will 
become. More knowledge will enable researchers to take on 
even greater challenges, which, in turn, may require more 
learning. It is likely that the applications will utilize a range 

of techniques, from dynamic programming to variational 
methods to standard machine learning to deep learning. Is 
high performance computing required when theory-driven 
models are employed? The answer here probably depends on 
the application and the depth of the model used in learning, 
with the larger the multi-scale model, the more computing 
necessary.

5.4  Potential Challenges and Limitations

A major challenge in theory-driven approaches towards 
understanding biological, biomedical, and behavioral sys-
tems, is obtaining sufficient data to answer the driving ques-
tion of interest.

Combining low- and high-resolution data Can theory-
driven machine learning be utilized to bridge the gap 
between qualitative ’omics data and the quantitative data 
needed for prediction? For example, RNASeq data has 
become fairly quantitative, but the amplification of tran-
scripts using polymerase chain reaction can add uncertainty 
to the final measures. Proteomics and metabolomics assays 
can be quite quantitative when using nuclear magnetic reso-
nance or multiple reaction monitoring [50], but nuclear mag-
netic resonance has a relatively narrow dynamic range for 
quantification and multiple reaction monitoring mass spec-
trometry is not high throughput. Similarly, isotope labeling 
studies such as metabolic flux analysis [137] and absolute 
quantitation by mass spectroscopy [10, 62, 80] provide 
highly valuable information, but are low-throughput and 
relatively costly. High throughput methods such as shotgun 
proteomics [139] or global metabolomics determine whether 
a protein, peptide, or metabolite is observed, but not whether 
it is actually present since different species have different 
detectability characteristics. For these reasons, the use of 
high-throughput biological data in machine learning remains 
a challenge, but combining theory-driven approaches with 
multi-fidelity data would help reduce the uncertainty in the 
analysis.

Minimizing data bias Can arrhythmia patients trust a neu-
ral net controller embedded in a pacemaker that was trained 
under different environmental conditions than the ones dur-
ing their own use? Training data come at various scales and 
different levels of fidelity. These data are typically generated 
by existing models, experimental assays, historical data, and 
other surveys, all of which come with their own biases. As 
machine learning algorithms can only be as good as the data 
they have seen, proper care needs to be taken to safe-guard 
against biased models and biased data-sets. Theory-driven 
approaches could provide a rigorous foundation to estimate 
the range of validity, quantify the uncertainty, and charac-
terize the level of confidence of machine learning based 
approaches.
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Knowing the risk of non-physical predictions Can new 
data fill the gap when the multi-scale model lacks a clean 
separation between the fast and slow temporal scales or 
between the small and large spatial scales? From a concep-
tual point of view, this is a problem of supplementing the 
set of physics-based equations with constitutive equations, 
an approach, which has long been used in traditional engi-
neering disciplines. While data-driven methods can provide 
solutions that are not constrained by preconceived notions or 
models, their predictions should not violate the fundamen-
tal laws of physics. Sometimes it is difficult to determine 
whether the model predictions obey these fundamental laws. 
This is especially the case when the functional form of the 
model cannot be determined explicitly, for instance in deep 
learning. This makes it difficult to know whether the analy-
sis predicts the correct answer for the right reasons. There 
are well-known examples of deep learning neural networks 
that appear to be highly accurate, but make highly inaccu-
rate predictions when faced with data outside their training 
regime [78], and others that make highly inaccurate predic-
tions based on seemingly minor changes to the target data 
[116]. Integrating machine learning and multiscale models 
that a priori satisfy the fundamental laws of physics would 
help address this limitation.

6  Conclusion

Many exciting new applications emerge at the interface of 
machine learning and multiscale modeling. Immediate appli-
cations in multiscale modeling include system identification, 
parameter identification, sensitivity analysis, and uncer-
tainty quantification and applications in machine learning 
are physics-informed neural networks. Integrating machine 
learning and multiscale modeling can have a massive impact 
in the biological, biomedical, and behavioral sciences, both 
in diagnostics and prognostics, and this review has only 
touched the surface. Undeniably, applications become more 
and more sophisticated and have to be increasingly aware of 
the inherent limitations of overfitting and data bias. A major 
challenge to make progress in this field will be to increase 
transparency, rigor, and reproducibility. We hope that this 
review will stimulate discussion within the community of 
computational mechanics and reach out to other disciplines 
including mathematics, statistics, computer science, artificial 
intelligence, and precision medicine to join forces towards 
personalized predictive modeling in biomedicine.
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