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Abstract

We present a multiscale measure for mixing that is based on the con-
cept of weak convergence and averages the “mixedness” of an advected
scalar field at various scales. This new measure, referred to as the Mix-
Norm, resolves the inability of the L2 variance of the scalar density field
to capture small-scale variations when advected by chaotic maps or flows.
In addition, the Mix-Norm succeeds in capturing the efficiency of a mix-
ing protocol in the context of a particular initial scalar field, wherein
Lyapunov-exponent based measures fail to do so. We relate the Mix-Norm
to the classical ergodic theoretic notion of mixing and present its formu-
lation in terms of the power spectrum of the scalar field. We demonstrate
the utility of the Mix-Norm by showing how it measures the efficiency
of mixing due to various discrete dynamical systems and to diffusion. In
particular, we show that the Mix-Norm can capture known exponential
and algebraic mixing properties of certain maps. We also analyze numer-
ically the behaviour of scalar fields evolved by the Standard Map using
the Mix-Norm.

1 Introduction

Fluid mixing is a critical stage in many engineering applications. Aref [1] has
studied the use of chaotic advection to enhance mixing in laminar flows. Books
by Ottino [12] and Wiggins [20] address the problem of mixing using concepts
and methods of dynamical systems theory. [1], [12] and [20] discuss physical
(kinetic) mechanisms for mixing. In spite of this comprehensive study of mixing
from the point of view of dynamical systems theory, there is no consensus on
how to measure mixing and in particular on how to compare the mixing rates of
two different processes. The notion of a mixing measure becomes particularly
useful if one is considering the problem of control and optimization of mixing.
Previous approaches to this fundamental problem of measurement of mixing
include using the Kolmogorov-Sinai entropy of the underlying dynamical system
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as an objective for mixing and using the scalar variance of a density field which
is being tranported by a dynamical system. Control of mixing using a maximum
entropy approach for a prototypical mixing problem was studied in [6]. As the
authors themselves point out in [6], the entropy of a dynamical system (given
by a spatial integral of the Lyapunov exponents) is independent of the initial
fluid configuration. Therefore, if we are interested in “mixing up” a particular
initial scalar field in an optimal manner, the maximum entropy approach is not
applicable, although one could use ideas like partition entropy which is discussed
in [4].

Besides the entropy approach mentioned above, Lp norms have been used
when the problem at hand is not purely deterministic, i.e. includes diffusion.
In work by Ashwin et al. [3], interesting mixing protocols (combinations of
diffusion with permutation operations on phase space) are described. Thiffeault
et al. [17] investigate the mixing properties of a map which in an extension of
Arnold’s Cat Map on the 2-torus combined with diffusion. In [16], Rothstein et
al. study the mixing patterns of passive scalars in an electromagnetically driven
two-dimensional fluid flow. In [3], [17] and [16] the L2 and L∞ norms are used
to quantify how far the passive scalar field is from being spatially uniform or
homogeneous. In the absence of diffusion, measures based on Lp norms of a
scalar density field being transported by a volume-preserving system will not
decay. Therefore the Lp norms fail to quantify the “stirring” efficiency of a
mixing process accurately because it is insensitive to the small scale structures
of the scalar density field generated by the volume-preserving chaotic system.
Mostly, this problem of the Lp norm has been ignored because typically there
is diffusion associated with the mixing protocols as in [3], [17] and [16].

Other classical approaches, starting from Gibbs’ approach, are reviewed in
[9]. The key element of the Gibbs’ approach is coarse-graining. We extend this
idea and the work in [11] to develop a norm based on coarse-graining. This
norm called the Mix-Norm is related to the concept of weak convergence and
we demonstrate its relation to the classical ergodic theoretic notion of mixing
as defined in dynamical systems literature [10], [2] and [14]. The Mix-Norm was
motivated by the mixing variance coefficient proposed in [19]. The formulation
of the Mix-Norm overcomes the deficiences of the two approaches mentioned
above. The Mix-Norm depends on the initial fluid configuration and also suc-
ceeds in capturing the mixing efficiency of volume-preserving transformations
(in the absence of diffusion) wherein the standard L2 variance fails to do so.
In this paper, we discuss the measure with respect to the mixing of advected
density fields, but the ideas here can be easily extended to mixing in the context
of dispersing solids or droplets. Also, in this paper we have restricted ourselves
to periodic domains for ease of presentation and clarity.

The paper is organized as follows. In section 2, we present the basic struc-
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tural definition and properties of the Mix-Norm. We discuss its properties as a
pseudo-norm induced by an inner product and also its interpretation in terms
of the power spectrum of the scalar field. In particular, we show that the Mix-
Norm is equivalent to the Sobolev space norm of negative index s = − 1

2 , i.e.
the H− 1

2 norm. In section 3, we discuss the applications of the Mix-Norm. We
prove that the Mix-Norm can be used as a metric for checking weak-convergence
which is the critical link in justifying its validity as a measure for mixing. We
show how the Mix-Norm captures the mixing properties of Arnold’s Cat Map
and the integrable Standard Map. We numerically explore how the pertur-
bation parameter affects the mixing propeties of the Standard Map using the
Mix-Norm. We also give an interepretation of the Mix-Norm in terms of the
mixing effectiveness caused by pure diffusion.

2 Structure and Properties of the Mix-Norm

As a motivation, consider the sequence of functions {cm = sin(2mπx)}. They
have the same mean and variance for all m, but there is something fundamentally
different about the behaviour of these functions for small m and large m. In
particular, the average of sin(2mπx) over any open set converges to zero for
large m as the functions become more “oscillatory”. The most commonly used
“global” or average quantities like the mean and the variance of scalar functions
do not capture this property. We consider a scalar field to be well-mixed if
its averages over arbitrary open sets are uniform. There are many ways of
quantifying this idea and in this paper we choose a specific one that coincides
well with ideas on mixing in dynamical systems theory ([10], [2], [14]) as well as
with intuitive notions with respect to the power spectrum of the scalar field. In
contrast to the L2 norm of a function which is obtained by integrating the square
of the function over the whole space, the Mix-Norm is obtained by integrating
the square of average values of the function over a dense set of subsets contained
in the whole space.

2.1 The Mix-Norm on the circle

First we present the Mix-Norm on the circle and then generalize it to an n-
dimensional torus. We parametrize the domain by a non-dimensional distance
x ranging from 0 to 1 and µ is the Lebesgue measure. Let c : S1 → R. To define
the Mix-Norm let

d(c, p, s) =

∫ p+s/2

p−s/2
c(x)µ(dx)

s
(1)

for all s ∈ (0, 1) and p ∈ [0, 1]. d(c, p, s) is the mean value of the function c
within the interval [p− s/2, p + s/2]. Then we define

φ(c, s) =
(∫ 1

0

d2(c, p, s)µ(dp)
) 1

2

. (2)
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φ(c, s) is the L2 norm of the averaged function d(c, ., s) for a fixed scale s. Then
the Mix-Norm of c is given by

Φ(c) =
(∫ 1

0

φ2(c, s)µ(ds)
) 1

2

. (3)

The basic idea behind the Mix-Norm is to parametrize all sub-intervals of S1 and
to take the root mean square of the average values of c over these sub-intervals.
If c ∈ L2

S1 , the following two limits can be verified.

lim
s→0

φ(c, s) =
(∫ 1

0

c2(x)µ(dx)
) 1

2

(4)

lim
s→1

φ(c, s) =
∣∣∣∣
∫ 1

0

c(x)µ(dx)
∣∣∣∣ . (5)

Expressions (4) and (5) are respectively the L2 norm and absolute value of the
mean of the scalar function c, which are two fundamental measures associated
with any scalar field (Proofs for these equalities are included in Appendix (B)).
Therefore, φ(c, s) for different values of s ∈ (0, 1) can be seen as a continuous
transition of measures associated with the scalar function c ranging from the L2

norm to the mean. The Mix-Norm is obtained by the square integral of these
measures over all possible scales s ∈ (0, 1).

2.2 The Mix-Norm on an n-dimensional torus

We consider scalar functions c : Tn → R where Tn = [0, 1]n is an n-dimensional
torus. Here again, µ is the Lebesgue measure and the same will be assumed
throughout the paper. For notational convenience, we make the following defini-
tions, (All vectors are written in bold font (eg: x) and their respective elements
are written in usual font with indices as subscripts (eg: x1, x2, ..)),

For a given s ∈ (0, 1) and p ∈ Tn

B(p, s) = {y ∈ Tn : ‖y − p‖2 ≤ s/2}.
V olB(s) = Volume of the n-dimensional sphere with radius s/2 = µ(B(p, s)).
χB(p,s) is the characteristic function on the set B(p, s).

(6)

Also, in all the discussions, for any two functions f, g : Tn → R, the inner
product is defined to be

〈f, g〉 =
∫

T n

f(x)g(x)µ(dx). (7)

To define the Mix-Norm let
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d(c,p, s) =

∫
x∈B(p,s)

c(x)µ(dx)

V olB(s)
=
〈c, χB(p,s)〉
V olB(s)

(8)

for all s ∈ (0, 1) and p ∈ Tn. d(c,p, s) is the mean value of the function c within
the sphere B(p, s). Now define

φ(c, s) =




∫

T n

d2(c,p, s)µ(dp)




1
2

= (〈d(c, ·, s), d(c, ·, s)〉) 1
2 .

(9)

Just as in the case for the circle, φ(c, s) is the L2 norm of the averaged function
d(c, ., s) for a fixed scale s. Then the Mix-Norm of c is given by

Φ(c) =
(∫ 1

0

φ2(c, s)µ(ds)
) 1

2

. (10)

An equality similar to (4) holds true for higher dimensions also, but not equality
(5).

2.2.1 The Mix-Variance

The degree of mixedness of a scalar field needs to be measured as a distance
from a uniform field which is not necessarily zero. For this purpose, we define
the quantity referred to as the Mix-Variance of a scalar field and in fact, it is
the Mix-Variance which will be of greater relevance in the context of mixing.
Let c̄ be the mean of the function. i.e., c̄ =

∫
T n c(x)µ(dx). Then we refer to the

quantity Φ2(c− c̄) as the Mix-Variance of c. This is in parallel to the situation
where we refer to ‖c− c̄‖22 as the L2 variance of c. To avoid any ambiguity, we
write all the steps in the definition of the Mix-Variance here.

d(c− c̄,p, s) =

∫
x∈B(p,s)

c(x)µ(dx)

V olB(s)
− c̄ = d(c,p, s)− c̄ (11)

for all s ∈ (0, 1) and p ∈ Tn. Now define

φ2(c− c̄, s) =
∫

T n

d2(c− c̄,p, s)µ(dp)

=
∫

T n

(d(c,p, s)− c̄)2 µ(dp).
(12)

φ2(c− c̄, s) is the L2 “distance” between the averaged function d(c, ., s) at scale
s and c̄. Then the Mix-Variance of c is given by
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Φ2(c− c̄) =
∫ 1

0

φ2(c− c̄, s)µ(ds). (13)

2.2.2 The Weighted Mix-Norm

A more general version of the Mix-Norm can be considered with a weighting
function on the physical space and scale space. Consider a function w : Tn ×
(0, 1) → < such that w(p, s) ≥ 0. Then the Mix-Norm with weight w, Φw(c) is
obtained by replacing equation (8) by

dw(c,p, s) =

∫
x∈B(p,s)

c(x)µ(dx)

V olB(s)
.
√

w(p, s) (14)

and then following through the same steps. The effects of the weighting function
on various aspects will be pointed out throughout the paper, but mostly we will
be dealing with the case where there is no weighting function.

2.3 Mix-Norm as a pseudo-norm

The Mix-Norm is a pseudo-norm on the space of functions, meaning that it
satisfies the following properties. For any c : Tn → R,

1. Φ(c) ≥ 0, and c = 0 ⇒ Φ(c) = 0.

2. Φ(λc) =| λ | Φ(c), where λ is a scalar constant.

3. Φ(c1 + c2) ≤ Φ(c1) + Φ(c2).

A pseudo-norm is different from a norm in that a pseudo-norm can be zero
for nonzero functions. In particular, the Mix-Norm is zero for a special class of
nonzero functions which have a mean of zero on all sets of nonzero measure, but
have a nonzero L2 norm. This is related to the concept of weak convergence
and will be discussed in subsection 3.1. The triangle inequality property of the
Mix-Norm follows from the fact that each φ(c, s) is a pseudo-norm and Φ(c)
is a “summation” of these pseudo-norms. The proof for the triangle inequality
property is included in Appendix (A). The introduction of a weighting func-
tion in the definition of the Mix-Norm as described before does not change its
properties as a pseudo-norm.

The Mix-Norm is bounded for all functions c ∈ L2
T n . This follows from

the fact that the averaging operation in (8) is a contraction from L2
T n to itself.

Moreover, Φ(c) ≤ ‖c‖2 for all c ∈ L2
T n . This will be more obvious in the next

subsection, when the connection between the Mix-Norm and the Fourier basis
is made.
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2.4 The Mix-Norm as an inner product

From the previous sections, one can observe that the Mix-Norm can be written
as a triple integral on the unit circle and as a 3n integral on an n-dimensional
torus. This section shows that the Mix-Norm can be written in a much more
compact form as an inner product. Let the linear operator [D(s)] : L2

T n → L2
T n

be defined as follows (all operators will be written in square brackets):

[D(s)]c(p) =

∫
x∈B(p,s)

c(x)µ(dx)

V olB(s)
=

〈
c, χB(p,s)

〉

V olB(s)
. (15)

Now φ(c, s) can be written as:

φ(c, s) = (〈[D(s)]c, [D(s)]c〉) 1
2 = (〈c, [D(s)]∗[D(s)]c〉) 1

2 (16)

where [D(s)]∗ is the adjoint operator of [D(s)]. Then the Mix-Norm Φ(c) is
given by

Φ2(c) =
∫ 1

0

φ2(c, s)µ(ds) =
∫ 1

0

〈c, [D(s)]∗[D(s)]c〉µ(ds)

=
〈

c,

[∫ 1

0

[D(s)]∗[D(s)]µ(ds)
]

c

〉
= 〈c, [M ]c〉

(17)

where

[M ] :=
∫ 1

0

[D(s)]∗[D(s)]µ(ds). (18)

By the above definition of [M ], we mean that its action on a function c is given
as follows:

[M ]c(x) =
∫ 1

0

[D(s)]∗[D(s)]c(x)µ(ds) (19)

We refer to [M ] as the Mix-Operator. Note that [M ] is a symmetric defi-
nite operator by construction and that [M ] depends only on the domain under
consideration. Thus, the Mix-Norm of any function c can be computed using
the inner product of c with [M ]c. The following discussion presents some inter-
esting facts about the Mix-Operator [M ]. It turns out that the Fourier basis
functions are the eigenfunctions of the Mix-Operator [M ]. This can be inferred
from the fact that [M] belongs to the class of spatially invariant operators for
which the Fourier basis functions are always eigenfunctions. Even though the
Mix-Norm was defined for real valued functions in the previous discussions, its
extension to complex valued functions is straightforward and will be assumed
in the following discussions.

Theorem 2.1. The eigenfunctions of the Mix-Operator [M ] defined on the n-
dimensional torus Tn are {ck(x) = ei2π(k.x) } for k ∈ Zn and the corresponding
eigenvalues are Λk =

∫ 1

0
K2

n(s,k)µ(ds), where
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Kn(s,k) =
2

(n−2)
2 nΓ(n

2 )Jn
2
(sπ‖k‖|)

(sπ‖k‖)n
2

(20)

and where

Γ is the gamma function
Jn

2
is a Bessel function of the first kind

‖k‖ =
√

k2
1 + k2

2 + ... + k2
n.

(21)

Proof. Motivated by (17), we can define a degenerate inner-product T as T (c1, c2) =
〈c1, [M ]c2〉. T : L2

T n×L2
T n → R is bilinear and symmetric but degenerate, mean-

ing that there exist nonzero functions c ∈ L2
T n such that T (c, c) = 0. If we show

that T (cj, ck) = 0 when j 6= k, it follows that {ck} are indeed the eigenfunctions
of [M ]. Also, the eigenvalues are given by Λk = T (ck, ck).

The Fourier basis functions satisfy the following mean-value property over spher-
ical surfaces.

∫
x∈S(p,r)

ck(x)µ(dx)

Area(S(p, r))
=

Γ(n
2 )J (n−2)

2
(r2π‖k‖)

(rπ‖k‖) (n−2)
2

ck(p) (22)

where S(p, r) = {x : ‖x − p‖2 = r} and Area(S(p, r)) = Surface area of the
n-sphere. This implies a mean value theorem for the interior of the sphere which
is as follows:

[D(s)]ck(p) =

(
2

(n−2)
2 nΓ(n

2 )Jn
2
(sπ‖k‖)

(sπ‖k‖)n
2

)
ei2πk.p

= Kn(s,k)ei2πk.p

(23)

Details of this derivation are given in Appendix (C). Now, computing the inner
product T (cj, ck), we get
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〈cj, [M ]ck〉 =

〈
cj,

1∫

0

[D(s)]∗[D(s)]ckµ(ds)

〉

=

1∫

0

〈[D(s)]cj, [D(s)]ck〉µ(ds)

=

1∫

0




∫

T n

Kn(s, j)ei2π(j.p)Kn(s,k)e−i2π(k.p)µ(dp)


 µ(ds)

=

1∫

0


Kn(s, j)Kn(s,k)

∫

T n

ei2π(j−k).pµ(dp)


 µ(ds)

=

{
0 if j 6= k,∫ 1

0
K2

n(s,k)µ(ds) if j = k.

(24)

The result in (24) says that when the Mix-Operator [M ] acts on any one of the
Fourier modes, the resulting function has no components in any of the other
Fourier modes. Therefore it has to be that the Fourier basis functions are
eigenfunctions of the Mix-Operator [M ].

Corollary 2.1. For a function c ∈ L2
T n , which has a Fourier representation

c(x) =
∑

k∈Zn akei2π(k.x), the Mix-Norm is given by

Φ(c) =

( ∑

k∈Zn

Λk|ak|2
) 1

2

. (25)

The above corollary follows directly from (24). For the special case when
k = 0, Λk = 1. Also, for the special case when n = 1, the expression for Λk

reduces to

Λk =
∫ 1

0

sin2(kπs)
(kπs)2

µ(ds). (26)

The key aspect of the eigenvalues Λk given in Theorem 2.1 is that they decay
monotonically with respect to the argument ‖k‖. Figure 1 shows the variation
of Λk with respect to ‖k‖ for n = 1 and n = 2. Moreover, there exist bounded
real constants µ1, µ2 > 0 such that

µ1

(1 + (2π‖k‖)2) 1
2
≤ Λk ≤ µ2

(1 + (2π‖k‖)2) 1
2
. (27)

Details of the above inequality are given in Appendix (D). Therefore the norm
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‖c‖
H− 1

2 (T n)
defined as

‖c‖
H− 1

2 (T n)
=

( ∑

k∈Zn

1
(1 + (2π‖k‖)2) 1

2
|ak|2

) 1
2

, (28)

which is a Sobolev norm of negative index s = −1/2, is equivalent to the Mix-
Norm. H− 1

2 (Tn) is the Sobolev space of negative index s = −1/2, defined
as

H− 1
2 (Tn) = {c : Tn → R : ‖c‖

H− 1
2 (T n)

< ∞}. (29)

Therefore, for all c ∈ H− 1
2 (Tn),

√
µ1‖c‖

H− 1
2 (T n)

≤ Φ(c) ≤ √
µ2‖c‖

H− 1
2 (T n)

. (30)
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Figure 1: Decay of Eigenvalues of Mix-Operator with respect to magnitude of
wave-number vector

The intuition that should be gathered from (25) is that essentially the eigen-
values Λk act as a weighting on the energy contained in various Fourier modes.
The larger the wave number, the smaller the weighting. Therefore, if the en-
ergy of a scalar density field is concentrated in small scale(high wave-number)
Fourier modes, its Mix-Norm will be very small. In contrast, the L2 norm is
insensitive to the particular Fourier modes within which energy is concentrated
due to Parseval’s Theorem. The formulation in (25) not only facilitates analysis,
but also makes the numerical computation of the Mix-Norm for a given field
very efficient via FFT software.

2.4.1 Effects of a weighting function on the Mix-Operator

If we have a weighting function w : Tn × (0, 1) → < with w(p, s) ≥ 0, to define
the weighted Mix-Norm Φw(c), as described before, we can define the linear
operator [D(s)]w as follows:
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[D(s)]wc(p) =

∫
x∈B(p,s)

c(x)µ(dx)

V olB(s)
.
√

w(p, s). (31)

Then the Mix-Operator [M ]w is defined as

[M ]w =
∫ 1

0

[D(s)]∗w[D(s)]wµ(ds). (32)

If the weighting function is just a function of the scale variable (i.e., w(p,
s) = w(s)), then the Fourier basis functions are still the eigenfunctions of
the Mix-Operator [M ]w. This is because the spatial invariance property of
the Mix-Operator without the weighting function is retained. By doing the
same calulation as in (24), we get the correponding eigenvalues to be Λk =∫ 1

0
w(s)K2

n(s,k)µ(ds). When the weighting function depends on the space vari-
able p, [M ]w is no more spatially invariant and therefore the Fourier basis
functions are not necessarily eigenfunctions any more. This can also be inferred
from the fact that the calculation in (24) does not follow through anymore.

3 Applications of the Mix-Norm

3.1 The Mix-Norm and weak convergence

To rigorously justify the use of the Mix-Norm as a measure for mixing, we need
to use the concept of weak convergence. For a more detailed discussion on the
relevance of weak convergence to mixing, refer to [10].

Definition 3.1. A sequence of functions {cm}, cm ∈ L2
T n is weakly convergent

to c ∈ L2
T n if

lim
m→∞

〈cm, g〉 = 〈c, g〉 for all g ∈ L2
T n . (33)

Theorem 3.1. A sequence of functions {cm}, cm ∈ L2
T n which is bounded in

the L2 norm is weakly convergent to c ∈ L2
T n if and only if

lim
m→∞

Φ(cm − c) = 0. (34)

Proof. First, assume that {cm} converges weakly to c. We need to show that
limm→∞ Φ(cm − c) = 0. By assumption, limm→∞〈cm, g〉 = 〈c, g〉 for any g ∈
L2

T n . In particular, limm→∞〈cm, χB(p,s)〉 = 〈c, χB(p,s)〉 for all s ∈ (0, 1) and
p ∈ Tn. Therefore

lim
m→∞

d(cm − c,p, s) = lim
m→∞

〈cm − c, χB(p,s)〉
V olB(s)

= lim
m→∞

〈cm, χB(p,s)〉 − 〈c, χB(p,s)〉
V olB(s)

= 0
(35)
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for all s ∈ (0, 1) and p ∈ Tn. Therefore

lim
m→∞

φ2(cm − c, s) = lim
m→∞

∫

T n

[d(cm − c,p, s)]2 µ(dp)

=
∫

T n

lim
m→∞

[d(cm − c,p, s)]2 µ(dp) = 0
(36)

for all s ∈ (0, 1). Now

lim
m→∞

Φ2(cm − c, s) = lim
m→∞

∫ 1

0

φ2(cm − c, s)µ(ds)

=
∫ 1

0

lim
m→∞

φ2(cm − c, s)µ(ds) = 0.

(37)

The passage of the limit under the integral sign in both of the above equations is
possible due to the boundedness and the pointwise convergence of the respective
integrands. Its an application of Lebesgue’s dominated convergence theorem.

Now, assume that limm→∞ Φ(cm − c) = 0. This implies that

lim
m→∞

∫ 1

0

∫

T n

d2(cm − c,p, s)µ(dp)µ(ds) = 0. (38)

It follows that for almost every (p, s) ∈ Tn× (0, 1), limm→∞ d(cm− c,p, s) = 0.
i.e.,

lim
m→∞

〈cm, χB(p,s)〉 = 〈c, χB(p,s)〉 for almost every (p, s) ∈ Tn × (0, 1). (39)

Therefore, the set of functions

K = {χB(p,s) : lim
m→∞

d(cm − c,p, s) = 0} (40)

is linearly dense in L2
T n . Since {cm} is bounded in the L2 norm, it follows that

limm→∞〈cm, g〉 = 〈c, g〉 for any g ∈ L2
T n . Thus {cm} converges weakly to c.

For example, the sequence of functions {cm = sin(mπx)} on S1 converges
weakly to zero. Therefore limm→∞ Φ(cm) = 0 and limm→∞[M ]cm = 0. This is
also clear from the fact that limm→∞ Λm = 0.

3.2 Mixing by discrete dynamical systems

In this section, we explain how the Mix-Norm is able to capture the mixing
effectiveness of discrete dynamical systems. Of course, all the discussion here
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extends easily to continuous-time systems. Roughly speaking, a dynamical sys-
tem can be considered to be mixing if every portion of the phase space gets
spread uniformly throughout the phase space under the action of the dynamical
system. If a scalar density field is being transported by a volume-preserving
dynamical system, it can be said to be mixing if the mean of the evolving scalar
field in all subsets of the phase space becomes closer and closer to the mean of
the scalar field over the entire phase space. These were the ideas behind the
formulation of the Mix-Norm. Here we connect all of these concepts. In addi-
tion, we consider particular discrete dynamical systems on the 2-torus and study
their mixing properties using the Mix-Norm. First, we summarize some defini-
tions concerning discrete dynamical systems and mixing. For a more detailed
exposition, refer to [10], [2] or [14].

Definition 3.2. Let (X,A, µ) be a measure space. If S : X → X is a non-
singular transformation, the unique operator [P ] : L2

X → L2
X defined by (41) is

called the Frobenius-Perron operator corresponding to S.
∫

A

[P ]c(x)µ(dx) =
∫

S−1(A)

c(x)µ(dx), for A ∈ A and c ∈ L2
X . (41)

The Frobenius-Perron operator [P ] is a linear operator that expresses how
a scalar density field on the domain evolves with time when advected by a
mapping S on the domain. For invertible measure-preserving transformations
the Frobenius-Perron operator reduces to (42):

[P ]c(x) = c(S−1(x)). (42)

Definition 3.3. Let (X,A, µ) be a normalized measure space and S : X → X
be a measure-preserving transformation. S is called mixing if

lim
i→∞

µ(A ∩ S−i(B)) = µ(A)µ(B) for all A,B ∈ A (43)

Theorem 3.2. Let S : Tn → Tn be a measure-preserving transformation. Then
the following statements are equivalent

1. S is mixing;

2. The sequence of functions {[P ]ic} is weakly convergent to c̄ for all c ∈ L2
T n ;

3. limi→∞ Φ([P ]ic− c̄) = 0 for all c ∈ L2
T n ,

where c̄ = 〈c, χT n〉 is the mean of the function c over the whole phase space.

Proof. Here of course, we consider Tn to be equipped with the Lebesgue measure
and that S preserves the Lebesgue measure. For the proof on the equivalence
of statements (1) and (2), refer to [10]. The equivalence of statements (2) and
(3) follows from Theorem 3.1.
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Statements (1) and (2) help us to classify transformations as mixing or non-
mixing, but don’t give an idea of the “mixedness” of a certain scalar density field
after a finite number of iterations of the transformation. Statement (3) helps to
address this problem and serves to design optimal mixing protocols tailored to a
specific initial scalar density field. Statement (2) is also equivalently captured in
terms of the so-called correlation function. For two functions f and g (referred
to as observables), the correlation function is defined as

ϕi(f, g) =

∣∣∣∣∣∣

∫

T n

g(x).f(S−i(x))µ(dx)−
∫

T n

g(x)µ(dx)
∫

T n

f(x)µ(dx)

∣∣∣∣∣∣
(44)

If the map S is mixing, then the correlation function for any two observables
must decay to zero. The rate of decay of correlations is considered to be a
inidicator of the rate of mixing and their behaviour for various classes of map-
pings is an active research topic in dynamical systems theory. In this paper, we
propose that one needs to study only the rate of decay of the Mix-Variance for
a particular initial scalar field to study how efficiently the map S is “mixing it
up”. For instance if c = χA and if Φ([P ]ic − c̄) = O(t(i)), then it implies that
for almost every sphere (i.e, for almost every (p, s) ∈ Tn × (0, 1)),

〈[P ]ic, χB(p,s)〉 − 〈c̄, χB(p,s)〉 = O(t(i)), (45)

which is equivalent to

µ(Si(A) ∩B(p, s))− µ(A)µ(B(p, s)) = O(t(i)). (46)

Here, t(i) could be an exponentially or algebraically decaying function of time
and accordingly we would say that S “mixes up” c exponentially or algebraically.
We will discuss this using some specific examples in the next subsections. Before
we proceed, we discuss the weaknesses of the approaches which were indicated
in the Introduction.

3.2.1 Comparison with Traditional Approaches

Lyapunov exponents: Let S : T 2 → T 2 be a differentiable volume-preserving
transformation on the 2-dimensional torus. Then the Lyapunov exponent for a
given point x ∈ T 2 under S is given by:

λ(x) = lim
n→∞

1
n

log‖DxSn(x)‖ (47)

where DxSn(x) is the Jacobian of the nth iterate of the point x under S. Then
the so-called Kolmogorov-Sinai entropy corresponding to the transformation S
is given by

h(S) =
∫

T 2
λ(x)µ(dx). (48)
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The above formula is known as Pesin’s formula ([13], [8]). The Kolmogorov-
Sinai entropy is a measure of the disorder created by the transformation S.
The Lyapunov exponent at the point x is the maximum average logarithmic
expansion rate of an infinitesimal circle centred at x. From the point of view of
control of mixing, if there was a parameter associated with the transformation
S, then one would choose it so as to maximize the Lyapunov exponents.

To illustrate the drawback of using Lyapunov exponents when we have a
specific initial scalar field, consider the following simple example. Consider the
discrete version of a linear shear flow given by

[
x′1
x′2

]
=

[
x1 + x2

x2

]
(mod 1). (49)

A straightforward calculation would show that this map has zero Kolmogorov-
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1

Linear Shear Flow c1(x1, x2) = f(x1) c2(x1, x2) = g(x2)

Figure 2: The linear shear flow effects the two different density fields pictured
above very differently. Density fields of the form c1(x1, x2) = f(x1) get “mixed-
up” at an algebraic rate, whereas density fields of the form c2(x1, x2) = g(x2)
are invariants of the map.

Sinai entropy (i.e. zero Lyapunov exponents). But, the effects of this map
on the two initial scalar fields shown in Figure 2 are very different. It can be
shown that for initial distributions of the form c1(x1, x2) = f(x1), Φ([P ]ic1− c̄1)
will decay to zero when advected by this map, although at an algebraic rate,
whereas distrbutions of the form c2(x1, x2) = g(x2) remain invariant under this
map. This is an example of a transformation which has zero entropy, but can
“mix-up” certain initial scalar fields. This will be discussed in more detail in
a following section. Similarly, there are transformations with non-zero entropy,
but may not completely “mix-up” certain initial scalar fields. The bottomline
is that the Mix-Norm helps to address the mixing efficacy of a flow with respect
to an initial scalar field or fluid configuration whereas it is not directly possible
to do the same with information about Lyapunov exponents.
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Decay of L2 variance: The variance of a density field c given by

‖c− c̄‖22 =
∫

T 2
(c− c̄)2µ(dx) (50)

where c̄ = 〈c, χT 2〉, measures how far the density field is from being spatially
uniform or homogeneous. In the absence of diffusion, the variance of a den-
sity field being advected by an invertible volume-preserving transformation will
remain constant. This can be verified as follows:

∫

T 2
([P ]c(x)− c̄)2µ(dx) =

∫

T 2
(c(S−1(x))− c̄)2µ(dx)

=
∫

S−1(T 2)

(c(y)− c̄)2|det(S(y))|µ(dy)

=
∫

T 2
(c(x)− c̄)2µ(dx).

(51)

But, by Theorem 3.2, the Mix-Variance of the advected field will decay to zero
if the transformation is mixing and the rate at which the Mix-Variance decays
gives information about the mixing rate of the underlying transformation. In
any realistic physical system, there is going to be some diffusion and therefore
one might be tempted to use the variance anyway to measure mixing. But, in
a typical mixing process, there is an initial phase during which the variance
remains almost constant and after which the variance decays exponentially. It
is during this initial phase that stretching and folding of fluid elements occur
which eventually facilitate diffusion to act efficiently causing the exponential
decay of the variance. Therefore, to optimize this initial phase of stretching and
folding or “stirring” one needs some other notion of a mixing measure which
the Mix-Variance serves as. In other words, the variance fails to capture the
“stirring” effects of a mixing protocol while the Mix-Variance succeeds to do so.

3.2.2 Arnold’s Cat Map

Arnold’s Cat Map is a volume-preserving diffeomorphism on the 2-torus T 2

given by
[

x′1
x′2

]
=

[
2 1
1 1

] [
x1

x2

]
(mod 1) = M.x(mod 1). (52)

It is well known that the Cap Map is mixing in the sense described in Definition
3.3. To prove statement (2) in Theorem 3.2, one needs to prove it only for
every element in a complete basis of functions (eg: Fourier basis functions).
The Frobenius-Perron operator [P ] corresponding to this map when acting on
one of the Fourier modes is given explicitly as follows:

[P ](ei2π(k1x1+k2x2)) = ei2π((k1−k2)x1+(−k1+2k2)x2)). (53)
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Thus the resulting function is another Fourier mode with wave numbers (k1 −
k2,−k1+2k2). We can think of a mapping between the wave numbers as follows:

[
k′1
k′2

]
=

[
1 −1
−1 2

] [
k1

k2

]
= M−1.k. (54)

The matrix M−1 has eigenvalues σ1 = (3 − √5)/2 < 1, σ2 = (3 +
√

5)/2 > 1,
and corresponding eigendirections (1, (

√
5 − 1)/2), (−1, (

√
5 + 1)/2). Since the

slope of the stable eigendirection is irrational and the wave numbers (k1, k2)
take only integer values, the magnitudes of the wave numbers (k1, k2) increase
exponentially under the mapping in (54), for any initial set of wave num-
bers. This gives an immediate proof that the Cat Map is actually mixing.
Moreover, when starting with a Fourier mode with wave numbers (q1, q2), the
magnitude of the wave numbers of the evolving distibution after i iterations
are such that (|k1| = O(σi

2), |k2| = O(σi
2)). In addition, since we know that

Φ2(ei2π(k1x1+k2x2)) ≈ 1/(1 + 4π2(k2
1 + k2

2))
1
2 , the Mix-Variance at the i-th it-

eration, Φ2
i = O(σ−i

2 ). Thus, the Cat Map exponentially mixes each one of
the Fourier modes and therefore any bounded linear combination of the Fourier
modes.

3.2.3 Mixing properties of the Standard Map

We consider the Standard Map S : T 2 → T 2 in the following form:
[

x′1
x′2

]
=

[
x1 + x2 + εsin(2πx1)

x2 + εsin(2πx1)

]
(mod 1) = S(x). (55)

The above map is a volume-preserving diffeomorphism on the 2-torus and was
first introduced by Chirikov [18]. Its behaviour changes with the value of ε. For
values of ε close to one, it has been observed to have chaotic properties. Here
we study its mixing properties. For the case when ε = 0, we get a mapping
describing the evolution of the wave numbers just as for the Cat Map, given by

[
k′1
k′2

]
=

[
1 0
−1 1

] [
k1

k2

]
= H.k. (56)

The matrix H is degenerate, meaning that it has only one eigenvalue (σ = 1)
and one eigendirection (k = (0, 1)). Therefore, Fourier modes with wave number
k = (0, q2) will be fixed points for the Frobenius-Perron operator of the Standard
Map when ε = 0. Also, when starting with a Fourier mode with wave numbers
(q1, q2) where q1 6= 0, the wave numbers of the evolving distibution after i
iterations are given exactly as (k1 = q1, k2 = q2 − i.q1). Coupled with the fact
that Φ2(ei2π(k1x1+k2x2)) ≈ 1/(1 + 4π2(k2

1 + k2
2))

1
2 , we can approximate the Mix-

Variance at the i-th iteration as Φ2
i ≈ 1/(1 + 4π2(q2

1 + (q2− i.q1)2))
1
2 = O(i−1).

Therefore, when q1 6= 0, the Integrable Standard Map algebraically “mixes up”
the density. The map can be said to be mixing on the orthogonal complement
of the space of functions which depend only on the variable x2 and the map is
not even ergodic.
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When the perturbation ε 6= 0, energy from one Fourier mode is transferred
to more than one Fourier mode, thereby making any kind of analysis harder.
We resort to numerics to study the mixing properties of the Standard Map
for various ε. The computational domain is the square [0, 1] × [0, 1] whose
sides are being identified (upper with lower, left with right).We discretize the
computational domain and let the grid points be (xi

1, x
j
2) where xi

1 = i.dx, xj
2 =

j.dy for i = 0, 1, .., (Nx − 1) and j = 0, 1, .., (Ny − 1) and where dx = 1/Nx and
dy = 1/Ny. The inverse of the Standard Map is given explicitly as

[
x1

x2

]
=

[
x′1 − x′2

x′2 − εsin(2π(x′1 − x′2))

]
(mod 1). = S−1(x). (57)

At the n-th iterate, for each grid point we compute S−n(xi
1, x

j
2) using (57).

Therefore, the discrete version of the Frobenius-Perron operator can be written
as

P̂nc(xi
1, x

j
2) = c0(S−n(xi

1, x
j
2)1, S

−n(xi
1, x

j
2)2) (58)

where c0 is the initial density field. At each iteration, the Fourier coeffi-
cients of the density field were computed using FFT software [7], and the
Mix-Variance was computed using (25). Figure 3 shows the decay of the Mix-
Variance with time for various values of ε when starting with an initial density
field of c0(x1, x2) = cos(2πx2). When ε = 0.0, there is no mixing and as the
value of ε is gradually increased, the mixing gets better. Figure 4, shows a plot
of φ(c − c̄, s) versus s corresponding to the evolved density field after 10 and
100 iterations and for various values of ε. Figure 5 shows the contour plot of
the evolved density field after 5 iterations for ε = 0.4 and 0.8.

Figure 6 shows the decay of the Mix-Variance with time when starting with
an initial density field of c0(x1, x2) = cos(2πx1). When ε = 0.0, there is an
algebraic decay of the Mix-Variance as can be observed from the log-log plot
in Figure 6. In this case, when ε is increased, there is actually a decrease in
the mixing efficiency as can be seen for ε = 0.2, 0.4 and 0.6. Figures 7 and 8
give a closer look at this behaviour. Figure 7 shows a plot of φ(c− c̄, s) versus
s corresponding to the evolved density field after 10 and 100 iterations. The
curve corresponding to ε = 0.0 indicates good “mixedness” which is due to
the algebraic decay of the Mix-Variance as described earlier. From ε = 0.0 to
ε = 0.2, there is a sharp jump from a well “mixed” field to a badly “mixed”
field. For values of ε beyond 0.2, there is again a gradual improvement in the
mixing efficiency.

Figure 8 shows the corresponding plots for values of ε ranging from 0.0 to 0.22
and then 0.24 to 0.4. One can observe a gradual decrease in the “mixedness” of
the density field as ε increases from 0.0 to 0.22. Then, as ε increases from 0.24
to 0.4, there is a gradual increase in the “mixedness” of the density field. One
could attribute the initial decline in the mixing performance to the formation of
regular islands which prevent the continuous shearing of “fluid” which happenes
for the case when ε = 0.0. This is validated by the contour plots in Figure 9
which show the evolved density field after 10 iterations for ε = 0.0, 0.1 and 0.2.
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Figure 3: Mixing properties of the Standard Map. Decay of Mix-Variance with
respect to iteration for different values of ε when starting with an initial density
field of c0(x1, x2) = cos(2πx2).
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Figure 4: Plot of φ(c, s) versus s for the evolved density fields after 10 and 100
iterations of the Standard Map and for various values of ε, when starting with
an initial density field of c0(x1, x2) = cos(2πx2).
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Figure 5: Contour plot of density field after 5 iterations of the Standard Map
for ε = 0.4 and ε = 0.8, when starting with an initial density field of c0(x1, x2) =
cos(2πx2).
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A precise mathematical explanation for this behaviour is beyond the scope of
this paper.

3.3 Mixing by diffusion

Consider the diffusion equation on Tn with a diffusivity rate D > 0.

∂c

∂t
= D

n∑

i=1

∂2c

∂x2
i

= D∆c. (59)

First, note that the Mix-Operator [M ] and the Laplacian operator ∆ have the
same eigenfunctions (i.e., ei2π(k.x)). A Fourier mode with wavenumber k decays
exponentially at a rate of 4π2‖k‖2 under pure diffusion. Therefore, if one were
to arrange the Fourier modes in descending order of their amplitude when acted
upon by pure diffusion over a unit time interval, one would get the same order
as when arranging them in descending order of their eigenvalues when acted
upon by the Mix-Operator.

Now, assume an initial density field c(x, 0) on Tn, whose average is given by

c̄ =
∫

x∈T n

c(x, 0)dx. (60)

Let the distribution at time t be c(x, t) ≥ 0. In work by Ashwin et al. [3] the
L2 and L∞ norms are used to measure mixing. Also, they define the time to
95% mixing, t95 to be the smallest t > 0 such that

‖c(x, t)− c̄‖α ≤ 0.05 (61)

where α refers to the norm used. Note that t95 is a function of the initial
distribution, the norm chosen and the mixing protocol. Assume that c(x, 0) has
a Fourier expansion

c(x, 0) =
∑

k∈Zn

ake2πi(k.x), (62)

where ak =
∫

c(x, 0)e−2πi(k.x)dx. The distribution at time t is given by

c(x, t) =
∑

k∈Zn

ake2πi(k.x)e−4π2‖k‖2Dt. (63)

An upper bound for t95 corresponding to the L2 norm can be computed as in
[3] to be

t95 ≤ log(20‖c(x, 0)− c̄‖2)
4π2D

. (64)

Doing the same computation corresponding to the Mix-Norm we obtain
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Figure 6: Mixing properties of the Standard Map. Decay of Mix-Variance with
respect to iteration for different values of ε when starting with an initial density
field of c0(x1, x2) = cos(2πx1).
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Figure 7: Plot of φ(c, s) versus s for the density fields after 10 and 100 iterations
of the Standard Map and for various values of ε, when starting with an initial
density field of c0(x1, x2) = cos(2πx1).
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Figure 9: Contour plot of density field after 10 iterations of the Standard Map
for ε = 0.0, 0.1 and 0.2, when starting with an initial density field of c0(x1, x2) =
cos(2πx1).
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Φ2(c(x, t)− c̄) =
∑

k 6=0

Λk|ak|2e−8π2‖k‖2Dt

≤ e−8π2Dt
∑

k 6=0

Λk|ak|2 = e−8π2DtΦ2(c(x, 0)− c̄).
(65)

Thus an upper bound for t95 corresponding to the Mix-Norm can be found as

t95 ≤ log(20Φ(c(x, 0)− c̄))
4π2D

. (66)

The difference in the estimates obtained for t95 corresponding to the Mix-Norm
compared to that in (64) can be demonstrated as follows. Consider initial
distributions of the form c(x, 0) = cm = 1+ sin(2mπx) on the circle. ‖cm− 1‖2
is a constant for all m whereas Φ(cm − 1) is small for large m. According to
(66), diffusion will achieve almost perfect mixing in much less time for large
m, whereas the estimate in (64) does not depend on the magnitude of m. In
general, if the initial distribution has strong components in high wave number
Fourier modes, then the diffusion process will achieve mixing very quickly, which
is reflected in the estimate obtained using the Mix-Norm. However, note that
(66) does not directly say anything about the decay of the L2 variance. A more
useful estimate corresponding to the L2 norm may probably be obtained using
a combination of the Mix-Variance and L2 variance of the initial distribution.
If the ratio between Φ(cm−1) and ‖cm−1‖2 is very small, it necessarily implies
that there exist strong components of high wave number Fourier modes in the
initial distribution. The smaller this ratio, the faster the diffusion process will
be. Unfortunately, it is not straightforward to derive any estimates for t95
corresponding to the L2 norm just from this ratio.

4 Conclusions

A multiscale measure for quantifying mixing which is particularly useful for
studying mixing of chaotic flows and maps has been presented. Its properties
as a pseudo-norm induced by an inner product and its connection with the
Fourier spectrum have been discussed. Its validity as a measure for mixing has
been rigorously justified through the notion of weak convergence. Although we
derived the mixing rates for a couple of classical examples and performed some
numerical experiments for the Standard Map, the real usefulness of this measure
is to the problem of designing mixing protocols tailored to mix a specific initial
density field. This problem can be framed as an optimal control problem and
is being currently pursued. Such a notion of a measure for mixing can also be
very useful for optimizing the design of mixing devices. This new measure has
been successfully used for optimization of mixing in microdevices [11] and has
provided valuable insights.

In an interesting paper [15], Protas et al. have studied issues of optimal
flow control in spaces other than L2. Since we have shown equivalence of the
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Mix-Norm to the H− 1
2 norm, it is natural to pursue optimal control problems in

this context. The equivalence of these two norms raises the following question -
why not just use the H− 1

2 norm instead of the Mix-Norm? We think that it is
perfectly fine to use the H− 1

2 norm or for that matter any Sobolev space norm of
negative index instead of the Mix-Norm. But, we wish to convey in this paper
that by defining a norm based on the intuitive notion of averaging function
values over spherical sets and by weighing the average values over spherical sets
of all radii equally, we get a norm equivalent to the H− 1

2 norm. Such an intuition
did not exist before and even Sobolev space norms of negative index have not
been usefully applied for control and optimization of mixing. Note that by
weighing average values over spheres of different radii differently, we would not
necessarily have equivalence with the H− 1

2 norm. Also note that, by defining
the Mix-Norm based on averaging over sets of different shapes (say rectangular
sets), we would not necessarily have equivalence with any Sobolev space norm.
Future work includes the generalization of the Mix-Norm to arbitrary domains
and also its application it as a means of comparing the statistical properties of
dynamical systems.

A Proof for triangular inequality property of
the Mix-Norm

Proof. Let c1, c2 : Tn → <. We need to prove that Φ(c1 + c2) ≤ Φ(c1) + Φ(c2).
Clearly,

d(c1 + c2,p, s) = d(c1,p, s) + d(c2,p, s). (67)

Now,

φ2(c1 + c1, s) =
∫

T n

d2(c1 + c2,p, s)µ(dp)

=
∫

T n

[d(c1,p, s) + d(c2,p, s)]2 µ(dp)

=
∫

T n

[
d2(c1,p, s) + d2(c2,p, s) + 2d(c1,p, s)d(c2,p, s)

]
µ(dp)

= φ2(c1, s) + φ2(c2, s) + 2
∫

T n

[d(c1,p, s)d(c2,p, s)] µ(dp).

(68)

Applying the Cauchy-Schwarz inequality to the above equation,
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φ2(c1 + c2, s) ≤ φ2(c1, s) + φ2(c2, s) + 2

√√√√√



∫

T n

d2(c1,p, s)µ(dp)







∫

T n

d2(c2,p, s)µ(dp)




= φ2(c1, s) + φ2(c2, s) + 2φ(c1, s)φ(c2, s).
(69)

It follows that

Φ2(c1 + c2) ≤ Φ2(c1) + Φ2(c2) +
∫ 1

0

2φ(c1, s)φ(c2, s)µ(ds). (70)

Applying the Cauchy-Schwarz inequality once again, we get

Φ2(c1 + c2) ≤ Φ2(c1) + Φ2(c2) + 2

√(∫ 1

0

φ2(c1, s)µ(ds)
)(∫ 1

0

φ2(c2, s)µ(ds)
)

= Φ2(c1) + Φ2(c2) + 2Φ(c1)Φ(c2)

= (Φ(c1) + Φ(c2))2.
(71)

B Proof for Equations (4) and (5)

Consider the delta sequence

δs(x) =





0 for x < − s
2

1
s for − s

2 ≤ x ≤ s
2

0 for x > s
2

(72)

Then for c ∈ L2
S1 , we have

d(c, p, s) =
∫ 1

0

c(x)δs(p− x)µ(dx) = c ∗ δs(p) (73)

i.e., the function d(c, ., s) is the convolution of c and δs. For continuous functions
c, since

lim
s→0

d(c, p, s) = lim
s→0

c ∗ δs(p) = c ∗ δ(p) = c(p), (74)

it is straightforward to see that

lim
s→0

φ(c, s) = lim
s→0

(∫ 1

0

d2(c, p, s)µ(dp)
) 1

2

=
(∫ 1

0

lim
s→0

d2(c, p, s)µ(dp)
) 1

2

=
(∫ 1

0

c2(p)µ(dp)
) 1

2

.

(75)
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The proof for any c ∈ L2
S1 is as follows. Let ĉ, d̂(c, ., s) and δ̂s be the Fourier

transforms of c, d(c, ., s) and δs respectively. i.e.,

ĉ(k) =
∫ 1

0

c(x)e−i2πkxµ(dx). (76)

Then, we have
d̂(c, k, s) = ĉ(k).δ̂s(k) (77)

Now, by Parseval’s identity
∫ 1

0

d2(c, p, s)µ(dp) =
∑

k∈Z
d̂2(c, k, s) =

∑

k∈Z
ĉ2(k).δ̂s

2
(k) (78)

Since,

lim
s→0

δ̂s(k) =
∫ 1

0

δ(x)e−i2πkxµ(dx) = 1, (79)

we have

lim
s→0

∫ 1

0

d2(c, p, s)µ(dp) =
∑

k∈Z
ĉ2(k) lim

s→0
δ̂s

2
(k) =

∑

k∈Z
ĉ2(k) =

∫ 1

0

c2(x)µ(dx).

(80)
The proof for Equation 5 follows easily from noting that

lim
s→1

d(c, p, s) =

∫ p+1/2

p−1/2
c(x)µ(dx)

1
=

∫ 1

0

c(x)µ(dx) = c̄. (81)

Therefore

lim
s→1

φ(c, s) = lim
s→1

(∫ 1

0

d2(c, p, s)µ(dp)
) 1

2

=
(∫ 1

0

lim
s→1

d2(c, p, s)µ(dp)
) 1

2

=
(∫ 1

0

(c̄)2µ(dp)
) 1

2

= |c̄| =
∣∣∣∣
∫ 1

0

c(x)µ(dx)
∣∣∣∣ .

(82)

C Derivation for the eigenvalues of the Mix-
Operator

The eigenfunctions of the Laplacian operator or solutions of the Helmholtz equa-
tion

∆f + λf = 0, (83)

satisfy the following mean value property over spherical surfaces [5].
∫

x∈S(p,r)

f(x)dx

Area(S(p, r))
=

Γ(n
2 )J (n−2)

2
(r
√

λ)

(r
√

λ/2)
(n−2)

2

f(p), (84)
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where S(p, r) = {x : ‖x − p‖2 = r} and Area(S(p, r)) = Surface area of the
n-sphere. The Fourier basis functions {ck(x) = ei2πk.x} being solutions of the
Helmholtz equation on the torus domain for λ = 4π2‖k‖2, we have

∫
x∈S(p,r)

ck(x)dx

Area(S(p, r))
=

Γ(n
2 )J (n−2)

2
(r2π‖k‖)

(rπ‖k‖) (n−2)
2

ck(p) (85)

This implies a mean value theorem for the interior of the sphere thereby giving

[D(s)]ck(p) =
1

V olB(s)

s/2∫

0

Γ(n
2 )J (n−2)

2
(r2π‖k‖)ei2π(k.p)Area(S(p, r))

(rπ‖k‖) (n−2)
2

dr (86)

where V olB(s) = Volume of the n-dimensional sphere with radius s/2. Substi-
tuting the formula for Area(S(p, r)) = 2π

n
2 r(n−1)

Γ( n
2 ) , we get

[D(s)]ck(p) =
ei2π(k.p)

V olB(s)

s/2∫

0

J (n−2)
2

(r2π‖k‖)2π
n
2 r(n−1)

(rπ‖k‖) (n−2)
2

dr (87)

Multiplying and dividing the integrand by (r2π‖k‖)n
2 , we get

[D(s)]ck(p =
ei2π(k.p)

V olB(s)(2π)
(n−2)

2 (‖k‖)(n−1)

s/2∫

0

J (n−2)
2

(r2π‖k‖)(r2π‖k‖)n
2 dr

=
ei2π(k.p)

V olB(s)(2π)
n
2 (‖k‖)n

sπ‖k‖∫

0

J (n−2)
2

(y)y
n
2 dy.

(88)

Using the derivative identity d
dx [xmJm(x)] = xmJ(m−1)(x) and using the for-

mula for V olB(s) = 2πn/2

Γ( n
2 )

(s/2)n

n we get

[D(s)]ck(p) =
ei2π(k.p)

V olB(s)(2π)
n
2 (‖k‖)n

[
(sπ‖k‖)n

2 Jn
2
(sπ‖k‖)]

=

(
2

(n−2)
2 nΓ(n

2 )Jn
2
(sπ‖k‖)

(sπ‖k‖)n
2

)
ei2πk.p

= Kn(s,k)ei2πk.p.

(89)

D Proof for the Inequality in (27)

For k 6= 0, the following holds true:
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Λk =
∫ 1

0

2n−2n2Γ2(n
2 )J2

n
2
(sπ‖k‖)

(sπ‖k‖)n
ds =

2n−2n2Γ2(n
2 )

‖k‖π
∫ ‖k‖π

0

(
Jn

2
(y)

yn/2

)2

dy

≤ 2n−1n2Γ2(n
2 )

2π‖k‖
∫ ∞

0

(
Jn

2
(y)

yn/2

)2

dy =
γn

2π‖k‖ ,

(90)

where

γn = 2n−1n2Γ2
(n

2

) ∫ ∞

0

(
Jn

2
(y)

yn/2

)2

dy. (91)

Now, for any a ≥ 2, (in fact for any a ≥
√(

1 + 1
4π2

)
), the following holds true:

Λk ≤ γn

2π‖k‖ =
aγn

((a2π‖k‖)2) 1
2
≤ aγn

(1 + (2π‖k‖)2) 1
2
. (92)

Therefore, by choosing a sufficiently large, we can make µ2 = aγn ≥ Λ0 = 1.
Therefore,

Λk ≤ µ2

(1 + (2π‖k‖)2) 1
2

for all k. (93)

Again, for k 6= 0 and 0 < ε < π, the following holds true

Λk =
2n−2n2Γ2(n

2 )
‖k‖π

∫ ‖k‖π

0

(
Jn

2
(y)

yn/2

)2

dy ≥ 2n−1n2Γ2(n
2 )

2π‖k‖
∫ ε

0

(
Jn

2
(y)

yn/2

)2

dy

=
βn(ε)
2π‖k‖ ≥

βn(ε)
(1 + (2π‖k‖)2) 1

2
.

(94)

where

βn(ε) = 2n−1n2Γ2
(n

2

)∫ ε

0

(
Jn

2
(y)

yn/2

)2

dy. (95)

Clearly, we can choose ε small enough so that µ1 = βn(ε) ≤ Λ0 = 1. Therefore,

Λk ≥ µ1

(1 + (2π‖k‖)2) 1
2

for all k. (96)
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