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!BSTRACT
/BJECTIVE� "OTH ARTIFICIAL AND BIOLOGICAL CONTROLLERS EXPERIENCE ERRORS DURING LEARNING THAT ARE
PROBABILISTICALLY DISTRIBUTED� 7E DEVELOP A FRAMEWORK FOR MODELING DISTRIBUTIONS OF ERRORS AND
RELATING DEVIATIONS IN THESE DISTRIBUTIONS TO NEURAL ACTIVITY� !PPROACH� 4HE BIOLOGICAL SYSTEM WE
CONSIDER IS A TASK WHERE HUMAN SUBJECTS ARE REQUIRED TO LEARN TO MINIMIZE THE ROLL OF AN INVERTED
4SHAPED OBJECT WITH AN UNBALANCED WEIGHT �I�E� ONE SIDE OF THE OBJECT IS HEAVIER THAN THE OTHER
SIDE	 DURING LIFT� 7E ALSO COLLECT "/,$ ACTIVITY DURING THIS PROCESS� &OR OUR EXPERIMENTAL SETUP� WE
DEFINE THE STATE OF THE SYSTEM TO BE THE MAXIMUM MAGNITUDE ROLL OF THE OBJECT AFTER LIFT ONSET AND
GIVE SUBJECTS THE GOAL OF ACHIEVING THE ZERO STATE�-AIN 2ESULTS� 7E DERIVE A MODEL FOR THIS PROBLEM
FROM A VARIANT OF 4EMPORAL $IFFERENCE ,EARNING� 7E THEN COMBINE THIS MODEL WITH $ISTRIBUTIONAL
2EINFORCEMENT ,EARNING �$2,	� A FRAMEWORK THAT INVOLVES DEFINING A VALUE DISTRIBUTION BY TREATING
THE REWARD AS STOCHASTIC� 4HIS MODEL TRANSFORMS THE GOAL OF THE CONTROLLER FROM ACHIEVING A TARGET
STATE� TO ACHIEVING A DISTRIBUTION OVER DISTANCES FROM THE TARGET STATE� 7E CALL IT A $ISTRIBUTIONAL
4EMPORAL $IFFERENCE -ODEL �$4$-	� 4HE $4$- ALLOWS US TO MODEL ERRORS IN UNSUCCESSFULLY
MINIMIZING OBJECT ROLL USING DEVIATIONS IN THE VALUE DISTRIBUTION WHEN THE CENTER OF MASS OF THE
UNBALANCED OBJECT IS CHANGED� 7E COMPUTE DEVIATIONS IN GLOBAL NEURAL ACTIVITY AND SHOW THAT THEY
VARY CONTINUOUSLY WITH DEVIATIONS IN THE VALUE DISTRIBUTION� $IFFERENT ASPECTS MIGHT CONTRIBUTE TO
THIS GLOBAL SHIFT OR SIGNAL DIFFERENCE� INCLUDING A DIFFERENCE IN GRASP AND LIFT FORCE AT LIFT ONSET� AS WELL
AS SENSORY FEEDBACK OF ERROR�ROLL AFTER LIFT ONSET� 7E PREDICT THAT THERE EXISTS A COORDINATED� GLOBAL
RESPONSE TO ERRORS THAT INCORPORATES ALL OF THIS INFORMATION� WHICH IS ENCODING THE $4$- OBJECTIVE
AND USED ON SUBSEQUENT TRIALS ENABLING SUCCESS� 7E VALIDATE THE UTILITY OF THE $4$- AS A MODEL FOR
BIOLOGICAL ADAPTATION BY USING IT TO ENGINEER A ROBOTIC CONTROLLER TO SOLVE A SIMILAR PROBLEM�
3IGNIFICANCE� 7E DEVELOP A NOVEL THEORETICAL FRAMEWORK AND SHOW THAT IT CAN BE USED TO MODEL A
NONTRIVIAL MOTOR LEARNING TASK� "ECAUSE THIS THEORETICAL FRAMEWORK IS CONSISTENT WITH
STATEOFTHEART REINFORCEMENT LEARNING� WE CAN ALSO USE IT TO PROGRAM A ROBOT TO PERFORM A SIMILAR
TASK� 4HESE RESULTS SUGGEST A WAY TO MODEL THE MULTIPLE SUBSYSTEMS COMPOSING GLOBAL NEURAL
ACTIVITY IN A WAY THAT TRANSFERS WELL TO ENGINEERING ARTIFICIAL INTELLIGENCE�

�� )NTRODUCTION

4HE HUMAN BRAIN IS CAPABLE OF CONTROLLING MOVEMENT
TO ACHIEVE ADAPTATION TO A CHANGING ENVIRONMENT
EXTREMELY QUICKLY� 4HIS ADAPTATION IS MUCH FASTER AND
MORE FLEXIBLE THAN CONTROLLERS ENGINEERED BY HUMANS
CAN ACHIEVE� IN PART BECAUSE OUR UNDERSTANDING OF

HOW HUMAN MOTOR CONTROL WORKS IS INCOMPLETE� 7E
ARGUE THAT METHODS THAT CAN BE APPLIED TO BOTH BIO
LOGICAL AND ARTIFICIAL SYSTEMS ARE NECESSARY IN ORDER
TO BRIDGE THIS GAP ;��=� )N PARTICULAR� ONE OF THE
GAPS IS THE LACK OF MODELS RELATING THE BEHAVIORAL
ERRORS OPTIMIZED DURING ADAPTATIONWITH NEURAL ACTIV
ITY� 3PECIFICALLY� EVEN AFTER A LARGE AMOUNT OF TRAINING�
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BEHAVIOR IS STOCHASTIC AND THE VARIABILITY OF THIS BEHA
VIOR HAS BEEN CORRELATED WITH PERFORMANCE ;��n��=�
"ECAUSE OF THE PERSISTENT VARIABILITY OF BEHAVIOR� FEED
BACK REWARDS AND ERRORS� WHICH ARE FUNCTIONS OF BEHA
VIOR� ARE PROBABILISTICALLY DISTRIBUTED� -OTOR LEARNING
WOULD THEN BEST BE FRAMED IN TERMS OF THE OPTIMIZ
ATION OF A DISTRIBUTION OF REWARDS OR ERRORS� !ND YET�
TO THE BEST OF OUR KNOWLEDGE� THERE ARE NO KNOWN
APPROACHES FOR MODELING DISTRIBUTIONS OF REWARDS
DURINGMOTOR LEARNING AND RELATING THEIR OPTIMIZATION
TO NEURAL ACTIVITY�

/NE COMMON APPROACH IS TO REDUCE THE PROB
ABILISTIC NATURE OF OBSERVED REWARDS TO A DETERM
INISTIC FUNCTION BY LOOKING AT THE EXPECTED REWARD
;��n��� ��=� 7E ARGUE IN THIS WORK THAT SUCH
APPROACHES ARE NOT A COMPLETE REPRESENTATION OF THE
LEARNING PROCESS� &OR EXAMPLE� SOME NEURAL SYSTEMS
HAVE BEEN SHOWN TO OPTIMIZE THE EXPECTED FUTURE
REWARD� BUT OTHERS MAY HAVE DIFFERENT� INDEPEND
ENT OBJECTIVES� THESE MAY INCLUDE VARIANCE REDUC
TION OR RISKAVERSE LEARNING WHICH INVOLVES OPTIM
IZING THE SIZE OF THE TAIL�S	 OF THE DISTRIBUTION OVER
FUTURE REWARDS� -OREOVER� THERE IS A GROWING BODY
OF WORK THAT SHOWS THAT THE BRAIN OPTIMIZES A -IN
IMUM &REE %NERGY �-&%	 OBJECTIVE DURING LEARNING
;�n��=� 4HIS OBJECTIVE IS EQUIVALENT TO OPTIMIZING
THE +,$IVERGENCE BETWEEN ERROR AND IDEAL PROBABIL
ITY DISTRIBUTIONS� 7E CONTRIBUTE RESULTS TO THE BODY OF
WORK ON-&% THEORY BYMODELING REWARDS AS RANDOM
VARIABLES AND PROPOSING THAT THE BRAIN IS ADAPTING BY
MINIMIZING DEVIATIONS BETWEEN ERROR AND IDEAL DIS
TRIBUTIONS OF REWARDS�

7E PRESENT BEHAVIORAL AND F-2) "/,$ DATA GEN
ERATED FROM ANALYSIS OF �� SUBJECTS� EACH INSTRUCTED
TO MINIMIZE THE ROTATION OF AN UNBALANCED OBJECT AT
AND FOLLOWING ITS LIFT� !T REGULAR INTERVALS� THE CENTER OF
MASS OF THIS OBJECT IS ROTATED ��� DEGREES ALONG ITS VER
TICAL PLANE� FORCING THE SUBJECTS TO ADAPT THEIR STRATEGY
TO LIFT THE OBJECT WHILE MINIMIZING ITS ROLL� )N THIS
WORK� WE STUDY ADAPTATION TO A CHANGING ENVIRONMENT
OVER A SERIES OF TRIALS �I�E� A SERIES OF ATTEMPTED LIFTS	�
7E DEFINE THE STATE OF THE SYSTEM TO BE THE MAXIMUM
MAGNITUDE OF THE ROLL OF THE OBJECT FOR EACH TRIAL� /UR
GOAL IS TO MODEL THE LEARNING OBJECTIVE THAT IS DRIVING
THE SYSTEM TO THE ZERO STATE �THE TARGET STATE	� ! RECENT
EXTENSION OF 4EMPORAL $IFFERENCE ,EARNING� CALLED THE
4EMPORAL $IFFERENCE -ODEL �4$-	 FRAMEWORK� SUG
GESTS A WAY TO INCORPORATE @CLOSENESS� BETWEEN THE CUR
RENT AND A TARGET STATE INTO A VALUE FUNCTION ;��=� 3PE
CIFICALLY� IF THE NEGATIVE DISTANCE FROM THE CURRENT TO
THE TARGET STATE IS USED AS THE REWARD� THEN THE VALUE
FUNCTION QUANTIFIES THE EXPECTED FUTURE PROXIMITY TO
THE TARGET STATE� 3TOCHASTICITY OF THE REWARD FUNCTION
CAN BE MODELED USING $ISTRIBUTIONAL 2EINFORCEMENT
,EARNING �$2,	� WHERE THE REWARD IS MODELED AS A
RANDOM VARIABLE� 7E COMBINE THE $2, AND 4$-
APPROACHES IN THIS WORK AND REFER TO THE COMPLETE
MODEL AS A $ISTRIBUTIONAL 4EMPORAL $IFFERENCE-ODEL
�$4$-	� $4$- REQUIRES THE ESTIMATION OF A VALUE

DISTRIBUTION� RATHER THAN A VALUE FUNCTION� WHICH INTU
ITIVELY CORRESPONDS TO THE DISTRIBUTION OVER FUTURE
DISTANCES FROM THE TARGET� 4O FIT THIS DISTRIBUTION� TEM
PORAL DIFFERENCES BETWEEN AN UPDATED VALUE DISTRIBU
TION AND A PAST ESTIMATE OF THE VALUE DISTRIBUTION ARE
USED� THIS IS IN CONTRAST TO CLASSIC 4EMPORAL $IFFERENCE
,EARNING WHICH RELIES ON COMPARISONS BETWEEN VALUE
FUNCTIONS� $ISTRIBUTIONAL TEMPORAL DIFFERENCES CAN BE
INTERPRETED AS ERROR SIGNALS AND WE SHOW IN THIS WORK
THAT THE OPTIMIZATION OF THESE ERRORS SERVES AS A GOOD
MODEL OF MOTOR ADAPTATION�

7E TREAT OUR EXPERIMENTAL SET UP AS A SHORTTIME
HORIZON PROBLEM WHERE THE VALUE DISTRIBUTION MOD
ELS DISTANCES BETWEEN THE CURRENT AND TARGET STATES AT
THE NEXT TRIAL� 7E SHOW THAT THE VALUE DISTRIBUTION
BECOMES SIGNIFICANTLY DISTORTED AFTER A CHANGE IN THE
CENTER OF MASS OF THE OBJECT� A DISTORTION WHICH IS
QUICKLY CORRECTED AFTER A FEW TRIALS� 4HIS CORRECTION
INVOLVES A SHIFT IN THE MEAN OF THE VALUE DISTRIBUTION�
IN ADDITION TO OTHER CHANGES IN THE STRUCTURE OF THE
DISTRIBUTION� INCLUDING A REDUCTION IN VARIANCE AND A
SHRINKING OF THE SIZE OF ITS TAILS� 4O FIND A NEURAL BASIS
FOR ALL OF THESE DIFFERENT CHARACTERISTICS AND POTEN
TIAL OBJECTIVES� WE LOOK AT THE GLOBAL NEURAL ACTIVITY�
7E SHOW THAT THE MAGNITUDE OF THE DISTORTION OF THE
VALUE DISTRIBUTION VARIES CONTINUOUSLY WITH THE AVER
AGE DEVIATION IN GLOBAL NEURAL ACTIVITY� SUGGESTING THAT
THE BRAIN IS OPTIMIZING THE DISTORTION IN THE VALUE DIS
TRIBUTION DURING MOTOR ADAPTATION� &URTHER� WE SHOW
THAT DEVIATIONS IN GLOBAL NEURAL ACTIVITY ARE DIRECTLY
PROPORTIONAL TO THOSE OF SENSORIMOTOR ACTIVITY� JUSTI
FYING OUR CHOICE OF REPRESENTATION�

7E FURTHER VALIDATE THE UTILITY OF THE DISTRIBU
TIONAL TEMPORAL DIFFERENCE BY USING IT TO TRAIN A
ROBOT TO PERFORM A SIMILAR TASK� THAT IS� TO LIFT AN
OBJECT WITH MINIMAL ROLL AND DO SO WHILE ADAPTING
TO CHANGES IN ITS CENTER OF MASS� 7E USE THE $4$-
TO UPDATE A MODEL OF SYSTEM DYNAMICS FOR USE IN
-ODEL 0REDICTIVE #ONTROL �-0#	� AND AS SEEN IN
HUMAN SUBJECTS� OUR OPTIMIZATION SCHEME RESULTS IN
EXPONENTIAL IMPROVEMENT OF THE MODEL� BOTH DUR
ING INITIAL TRAINING AND DURING UPDATING� 7E SHOW
THAT WITH THIS PREDICTION ERROR� THE ROBOT IS ABLE TO
QUICKLY UPDATE ITS MODEL AND MINIMIZE THE ROLL OF THE
OBJECT�

�� -ATERIALS AND-ETHODS

���� 3UMMARY
)N OUR STUDY OF MOTOR ADAPTATION� PARTICIPANTS
�. = ��	 PERFORMED AN OBJECT LIFTING TASK DURING
F-2) SCANS THAT REQUIRED THEM TO MINIMIZE THE ROTA
TION OF THE OBJECT AT AND DURING LIFT� 3UBJECTS HAD TO
ADAPT THEIR STRATEGY TO THE CHANGING OF THE OBJECT�S
CENTER OF MASS AT REGULAR INTERVALS� 0ARTICIPANTS PER
FORMED � RUNS OF �� TRIALS� WHERE EACH TRIAL REQUIRED
THEM TO USE THEIR THUMB AND INDEX FINGER TO VERTICALLY
LIFT AN INVERTED 4SHAPED OBJECT WITH AN UNBALANCED
CENTER OF MASS WHILE MINIMIZING ITS ROLL AT LIFT ONSET�

�
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%ACH TRIAL REQUIRED THE SUBJECTS TO LIFT THE OBJECT � CM
FROM A FLAT SURFACE AND SUBJECTS WERE NOTIFIED WHEN
THE MAGNITUDE OF THE ROLL OF THE OBJECT EXCEEDED �◦�
%VERY �� TRIALS� THE OBJECT WAS ROTATED BY ��� DEGREES�
REQUIRING THE SUBJECTS TO CHANGE THEIR DIGIT POSITION
ING� DIGIT LOAD FORCE� OR SOME COMBINATION OF THE TWO
TO ACHIEVE TASK SUCCESS� &OR EACH OF THE � UNCON
STRAINED RUNS� SUBJECTS WERE FREE TO CHANGE THE POS
ITIONING OF THEIR THUMB AND INDEX FINGER AT WILL� 4HE
POSITION OF THE THUMB� INDEX FINGER AND OBJECT �AND ITS
ROLL	 WAS TRACKED DURING THE COURSE OF EACH TRIAL USING
A �CAMERAMOTION TRACKING SYSTEM� 0ERFORMANCE WAS
MEASURED BY THE ABSOLUTE MAXIMUM MAGNITUDE ROLL
GENERATED WITHIN ��� MS FOLLOWING LIFT ONSET �WHEN
THE OBJECT WAS LIFTED � MM FROM THE TABLE	� 4O ALLOW
THE SUBJECTS TO FAMILIARIZE THEMSELVES WITH THE EXPER
IMENT� THE FIRST RUN OF �� TRIALS WAS ALLOCATED FOR PRAC
TICE AND NO "/,$ ACTIVITY WAS MEASURED� &OR THE
FINAL � RUNS� "/,$ ACTIVITY WAS COLLECTED FOR ALL SUB
JECTS DURING ALL TRIALS� 7HOLEBRAIN ANALYSIS WAS CON
DUCTED TO IDENTIFY BRAIN REGIONS ACTIVATED DURING ��
TIME BINS� EACH BEING ��� MS LONG� BEGINNING ��� S
BEFORE LIFT ONSET� &OR EACH BLOCK OF �� TRIALS� BLOCKS
OF CONTIGUOUS TRIALS WERE AVERAGED TO YIELD � CONDI
TIONS� PREROTATION CONDITIONS CONTAINING TRIALS �n��
��� AND �n��� A ROTATION CONDITION CONTAINING TRIAL
��� AND POSTROTATION CONDITIONS CONTAINING TRIALS ��n
��� ��n��� AND ��n��� 4HIS WAS DONE TO SMOOTH OVER
SHORTTIME VARIATION BETWEEN TRIALS� "ETA VALUES FROM
WHOLE BRAIN ANALYSIS WERE EXTRACTED USING THE *UELICH
ATLAS� 4HE VECTOR OF ALL BETA VALUES IS WHAT WE REFER TO
AS @GLOBAL NEURAL ACTIVITY� IN THIS WORK�

���� 0ARTICIPANTS
4WENTY HEALTHY SUBJECTS PARTICIPATED IN THIS STUDY
�MEDIAN AGE� �� YEARS� RANGE� ��n��� ��WOMEN	� 4HEY
WERE RIGHTHANDED AND HAD NORMAL OR CORRECT TO NOR
MAL VISION� 7E EXCLUDED FOUR SUBJECTS AS A RESULT OF
EQUIPMENT FAILURE �N= �	 ANDNOT FINISHING THE EXPER
IMENT �N= �	� 3UBJECTS GAVE WRITTEN INFORMED CON
SENT AND ALL STUDY PROCEDURES WERE APPROVED BY THE
(UMAN 3UBJECTS #OMMITTEE� /FFICE OF 2ESEARCH� 5NI
VERSITY OF #ALIFORNIAn3ANTA "ARBARA�

���� -ATERIALS� $ESIGN� AND 0ROCEDURE
3UBJECTS WERE IN SUPINE POSITION IN THE SCANNER�
%XCESSIVE HEAD AND BODY MOTION WAS MINIMIZED
WITH FIRM CUSHION PADDING OF THE HEAD� NECK� AND
SHOULDERS� 3ANDBAGS UNDER THE UPPER RIGHT ARM MIN
IMIZED UPPER LIMB MOVEMENT� 4� AND 4�∗WEIGHTED
SCANS WERE COLLECTED FOLLOWED BY "/,$ MEASURE
MENTS WHILE SUBJECTS MANIPULATED A SYMMETRICALLY
SHAPED OBJECT WITH A HIDDEN ASYMMETRIC MASS DISTRI
BUTION WITH THE AIM OF PREVENTING OBJECT ROLL�

3PECIFICATIONS OF THE CUSTOMMADE INVERTED 4
SHAPED OBJECT WITH CONSTRAINED AND UNCONSTRAINED
GRASP SURFACES ALONG ITS VERTICAL AXIS CAN BE FOUND IN
;�=� )N SHORT� THE OBJECT HAD A HORIZONTAL BASE AND
A VERTICAL 0LEXIGLASS COLUMN� /N EITHER SIDE OF THE

VERTICAL COLUMN WERE GRIP SURFACES THAT WERE EITHER
CIRCULAR �FOR CONSTRAINED CONTACT POINTS	 OR RECTAN
GULAR �FOR UNCONSTRAINED CONTACT POINTS	 IN SHAPE�
! BRASS BLOCK� CONCEALED BY COVERS� WAS POSITIONED
ON THE HORIZONTAL BASE ON EITHER SIDE OF THE VERTICAL
COLUMN� CREATING AN ASYMMETRIC MASS DISTRIBUTION
�OBJECT TORQUE = ��� .EWTON MILLIMETER �.MM		�
4HE TOTAL MASS OF THE OBJECT WAS ��� G�

4HE OBJECT WAS PLACED AT ARM�S LENGTH ON A TABLE
THAT WAS PLACED OVER THE HIPS OF THE SUBJECT� 4HE OBJECT
START POSITION WAS ROTATED IN A COUNTERCLOCKWISE DIR
ECTION AT A ��◦ OFFSET FROM THE EDGE OF THE TABLE� 4HIS
POSITION MINIMIZED BIOMECHANICAL CONSTRAINTS THAT
INFLUENCE OBJECT ROLL �THE WRIST WOULD BE STIFFENED
MOREWHEN PICKING UP THE OBJECT WHEN FACING FORWARD
RATHER THAN ANGLED� THE FORMER WOULD MINIMIZE THE
OBJECT ROLLING IN A CLOCKWISE DIRECTION	� 3UBJECTS WERE
ASKED TO PRESS A BUTTON THAT WAS IN A FIXED POSITION
TOWARD THE RIGHT OF THE OBJECT BETWEEN TRIALS� ! MIR
ROR ATTACHED TO THE HEAD COIL GAVE CONTINUOUS VIEWING
OF THE OBJECT AND THE SUBJECT�S HAND�

!NATOMICAL AND F-2) DATA WERE COLLECTED USING
A 3IEMENS � 4 -AGNETOM 0RISMA &IT ���CHANNEL
PHASEDARRAY HEAD COIL	� (IGHRESOLUTION ���� MM
ISOTROPIC 4�WEIGHTED �42= ���� MS� 4%= ���� MS�
&! = �◦� &/6 = ��� MM	 AND 4�∗WEIGHTED �42
= ���� MS� 4% = ��� MS� &/6 = ��� MM	
WHOLEBRAIN SAGITAL SEQUENCE IMAGES WERE TAKEN� $UR
ING OBJECT MANIPULATION� "/,$ CONTRAST WAS MEAS
URED WITH A MULTIBAND 4�∗WEIGHTED ECHOPLANAR
GRADIENTECHO IMAGING SEQUENCE �42= ��� MS� 4%=
�� MS� &!= ��◦� &/6= ��� MM�MULTIBAND FACTOR
�	� ! FUNCTIONAL IMAGE CONTAINED �� SLICES ACQUIRED
PARALLEL TO THE !#n0# PLANE �� MM THICK� �× � MM
INPLANE RESOLUTION	�

4HE POSITION AND ROLL OF THE OBJECT WERE MEAS
URED USING THREE MOTION TRACKING CAMERAS THAT WERE
RADIOFREQUENCYSHIELDED �0RECISION 0OINT 4RACKING
3YSTEM� 7ORLDVIZ� SEE ;�= FOR THE INSCANNER SETUP	�
7ITH THIS SYSTEM� WE RECORDED POSITIONS WITH SIX
DEGREES OF FREEDOM USING NEARINFRARED ,%$S �FRAME
RATE� ��� (Z� CAMERA RESOLUTION� ��� × ��� 6'!�
AT THE FOCAL DISTANCE� THE SPATIAL ACCURACY IS SUB
MILLIMETER	� !N INDIVIDUAL ,%$ MARKER WAS POSI
TIONED ON EITHER SIDE OF THE 4SHAPED OBJECT ON THE
OUTER TIP OF THE ALUMINUM RODS �TO MEASURE OBJECT
ROLL	�

������ %XPERIMENTAL $ESIGN AND 0ROCEDURE
4HE EXPERIMENTAL TASK CONSISTED OF FOUR CONDITIONS�
MANIPULATING THE LEFT AND RIGHTWEIGHTED OBJECT AT
CONSTRAINED ANDUNCONSTRAINED CONTACT POINTS� "EFORE
SCANNING� SUBJECTS COMPLETED �� PRACTICE TRIALS TO
FAMILIARIZE THEMWITH THE AUDIO CUES INSTRUCTINGWHEN
AND HOW TO LIFT THE OBJECT ON A GIVEN TRIAL� 4HE �� TRIALS
CONSISTED OF �� BLOCKED TRIALS FOR EACH OF THE � CONDI
TIONS ��� TRIALS AT UNCONSTRAINED AND �� TRIALS AT CON
STRAINED GRASP CONTACT POINTS	� 7E FOCUS ON THE DATA
GENERATED FROM THE UNCONSTRAINED TRIALS IN THIS WORK�

�
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%ACH TRIAL BEGANWITH THE SUBJECT�S HAND RELAXED ON
THE BUTTON� !N AUDIO CUE INSTRUCTED SUBJECTS TO RELEASE
THE BUTTON AND TO REACH� GRASP� AND LIFT THE OBJECT
TO A HEIGHT MARKER �� CM	 UNTIL THE NEXT AUDIO CUE
�� S AFTER BUTTONRELEASE TIME	 THAT INSTRUCTED THEM
TO RETURN THE OBJECT AND HAND TO THEIR RESPECTIVE START
POSITIONS� 4HE START CUE OF THE FIRST TRIAL WAS ALIGNED
WITH A FUNCTIONAL IMAGE� !N ERROR CUE WAS GIVEN AFTER
TRIAL COMPLETION IF THE OBJECT ROLL EXCEEDED �◦ AT ANY
TIME DURING THE TRIAL� 3TIMULUS TIMINGS FOR EACH BLOCK
OF TRIALS WERE CONTROLLED BY A CUSTOM SCRIPT �6IZARD
6IRTUAL 2EALITY 3OFTWARE 4OOLKIT� VERSION ���� 7ORLD
VIZ	� AND THE INTERTRIAL INTERVAL WAS RANDOMLY CHOSEN
TO BE BETWEEN � � S� WITH A REST PERIOD BETWEEN EACH
OF THE FOUR BLOCKS OF TRIALS� 4RIAL ORDER WITHIN A GIVEN
BLOCK WAS COUNTERBALANCED ACROSS RUNS AND SUBJECTS�

&OLLOWING PRACTICE� "/,$ CONTRAST WAS MEASURED
AS SUBJECTS COMPLETED �� TRIALS IN EACH OF � FUNCTIONAL
RUNS �FOR A TOTAL OF ��� TRIALS	� &OR EACH RUN�S F-2)
ANALYSES� WE PARSED THESE TRIALS IN THE FOLLOWING WAY�
GIVING � CONDITIONS OF INTEREST FOR UNCONSTRAINED AND
CONSTRAINED CONDITIONS� RESPECTIVELY�

�� EARLY PREROTATION TRIALS �n�
�� MID PREROTATION TRIALS �n�
�� LATE PREROTATION TRIALS �n��
�� ROTATION TRIAL ��
�� EARLY POSTROTATION TRIALS ��n��
�� MID POSTROTATION TRIALS ��n��
�� LATE POSTROTATION TRIALS ��n���

���� +INEMATIC DATA PROCESSING
+INEMATIC DATA WERE FILTERED USING A FOURTHORDER
"UTTERWORTH FILTER �CUTOFF FREQUENCY = � (Z	� 7E
DEFINED OBJECT ROLL AS THE ANGLE OF THE OBJECT IN THE
FRONTAL PLANE� WITH PEAK OBJECT ROLL EXTRACTED SHORTLY
AFTER LIFT ONSET � ��� MS	 BEFORE SOMATOSENSORY FEED
BACK RESULTED IN CORRECTIVE RESPONSES TO COUNTER OBJECT
ROLL� 4RIALS WITH OBJECT ROLL � �WERE CLASSIFIED AS ERRORS�
,IFT ONSET WAS DEFINED AS THE TIMEPOINT WHEN THE
OBJECT WAS LIFTED � MM AND REMAINED ABOVE THIS VALUE
FOR AT LEAST �� SAMPLES�

���� -2) DATA PREPROCESSING
-2) DATA WERE PREPROCESSED AND ANALYZED IN 30-��
�7ELLCOME 4RUST #ENTER FOR .EUROIMAGING� ,ONDON�
5+	� 3PECIFICALLY� FUNCTIONAL IMAGES ACROSS ALL RUNS
WERE SPATIALLY REALIGNED TO A MEAN FUNCTIONAL IMAGE
USING �ND DEGREE "SPLINE INTERPOLATION� WHICH WERE
THEN COREGISTERED TO EACH SUBJECT�S STRUCTURAL 4�
IMAGE� "ETWEENSUBJECT SPATIAL NORMALIZATION STEPS
WERE CONDUCTEDWITH 30-�S NORMALIZE FUNCTION ALIGN
ING EACH SUBJECT�S 4� AND ITS COREGISTERED FUNC
TIONAL IMAGES INTO STANDARD )#"-�-.)��� ATLAS
SPACE �INTERPOLATION� �TH DEGREE "SPLINE� VOXEL SIZE�
�X�X� MM	�

7E USED A DECONVOLUTIONBASED GENERAL LINEAR
MODEL �',-	 APPROACH TO MODEL "/,$ ACTIVITY�
WITH A FINITE IMPULSE RESPONSE �&)2	 FUNCTION SELEC
TED AS A BASIS FUNCTION �WINDOW LENGTH� ��� S� ORDER�

��� MS	� YIELDING �� ��� MS TIME BINS� "INS � AND
� RELATE TO NEURAL ACTIVITY PRESENT BEFORE LIFT ONSET�
LIFT ONSET OCCURS AT THE START OF BIN �� !S DESCRIBED
ABOVE� FOR EACH RUN� WE MODELED � CONDITIONS FOR
UNCONSTRAINED AND CONSTRAINED TRIALS� RESPECTIVELY�
WITH THREE PREROTATION CONDITIONS CONTAINING TRIALS
�n�� �n�� AND �n��� A ROTATION CONDITION CONTAINING
TRIAL ��� AND THREE POSTROTATION CONDITIONS CONTAIN
ING TRIALS ��n��� ��n��� AND �����

&INALLY� WE USED THE 2OBUST7,3 4OOLBOX IN 30-
;��= TO ACCOUNT FOR MOVEMENT ARTIFACT BY AN UNBIASED
ESTIMATION OF NOISE VARIANCE OF EACH IMAGING AND
DOWNWEIGHTING OF IMAGES WITH HIGH VARIANCE� .EV
ERTHELESS� HEAD MOTION MEAN ROTATIONS AND TRANS
LATIONS �WITH MINIMUM AND MAXIMUM VALUES IN
PARENTHESES	 WERE MINIMAL� X�−��� MM �−���� ���	�
Y� ��� MM ����� ���	� Z� ��� MM ����� ����	�
PITCH� ����◦ ����� ����	� ROLL� ����◦ ������ ����	�
YAW� ���� ◦ ������ ���	�

"EFORE USE IN ESTIMATING THE NEURAL DEVIATION� THE
"/,$ VALUES ACROSS DIFFERENT 2/)�S WERE AGGREGATED
INTO VECTORS� 'IVEN THAT THE TASK UNDER CONSIDERA
TION WAS A SENSORIMOTOR TASK� IT WOULD BE NATURAL
TO RESTRICT THE REGIONS UNDER CONSIDERATION TO SEN
SORIMOTOR REGIONS� 7E SHOW IN FIGURE � THAT THIS IS
UNNECESSARY� AS THE DEVIATIONS GENERATED BY SENSOR
IMOTOR REGIONS �VERTICAL AXIS	 ARE DIRECTLY PROPOR
TIONAL TO THOSE GENERATED BY GLOBAL ACTIVITY �HORIZONTAL
AXIS	� 4HE RED LINES DEMONSTRATE APPROXIMATE EQUI
VALENCE� THE SAMPLE DEVIATIONS CLUSTER ABOUT THIS LINE
FOR ALL CONDITIONS� 4HE SENSORIMOTOR 2/)�S SELECTED
HERE WERE THE BILATERAL ANTERIOR INTRAPARIETAL SULCUS
�!)03	� THE #EREBELLUM� )NSULA� MOTOR �A� MOTOR �P�
PARIETAL OPERCULUM� PRIMARY SOMATOSENSORY CORTEX�
AND SUPERIOR PARIETAL LOBULE �30,	� "EFORE DEVIATIONS
WERE COMPUTED� THE "/,$ VECTORS WERE MAPPED TO
A LOWER DIMENSIONAL SPACE �THE SPACE USED WAS TEN
DIMENSIONAL	� ! BASIS FOR THIS SPACE WAS COMPUTED
USING THE 4REELET 4RANSFORM ;��= BECAUSE OF ITS ABILITY
TO CAPTURE SPARSE� HIERARCHICAL STRUCTURE IN COVARIANCE
MATRICES�

/NE EXPLANATION FOR THE STRONG EFFECT OF ERRORS ON
GLOBAL NEURAL ACTIVITY IS THAT ACTIVITY IS LARGELY DRIVEN
BY MOTOR BRAIN REGIONS� 7E ADDRESS THIS POSSIBILITY
BY CONSIDERING A SEEDBASED FUNCTIONAL CONNECTIVITY
ANALYSIS� WHERE THE SEED REGIONS SELECTED WERE BILAT
ERAL MOTOR �A AND MOTOR �P� 4HIS SORT OF ANALYSIS
COULD INVOLVE ATTEMPTING TO EXPLAIN THE VARIANCE IN
GLOBAL ACTIVITY WITH VARIATION IN THE ACTIVITY OF THE SEED
REGIONS� 7E FIND THAT NOT ONLY CAN THESE FOUR REGIONS
NOT EXPLAIN A SIGNIFICANT PORTION OF THE GLOBAL ACTIVITY�
THERE ARE NO FOUR BRAIN REGIONS THAT CAN� )N FACT� WE
FIND THAT ���� REGIONS ARE REQUIRED TO EXPLAIN OVER
��� OF THE VARIANCE IN GLOBAL NEURAL ACTIVITY� 4O SHOW
THIS� FOR EACH &)2 BIN� WE COLLECTED VECTORS OF "/,$
ACTIVITY OVER ALL SUBJECTS AND TRIALS�7E THEN COMPUTED
A 0RINCIPAL #OMPONENT !NALYSIS �0#!	 AND LOOKED AT
THE EXPLAINED VARIANCE RATIOS FOR DIFFERENT NUMBERS OF
PRINCIPAL COMPONENTS� 4HE RESULTS OF THIS EXPERIMENT

�
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&IGURE �� !LL PLOTS ARE OF SENSORIMOTOR DEVIATIONS �VERTICAL AXIS ON EACH PLOT	 AGAINST GLOBAL DEVIATIONS �HORIZONTAL AXIS ON EACH
PLOT	� 4HE RED LINE GIVES PERFECT EQUALITY AND THE SAMPLES CLUSTER ABOUT THIS LINE� &IGURE � SHOWS THAT A SMALL NUMBER OF BRAIN
REGIONS CANNOT BE USED TO EXPLAIN MOST OF THE VARIANCE IN GLOBAL NEURAL ACTIVITY� BUT THIS DOES NOT PRECLUDE THE POSSIBILITY THAT A
SMALL NUMBER OF BRAIN REGIONS MAY BETTER ENCODE THE $4$- OBJECTIVE� ! REASONABLE CANDIDATE FOR THIS SMALL SET OF REGIONS IS THE
SET OF SENSORIMOTOR BRAIN REGIONS� BUT THE PLOT ABOVE SHOWS THAT SENSORIMOTOR AND GLOBAL NEURAL DEVIATIONS ARE STRONGLY
CORRELATED� 4HIS SUGGESTS THAT SENSORIMOTOR REGIONS ARE ROUGHLY ENCODING THE SAME INFORMATION AS THE SET OF ALL BRAIN REGIONS�

&IGURE �� )N THIS PLOT WE SHOW HOW THE EXPLAINED VARIANCE RATIO CHANGES IN RESPONSE TO INCREASING THE NUMBER OF PRINCIPAL
COMPONENTS IN THE BASIS SET� ! POSSIBLE EXPLANATION FOR THE RESPONSIVENESS OF GLOBAL ACTIVITY TO ERRORS IS THAT GLOBAL ACTIVITY IS
STRONGLY DRIVEN BY A SMALL NUMBER OF BRAIN REGIONS �E�G� PRIMARY MOTOR CORTEX	� 4HIS PLOT ILLUSTRATES THE POINT THAT ���� PRINCIPAL
COMPONENTS �DEPENDING ON THE &)2 BIN	 ARE NEEDED TO EXPLAIN AT LEAST ��� OF THE VARIANCE IN GLOBAL NEURAL ACTIVITY� 4HIS SHOWS
THAT THERE DOES NOT EXIST A SMALL SET OF BRAIN REGIONS THAT CAN EXPLAIN MOST OF THE VARIANCE IN GLOBAL ACTIVITY�

ARE SHOWN IN FIGURE �� THIS PLOT HIGHLIGHTS THE FACT THAT
THERE DOES NOT EXIST A SMALL GROUP OF BRAIN REGIONS
THAT CAN EXPLAIN MOST OF THE VARIANCE IN GLOBAL NEURAL
ACTIVITY�

���� 2OBOTIC 3IMULATION $ETAILS
4HE /PEN!) 'YM 0ICK AND 0LACE ENVIRONMENT WAS
MODIFIED TO REPLICATE THE EXPERIMENTAL TASK DESCRIBED
IN THIS PAPER� 3PECIFICALLY� THE BLOCK TO BE MOVED WAS

�
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&IGURE �� ! STILL FRAME TAKEN FROM THE ROBOTIC SIMULATION� 2EPRODUCED FROM ;��=� #OPYRIGHT �C	 ���� /PEN!)
�HTTPS���OPENAI�COM 	�

EXTENDED ALONG A SINGLE AXIS TO ALLOW FOR SHIFTING OF
THE CENTER OF MASS OF THE BLOCK ALONG THIS EXTENDED
AXIS� !DAPTING TO LIFT THIS UNBALANCED WEIGHT WITH
MINIMAL ROLL ALONG THE EXTENDED AXIS WOULD THEN TEST
THE ABILITY OF THE ROBOT TO PERFORM A SIMILAR TASK TO
THAT ACCOMPLISHED BY THE HUMAN SUBJECTS� 4WO PRIOR
POLICIES WERE TRAINED USING $EEP $ETERMINISTIC 0OLICY
'RADIENTS �$$0'	 AND (INDSIGHT %XPERIENCE 2EPLAY
�(%2	 TO LIFT THE BLOCK WITH MINIMAL ROLL WHEN ITS
CENTER OF MASS IS CENTERED AND UNCENTERED� RESPECT
IVELY ;��=� 4HE PARAMETERS USED FOR TRAINING WERE THE
DEFAULTS GIVEN IN ;��=� ! SINGLE FRAME TAKEN OF THE SIM
ULATION IS SHOWN IN FIGURE ��

4HE DYNAMICS MODEL USED FOR -ODEL 0REDICTIVE
#ONTROL �-0#	 WAS A DEEP NEURAL NETWORK WITH �
LAYERS AND ��� NEURONS PER LAYER� 4HIS NETWORK WAS
TRAINED USING !$!- WITH LEARNING RATE ����� AND
BATCH SIZE ��� ;��=� -INIBATCHES WERE SAMPLED FROM
A UNIFORM DISTRIBUTION OVER ELEMENTS OF THE REPLAY
BUFFER� WHICH HAD A MAXIMUM SIZE OF � × ��−� ELE
MENTS� ! ZERO�TH ORDER POLICY OPTIMIZATION SCHEME
WAS USED WITHIN THE-0# FRAMEWORK� &OR THIS OPTIM
IZATION SCHEME� ��� ROLLOUTS WERE USED� EACH OF LENGTH
�� TIMESTEPS�

�� 2ESULTS

���� %RRORS $URING-OTOR ,EARNING ARE
0ROBABILISTICALLY $ISTRIBUTED
&IRST� WE EXAMINE BEHAVIORAL PERFORMANCE DURING
THE ADAPTATION TASK� !CROSS ALL PARTICIPANTS� TRIALS
AND CONDITIONS� THE MAXIMUM MAGNITUDE ROLL OVER
THE COURSE OF A TRIAL� AVERAGED OVER ALL SUBJECTS AND

RUNS� WAS OBSERVED TO BE LOW FOR PREROTATION CON
DITIONS� HIGH FOR ROTATION CONDITIONS� AND LOW AGAIN
FOR POSTROTATION CONDITIONS� 4HIS POINT IS ILLUSTRATED
IN FIGURE �� WHERE WE SHOW THE DISTRIBUTIONS OVER
STATES FOR ALL CONDITIONS� 4HESE PLOTS NOT ONLY MAKE
CLEAR THE PRESENCE OF ERRORS AND THE FACT THAT THEY ARE
QUICKLY CORRECTED� BUT ALSO THAT THE DISTRIBUTIONS OVER
STATES CONTAIN MEANINGFUL INFORMATION THAT WOULD
BE LOST BY CONSIDERING ONLY THE MEAN� &OR EXAMPLE�
THE DISTRIBUTION GENERATED BY THE ROTATION CONDITION
HAS A DIFFERENT SHAPE FROM ANY OF THOSE GENERATED
FROM THE PRE�POSTROTATION CONDITIONS �PRE�POST VS
ROT� !� = ����� ���� P<����� THROUGHOUT THIS WORK�
PRE�POST REFERS TO THE COMBINATION OF PREROTATION
AND POSTROTATION SAMPLES AND ROT REFERS TO ROTA
TION SAMPLES	� 4HIS RESULT HOLDS AFTER BOOTSTRAP RES
AMPLING OF SAMPLES TO CORRECT FOR SAMPLESIZE DIFFER
ENCES BETWEEN PREROTATION�POSTROTATION CONDITIONS
AND THE ROTATION CONDITION� 0LOTS OF THE RESAMPLED
HISTOGRAMS ARE SHOWN IN THE SECOND ROW OF FIGURE
�� 4HE RESAMPLED HISTOGRAMS WERE GENERATED BY RES
AMPLING PREROTATION AND POSTROTATION SAMPLES UNI
FORMLY AT RANDOM TO GENERATE SAMPLE SIZES EQUAL TO
THAT OF THE ROTATION CONDITION�

!NALYSIS OF THESE RESULTS REQUIRES A REPRESENTA
TION OF THE ERROR THAT TAKES INTO ACCOUNT THE OBSERVED
DISTRIBUTIONAL INFORMATION� 7E OBSERVED THAT
THESE DISTRIBUTIONS OVER DISTANCES FOLLOW A 7EIBULL
DISTRIBUTION

P(DP;γ,β) =
γ

β
(
DP
β
)γ−�E−(

DP
β )γ , ��	

WHERE DP IS THE ,P DISTANCE AND γ AND β ARE PARA
METERS� 4HIS PROVIDES A CONVENIENT� CLOSEDFORM

�
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&IGURE �� 4OP� STATE DISTRIBUTIONS� 4HE ROTATION CONDITION RESULTS IN A STATE DISTRIBUTION THAT HAS BOTH HIGHER MEAN AND AN ENTIRELY
DIFFERENT SHAPE� "OTTOM� BOOTSTRAP RESAMPLING OF HISTOGRAMS TO YIELD BALANCED SAMPLE SIZES ACROSS PREROTATION� ROTATION� AND
POSTROTATION CONDITIONS RESULTS� 4HE DIFFERENCE IN THE ROTATION HISTOGRAM COMPARED WITH THE PREROTATION AND POSTROTATION
HISTOGRAMS IS PRESERVED EVEN IN THE CASE OF BOOTSTRAP RESAMPLING�

MATHEMATICAL REPRESENTATION FOR ERRORS THAT WE REVISIT
THROUGHOUT THIS WORK� 4O VALIDATE THAT OUR DIS
TANCES ARE INDEED 7EIBULL DISTRIBUTED� CONSIDER FIRST
THE NECESSARY AND SUFFICIENT CONDITIONS FOR DISTANCES
BETWEEN FEATURE VECTORS TO BE 7EIBULL DISTRIBUTED�
'IVEN FEATURE VECTORS 8= [8�, . . . ,8N] ∈ RN AND 9=
[9�, . . . ,9N] ∈ RN� THE ,P DISTANCE BETWEEN 8 AND 9
IS 7EIBULL DISTRIBUTED IF |8I −9I|P ARE NONIDENTICAL�

CORRELATED� AND UPPER BOUNDED� FOR ALL �≤ I≤ N�
2ATHER THAN CONSTRUCT AMATHEMATICAL PROOF THAT THESE
ASSUMPTIONS HOLD FOR HUMAN MOVEMENT� WE INSTEAD
DEMONSTRATE THAT 7EIBULL DISTRIBUTIONS CAN BE SUC
CESSFULLY FIT TO OUR DATA�

)N FIGURE � WE SHOW THAT THE EMPIRICAL DISTRIBU
TIONS OVER DISTANCES RESULTING FROM COMPARING PRE�
POST SAMPLES WITH ROTATION SAMPLES �CALLED ROTATION

�
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&IGURE �� 4HE EMPIRICAL DENSITY ESTIMATES ARE PRESENTED AS HISTOGRAMS AND THE 7EIBULL FITS ARE SUPERIMPOSED AND GIVEN BY THE BLUE
DOTS� 4OP� DISTANCES ARE BETWEEN PRE�POSTROTATION CONDITIONS� "OTTOM� DISTANCES ARE BETWEEN ROTATION AND PRE�POSTROTATION
CONDITIONS�

OR ROT	 DIFFER SIGNIFICANTLY FROM THE EMPIRICAL DISTRIBU
TIONS GENERATED BY COMPARING PRE�POST SAMPLES WITH
OTHER PRE�POST SAMPLES �PRE�POSTROT VS PRE�POST
PRE�POST� !� = ����� ���� P<����	� -OREOVER� FIT
TING 7EIBULL DISTRIBUTIONS TO THESE EMPIRICAL DIS
TRIBUTIONS USING -AXIMUM ,IKELIHOOD %STIMATION
�-,%	� WE ARE ABLE TO GENERATE ACCURATE FITS� SUG
GESTING THAT THE 7EIBULL IS INDEED A GOOD MODEL FOR
THESE DATA �PRE�POST EMPIRICAL VS PRE�POST 7EIBULL�

β = ������ γ = ������ !� = ����� ���� P>���� ROT
EMPIRICAL VS ROT 7EIBULL� β = ������ γ = ������ !�

= ���� ���� P>���	� 7E CALL THE PRE�POSTROT 7EIBULL
THE ERROR 7EIBULL �7E	 AND WE CALL THE PRE�POST
PRE�POST 7EIBULL THE IDEAL 7EIBULL �7I	� !S SUBJECTS
ADAPT AND 7E IS TRANSFORMED BACK TO 7I� A NUM
BER OF CHARACTERISTICS OF 7E CHANGE� ITS MEAN SHIFTS
TOWARDS �� ITS LONG TAIL BECOMES REDUCED IN SIZE�
ITS VARIANCE SHRINKS� AND ITS SKEW DECREASES� &ROM

�
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THIS� IT SEEMS AS IF SOME NOTION OF THE DEVIATION
BETWEEN 7E AND 7I WOULD HAVE TO BE USED AS FEED
BACK TO A CONTROLLER IN ORDER TO INCORPORATE ALL OF THIS
INFORMATION�

���� ! $ISTRIBUTIONAL MODEL FOR PREDICTION ERRORS
! MODEL OF LEARNING THAT RELIES ON THE DEVIATION
BETWEEN7E AND7I CAN BE DERIVED FROM A 4EMPORAL
$IFFERENCE -ODEL �4$-	 ;��=� WHICH CAN IN TURN BE
DERIVED FROM A 4EMPORAL $IFFERENCE ,EARNING �4$,	
UPDATE� 4$, IS A RECURSIVE SCHEME TOMAXIMIZE EXPEC
TED FUTURE REWARDS AND REQUIRES THE DEFINITION OF A
VALUE FUNCTION� 6(ST|π)� WHERE ST IS THE STATE AT TIME
T AND π IS A POLICY� 4HE VALUE FUNCTION CAN BE DEFINED
AS

6(ST|π) = %P(ST+�|ST,AT),π[RT + γRT+� + γ�RT+� + . . .],
��	

6(ST|π) = %P(ST+�|ST,AT),π[RT + γ6(ST+�|π)], ��	

WHERE γ ∈ ;�� �	 IS A DISCOUNT FACTOR� P(ST+�|ST,AT) IS
A MODEL OF THE SYSTEM DYNAMICS� %;·= IS THE EXPECT
ATION OPERATOR� AND RT IS THE REWARD AT TIME T� 0ER
HAPS THE SIMPLEST APPROACH TO FITTING 6(ST|π) USING
4$,� CALLED 4$��	� RELIES ON COMPUTING AN ESTIMATOR
6̂(ST|π) USING THE UPDATE EQUATION

6̂(ST|π) = 6̂(ST|π)+α[RT + γ6̂(ST+�|π)− 6̂(ST|π)],
��	

WHEREα ∈ R IS THE LEARNING RATE� 4HIS UPDATE INVOLVES
A COMPARISON BETWEEN RT + γ6̂(ST+�|π) AND 6̂(ST|π)�
4HE INTUITION FOR THIS UPDATE IS� SINCE THE FORMER
HAS SLIGHTLY MORE INFORMATION FROM THE ENVIRONMENT
THAN 6̂(ST|π), 6̂(ST|π) SHOULD BE UPDATED TO BE CLOSER
TO IT� 4$-�S DEFINE A REWARD FUNCTION USING THE
NOTION OF A GOAL STATE� SG � WHERE RT = R(ST,AT, ST+�, SG) =
−DP(ST+�, SG) AND DP IS THE ,P DISTANCE� 4HIS REWARD
RESULTS IN A VALUE FUNCTION THAT QUANTIFIES THE EXPEC
TED FUTURE PROXIMITY OF THE SYSTEM TO THE GOAL STATE�
!S APPLIED TO OUR EXPERIMENTAL SYSTEM� IF WE LET T AND
T+ � BE TRIAL NUMBERS� SINCE THE GOAL STATE IS A ROLL OF
ZERO� 6(ST|π) WOULD THEN INDICATE THE EXPECTED MAG
NITUDE OF THE ROLL OVER FUTURE TRIALS�

4$-�S RELY ON A KIND OF REWARD PREDICTION ERROR
TO UPDATE THE VALUE FUNCTION� AND CAN ALSO ACT AS
A BRIDGE BETWEEN STATE PREDICTION AND REWARD PRE
DICTION ERRORS� 4O BE CLEAR� STATE PREDICTION ERROR IS
THE ERROR IN PREDICTING THE NEXT STATE GIVEN THE CUR
RENT STATE� AND REWARD PREDICTION ERROR IS THE ABILITY
TO PREDICT THE FUTURE REWARD GIVEN THE CURRENT STATE�
4HESE ERRORS� WHEN APPLIED TO OUR SYSTEM� QUANTIFY
THE ABILITY TO PREDICT FUTURE ROLLS IN EXPECTATION� 4HIS
IS SHOWN IN THE 3UPPLEMENT� WHERE WE GIVE CONDI
TIONS FOR THE EQUIVALENCE OF STATE AND REWARD PREDIC
TION IN THE 4$- FRAMEWORK� )N OUR EXPERIMENTAL
SYSTEM� WE ARE NOT SIMPLY INTERESTED IN DEFINING 6

USING AN EXPECTATION OVER P(ST+�|ST,AT) AND π� 7E
WOULD LIKE TO BE ABLE TO USE ALL OF THE INFORMATION
CONTAINED IN THE DISTRIBUTION OVER REWARDS� 4O THIS
END�WE INCORPORATE 4$-�S INTO THE$ISTRIBUTIONAL 2,
FRAMEWORK

:(ST,AT, SG)
$
= 2(ST,AT, ST+�, SG)+ γ:(ST+�,AT+�, SG),

��	
WHERE : AND 2 ARE THE VALUE AND REWARD DISTRIBUTIONS�

RESPECTIVELY� AND
$
= INDICATES EQUALITY IN DISTRIBUTION

;��=� 3IMILAR TO 4$��	� $ISTRIBUTIONAL 2, UPDATES
AN ESTIMATOR OF THE VALUE DISTRIBUTION� :̂(ST,AT, SG)� BY

COMPARING 2(ST,AT, ST+�, SG)+ γ:̂(ST+�,AT+�, SG) WITH

:̂(ST,AT, SG)� "ECAUSE THESE ARE PROBABILITY DISTRIBU

TIONS� :̂(ST,AT, SG) IS UPDATED TO MINIMIZE

$+,(2(ST,AT, ST+�, SG)+ γ:̂(ST+�,AT+�, SG)||:̂(ST,AT, SG)),
��	

WHERE $+,(·||·) IS THE +,DIVERGENCE� 4HIS UPDATE IS
ANALOGOUS TO THE TEMPORAL DIFFERENCE LEARNING UPDATE�
GENERALIZED TO THE SETTING WHERE REWARDS ARE PROB
ABILISTICALLY DISTRIBUTED� 4HIS DISTRIBUTIONAL OBJECT

IVE� WITH 2(ST,AT, ST+�, SG) DEFINED AS THE DISTRIBUTION
OVER −DP(ST+�, SG)� IS RELEVANT IN THE CONTEXT OF THE
RESULTS PRESENTED THUS FAR� 3PECIFICALLY� IN THE CASE
OF SHORTTIME HORIZON PROBLEMS� THOSE WHERE γ= ��

THEN :(ST,AT, SG)
$
= 2(ST,AT, ST+�, SG) FOLLOWS A 7EIBULL

DISTRIBUTION�
+EEPING WITH THE NOTATION OF THE PREVIOUS SECTION�

WE CAN THINK OF :̂(ST,AT, SG) AS BEING EQUIVALENT TO
7I DURING THE PREROTATION CONDITIONS� 7HEN THE
CENTER OF MASS CHANGES� :(ST,AT, SG) IS ACTUALLY 7E�

THOUGH :̂(ST,AT, SG) IS STILL7H� 4HE DEVIATION BETWEEN

:̂(ST,AT, SG) AND :(ST,AT, SG)� THAT IS� 7E AND 7I� IS
OPTIMIZED DURING ADAPTATION� &OR THE EXPERIMENTAL
SYSTEM STUDIED IN THIS WORK� THERE ARE A NUMBER OF
POTENTIAL EXPLANATIONS FOR THIS DEVIATION� FROM ERRORS
IN THEMODEL OF SYSTEMDYNAMICS TO ERRORS IN THE BEHA
VIORAL POLICY� 4HE IDENTIFICATION OF THE PRECISE SOURCE
OF THE DEVIATION BETWEEN :̂(ST,AT, SG) AND :(ST,AT, SG) IS
BEYOND THE SCOPE OF THIS WORK� /UR GOAL IS TO PRESENT

A FRAMEWORK FOR MODELING LEARNING WITH STOCHASTIC
REWARDS IN A MANNER AMENABLE TO BOTH BIOLOGICAL
MODELING AND ROBOTIC CONTROL� 7ITH THIS IN MIND�
WE NOTE THAT :̂(ST,AT, SG) MAY BE PARAMETERIZED BY
θ� WHICH INCLUDES PARAMETERS FOR EVERY COMPONENT
OF THE CONTROLLER USED TO SOLVE THE UNBALANCED LIFT
ING TASK� 7E CAN NOW PROPOSE A MODEL FOR MOTOR
LEARNING� SPECIFICALLY� A MODEL FOR LEARNING TO DYNAM
ICALLY UPDATE A CONTROLLER TO LIFT AN OBJECT IN RESPONSE
TO ITS CHANGING PHYSICAL PROPERTIES� /UR MODEL IS THAT
THE BRAIN ATTEMPTS TO SOLVE THE FOLLOWING OPTIMIZATION
PROBLEM

MINIMIZE
θ

$+,(7I||7E), ��	

�
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4O THE BEST OF OUR KNOWLEDGE� THE FUSION OF TEM
PORAL DIFFERENCE LEARNING AND DISTRIBUTIONAL REINFORCE
MENT LEARNING IS A NOVEL THEORETICAL FRAMEWORK FOR
REINFORCEMENT LEARNING� 4HE OPTIMIZATION PROBLEM
ABOVE IS A SPECIAL CASE OF THE FULL $4$- OPTIMIZ
ATION� BUT THROUGHOUT THE REST OF THE PAPER� WHEN
WE REFER TO THE $4$- PROBLEM� WE ARE REFERRING TO
EQUATION ��	�

���� 'LOBAL NEURAL ACTIVITY OPTIMIZES THE
DISTRIBUTIONAL TEMPORAL DIFFERENCE OBJECTIVE
7E HAVE ALREADY SHOWN THAT BEHAVIOR IS UPDATED TO
OPTIMIZE THE DEVIATION BETWEEN 7E AND 7I� THAT IS�
BEHAVIOR IS UPDATED ACCORDING TO EQUATION ��	� 4O
SEE THE EFFECT OF THE OBJECT ROTATION CONDITION ON
GLOBAL NEURAL ACTIVITY� WE FIRST PROCESSED BRAIN ACTIV
ITY IN CONSECUTIVE TIME INTERVALS USING FINITE IMPULSE
RESPONSE �&)2	 MODELING� 7E THEN SELECTED &)2 TIME
BINS THAT ARE LIKELY ENCODING INFORMATION ABOUT THE LIFT
OF THE APPARATUS� $ETAILS OF THE METHOD USED TO SELECT
THE @LIFT� &)2 BINS ARE GIVEN IN THE 3UPPLEMENT� "RIEFLY�
WE FIRST IDENTIFY @PRELIFT� &)2 BINS AS THOSE BEFORE LIFT
ONSET� THIS OCCURS AT &)2 BIN �� 7E THEN INTERPRET THE
HEMODYNAMIC RESPONSE AS A STOCHASTIC PROCESS AND
NOTE THAT THERE ARE TWO DISTINCT STIMULI WITHIN EACH
TRIAL� THE PRELIFT AND LIFT STIMULI� 'IVEN THAT THESE
STIMULI ARE SEPARATED IN TIME� THEIR RESPECTIVE HEMO
DYNAMIC RESPONSES WILL PEAK AT DIFFERENT TIMES� 4HIS
ALLOWS FOR THE SEGMENTATION OF THE &)2 BINS AS MOST
LIKELY GENERATED FROM EITHER THE PRELIFT OR THE LIFT PRO
CESS� 4HOSE MOST LIKELY GENERATED FROM THE LIFT PRO
CESS �BINS ����	 ARE CALLED @LIFT� BINS AND ARE USED TO
ESTIMATE THE DEVIATION OF GLOBAL NEURAL ACTIVITY RESULT
ING FROM LIFT� 4HESE BINS ARE IDENTIFIED USING A HARD
THRESHOLD BASED UPON A MODEL OF THE HEMODYNAMIC
RESPONSE �I�E� THE #ANONICAL (EMODYNAMIC 2ESPONSE
&UNCTION� #(2&	 ;�=� 7E INTERPRET THE #(2& AS A
MIXTURE OF 'AMMA $ISTRIBUTIONS� 5SING TWO #(2&�S
�ONE CORRESPONDING TO PRELIFT AND ONE CORRESPOND
ING TO POSTLIFT	� WE ARE ABLE TO SEGMENT THE &)2 BINS
AS MOST LIKELY EXHIBITING "/,$ ACTIVITY FROM PRELIFT
OR POSTLIFT� &URTHER DETAILS ON THIS METHOD ARE GIVEN
IN THE 3UPPLEMENT�

4HESE RESULTS ARE SHOWN IN FIGURE �� &OR EACH CON
DITION �PREROTATION EARLY�MID�LATE� ROTATION� POST
ROTATION EARLY�MID�LATE	� 7EIBULL DISTRIBUTIONS WERE
GENERATED BY COMPARING THE BETAS GENERATED DURING
THAT CONDITIONWITH THE BETAS GENERATED DURING ALL OTH
ERS� %XAMPLE 7EIBULL DISTRIBUTIONS GENERATED DURING
&)2 BIN � AND &)2 BIN �� ARE SHOWN IN THE LEFT AND
RIGHT COLUMNS OF THE TOP TWO ROWS OF FIGURE �� 4HE
DISTRIBUTION GENERATED USING THE ROTATION CONDITION
EXHIBITS A SIGNIFICANT DEVIATION FROM THE OTHERS AT &)2
BIN �� BUT NOT &)2 BIN �� "ECAUSE PRE�POSTPRE�POST
AND PRE�POSTROT7EIBULL DISTRIBUTIONS ARE STATISTICALLY
DIFFERENT FOR LIFT BINS BUT NOT PRELIFT BINS �PRE�POST
ROT VS PRE�POSTPRE�POST FOR PRELIFT BINS� T�DF	 = 
����� ���� P>���� PRE�POSTROT VS PRE�POSTPRE�POST
FOR LIFT BINS� T�DF	 = ���� ���� P<����	� THIS SUGGESTS

THAT GLOBAL NEURAL ACTIVITY IS PERTURBED BY THE ROTATION
CONDITION� AND THEN MOVES BACK TO BECOME INDISTIN
GUISHABLE FROM THE PREROTATION STATE� 4HUSWE CALL THE
PRE�POSTPRE�POST 7EIBULLS @IDEAL BETA 7EIBULL DISTRI
BUTIONS� OR7B

I AND THE PRE�POSTROT7EIBULL THE @ERROR
BETA 7EIBULL� OR7B

E �
/UR RESULTS SUGGEST THAT THE BRAIN MAY BE SENS

ITIVE TO $+,(7I||7E)� )N FIGURE � �BOTTOM ROW	 WE
SHOW THAT THE DIFFERENCE IN THE MEANS OF 7B

I AND
7B

E �USING LIFT &)2 BINS	 IS DIRECTLY PROPORTIONAL TO
THE DEVIATION BETWEEN7I AND7E �I�E� $+,(7I||7E)�
2� = ����	� 7E SHOW IN FIGURE � �LEFT� MIDDLE ROW	
THAT GLOBAL NEURAL ACTIVITY IS ALSO DIRECTLY PROPOR
TIONAL TO THE 4$- ERROR� THAT IS� ERRORS IN EXPECTED
FUTURE REWARD �2� = ����	� 4O UNDERSTAND THIS RES
ULT� WE PRESENT HISTOGRAMS ESTIMATING 7I AND 7E

FROM TWO REPRESENTATIVE SUBJECTS� 4HE TRANSPORT OF7E

TO 7I INVOLVES MORE THAN JUST A SHIFT IN THE MEAN
FOR BOTH SUBJECTS� BUT FOR BOTH �AND FOR ALL OTHER
SUBJECTS AS WELL	� THE MEAN IS INDEED SHIFTED DURING
ADAPTATION�

)T IS IMPORTANT TO NOTE THAT 4$-DOES NOT CONTAIN
A COMPLETE DESCRIPTION OF THE ERRORS� 4O SEE THIS QUANT
ITATIVELY� WE USE A #ONDITIONAL 6ALUE AT 2ISK �#6!2	
MODEL ;��=� #6!2 MODELS OFFER A MEANS OF TAKING
ADVANTAGE OF THE INFORMATION CONTAINED IN THE VALUE
DISTRIBUTION� BEYOND ITS MEAN� 4HESE MODELS INVOLVE
OPTIMIZING THE EXPECTED VALUE IN THE TAILS OF THE VALUE
DISTRIBUTION� &OR EXAMPLE� MINIMIZING LOWER TAIL VAL
UES RESULTS IN CONTROLLERS THAT ARE RISK AVERSE� 2ISK
AVERSION IN OUR EXPERIMENTAL SYSTEM WOULD INVOLVE
MINIMIZING THE USE OF ACTIONS LEADING TO OUTCOMES
IN THE TAIL OF 7I� &OR EXAMPLE� SUPPOSE THAT SUBJECTS
INITIALLY USED LIFTING STRATEGIES THAT SOMETIMES LED TO
STATES NEAR ZERO �EXTREMELY SUCCESSFUL OUTCOMES	� BUT
ALSO OFTEN LED TO THE APPARATUS BEING DROPPED� RESULT
ING IN HIGH ROLL� ! RISK AVERSE LEARNING PROCESS WOULD
AVOID THIS STRATEGY� LEADING TO FEWER OBSERVATIONS IN
THE TAIL OF 7I� )NTERESTINGLY� BECAUSE THIS MAY ALSO
REDUCE THE OBSERVATION OF AS MANY LOW ROLL STATES�
THE MEAN OF 7E MAY BE UNAFFECTED BY RISK AVERSE
LEARNING� 7E SHOW IN FIGURE � THAT THE #6!2 ERROR
�I�E� THE EXPECTED LOWERTAIL VALUE	 IS ALSO PROPOR
TIONAL TO MEAN NEURAL DEVIATION �2� = ����	� "ECAUSE
#6!2 ERROR IS A CHARACTERISTIC OF THE VALUE DISTRIBU
TION AND IS INDEPENDENT OF THE MEANS OF7I AND7E�
THIS SUGGESTS THAT THE GLOBAL NEURAL DEVIATION IS� IN
FACT� ALSO ENCODINGMORE THAN JUST THE EXPECTED FUTURE
REWARD�

4HE ERROR $+,(7I||7E) CAN BE INTERPRETED IN A
NUMBER OF WAYS SINCE DIFFERENT ASPECTS OF NEURAL ACTIV
ITY COULD CONTRIBUTE TO THIS SHIFT� 3ENSORY ACTIVITY AS
WELL AS ERROR SIGNALING COULD CONTRIBUTE TO SUCH A
SHIFT� )N ADDITION� COMPENSATORY BEHAVIORS WERE ALSO
OBSERVED DURING THE COURSE OF A LIFT� 7HEN A SUBJECT
PERCEIVED A TILT� THEY WOULD OFTEN ATTEMPT TO CHANGE
THE FORCES AND TORQUES USED DURING THE COURSE OF THE
LIFT� OFTEN RESULTING IN REDUCED ROLL� 7E HYPOTHESIZE
THAT THERE EXISTS A COORDINATED� GLOBAL RESPONSE TO
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&IGURE �� 4HE TOP ROW CONTAINS THE FITS GENERATED USING &)2 BINS � AND ��� !S IN THE REST OF THIS WORK� THE DISTANCE IS THE ,� NORM
OF THE DIFFERENCE BETWEEN GLOBAL NEURAL ACTIVITIES� 4HIS IS A UNITLESS MEASURE OF DEVIATION BETWEEN FEATURE VECTORS�7B

I BECOMES
DISTINGUISHABLE FROM7B

E AROUND &)2 BIN ��� 4HIS POINT IS ILLUSTRATED IN THEMIDDLE ROW� 4HIS ROW CONTAINS THE ESTIMATES OF THE
MEANS OF THE 7EIBULL DISTRIBUTION FOR EACH CONDITION AGAINST THE &)2 BIN INDEX� 4HE SIGNIFICANT DEVIATION OF7B

I FROM7B
E FOR LATE

&)2 BINS IS CAPTURED BY THESE PLOTS�

ERRORS THAT INCORPORATES ALL OF THIS INFORMATION AND
THAT IT IS PROPORTIONAL TO $+,(7I||7E)� 4O SHOW THAT
THE GLOBAL SHIFT IN NEURAL ACTIVITY CAN BE DIRECTLY USED
AS A FEEDBACK ERROR SIGNAL� WE USE $+,(7I||7E) TO FIT
A ROBOTIC CONTROLLER�

���� 2OBOTS CAN ALSO OPTIMIZE THE DISTRIBUTIONAL
TEMPORAL DIFFERENCE OBJECTIVE
#ONVENIENTLY� THE OPTIMIZATION PROBLEM IN EQUATION
��	 LEADS TO A FORM THAT CAN BE OPTIMIZED BY AN ARTI
FICIAL AGENT� 4O SEE THIS� WE CONSIDER AN OPTIMIZATION
PROBLEM SIMILAR TO THOSE USED TO UPDATE MODELS OF
SYSTEM DYNAMICS FOR USE IN -ODEL"ASED 2,� ! POP
ULAR OBJECTIVE FOR FITTING A MODEL OF SYSTEM DYNAMICS
IS

MINIMIZE
θ

||S∗T+� − Fθ(ST,AT)||��, ��	

WHERE Fθ IS A MODEL PARAMETERIZED BY θ, S∗T+� IS THE
TRUE STATE AT TIME T+ �� AND Fθ(ST,AT) IS THE PREDICTED
STATE AT T+ �� /N ITS FACE� IT MAY NOT BE OBVIOUS HOW
EQUATION ��	 IS RELATED TO EQUATION ��	� 4HE LATTER
INVOLVES FITTING 7E� WHICH IS A DISTRIBUTION OVER DIS
TANCES BETWEEN THE CURRENT AND TARGET STATES� WHILE
THE FORMER INVOLVES COMPARING PREDICTED AND ACTUAL
STATES AT TIME T+ �� 4O SEE THE CONNECTION� CONSIDER
THE FACT THAT IF Fθ IS A PROBABILISTIC MODEL� EVEN IF
ITS PERFORMANCE IS OPTIMIZED VIA EQUATION ��	 �WITH
SOME STEPS TAKEN TO PRESERVE NONZERO VARIANCE	� THE
DISTANCES ||S∗T+� − Fθ(ST,AT)||� WILL BE 7EIBULL DISTRIB
UTED� 7E CAN THINK OF THIS 7EIBULL AS 7I� )N THE
CASE WHERE THE ENVIRONMENT CHANGES AND THE STATE
AT TIME T+ � IS NO LONGER S∗T+� BUT INSTEAD S ′T+�� THE
PERFORMANCE OF Fθ IS NO LONGER MEASURED BY ||S∗T+� −
Fθ(ST,AT)||�� )NSTEAD� ||S ′T+� − Fθ(ST,AT)||� IS USED� 4HE
DISTRIBUTION OVER THESE NEW DISTANCES IS NO LONGER
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&IGURE �� 4HE TOP ROW CONTAINS HISTOGRAMS OF PRE�POSTROTATION AND PRE�POSTROTATION WITH ROTATION STATE DISTANCES GENERATED
FROM TWO SUBJECTS� -ODELING THE MOVEMENT OF THE MEAN OF THE ROTATION DISTRIBUTION IS NOT SUFFICIENT TO COMPLETELY CHARACTERIZE
THE LEARNING OBJECTIVE� 4HEMIDDLE ROW RELATES 4$- AND #6!2 ERRORS WITH THE MEAN BETA DEVIATION� WHERE EACH POINT IS A SUBJECT�
4HE BOTTOM PLOT ILLUSTRATES THE RELATIONSHIP BETWEEN THE $4$- ERROR AND THE MEAN BETA DEVIATION� ,INES OF BEST FIT ARE SHOWN IN
RED AND ARE GENERATED USING THE 2!.3!# ALGORITHM BECAUSE OF ITS ROBUSTNESS TO OUTLIERS� !RGUABLY� THE MEAN NEURAL DEVIATION IS
ENCODING BOTH 4$- AND #6!2 ERRORS �AS WELL AS OTHER RELATIONSHIPS BETWEEN7I AND7E	�

7I� AND WE CALL THIS NEW 7EIBULL 7E� 5PDATING
THE DYNAMICS MODEL USING EQUATION ��	 WOULD THEN
AMOUNT TO BRINGING THE PREDICTIONS OF Fθ(ST,AT) AS
CLOSE TO S ′T+� AS THEY HAD BEEN TO S∗T+� BEFORE THE ENVIR
ONMENT CHANGED� 7E INCORPORATE EQUATION ��	 INTO A
MODELBASED 2, APPROACH� 7E USE THIS MODELBASED
FRAMEWORK TO ALLOW A SIMULATED ROBOTIC ARM TO LEARN
TO LIFT A BLOCK WHEN THE LOCATION OF ITS CENTER OF MASS
IS PERIODICALLY SHIFTED�

4HE CONTROLLER WE USE ASSUMES THE EXISTENCE OF
TWO STOCHASTIC POLICIES� ONE THAT IS CAPABLE OF LIFT
ING AN OBJECT WITH A CENTERED CENTER OF MASS AND

ANOTHER THAT IS CAPABLE OF LIFTING AN OBJECT WITH AN
UNBALANCED CENTER OF MASS� 7E MAKE THIS ASSUMP
TION BECAUSE IN LEARNING TO ADAPT TO A SHIFTING CEN
TER OF MASS� THE HUMAN SUBJECTS IN OUR EXPERIMENT
ALREADY KNOW HOW TO LIFT THE OBJECT IN BOTH ORIENT
ATIONS� 4HE TASK IS ASSESSING THEIR ABILITY TO ADAPT�
THUS THIS IS THE FOCUS OF OUR ROBOTIC EXPERIMENT AS
WELL� !T TIME T OF THE SIMULATION� 2 POSSIBLE ACTIONS
ARE SAMPLED FROM THE POLICIES� 2OLLOUTS FROM THESE
ACTIONS ARE SIMULATED FORWARD IN TIME TO T+4 USING
A DYNAMICS MODEL AND THE POLICIES� 4HIS RESULTS IN 2
STATEACTION TRAJECTORIES OF LENGTH4� 4HESE TRAJECTORIES
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&IGURE �� 4OP� %RROR OF THE DYNAMICS MODEL AGAINST THE NUMBER OF ITERATIONS OF TRAINING ALGORITHM� 4RAINING WAS PERFORMED USING
MINIBATCH SAMPLING� WHICH EXPLAINS THE SAWTOOTH IMPROVEMENT IN THE ERROR� 4HE CENTER OF MASS IS SWITCHED HALFWAY THROUGH
TRAINING� RESULTING IN A JUMP IN THE ERROR� 4HIS JUMP IS CORRECTED DURING SUBSEQUENT UPDATING� "OTTOM� 4HE RED CURVES ARE
GENERATED BY THE CONTROLLER FIT USING A CENTERED WEIGHT WITH DYNAMICS TRAINED ON A CENTERED WEIGHT� THE GREEN CURVES ARE GENERATED
USING AN UNCENTERED WEIGHT WITH A DYNAMICS MODEL TRAINED ON A CENTERED WEIGHT AND NOT UPDATED� AND THE BLUE CURVES ARE
GENERATED USING AN UNCENTERED WEIGHT WITH AN UPDATED MODEL� 4HE UPDATED MODEL IS ABLE TO OUTPERFORM THE CONTROLLER WITHOUT A
MODEL UPDATE�

ARE COMPARED USING THE CUMULATIVE REWARD OVER ALL
4 TIMESTEPS�

∑T+4
H=T C(S

I
H,A

I
H)� WHERE I∈ [��x�2] AND

C(SIH,A
I
H) IS THE ABSOLUTE VALUE OF THE ROLL OF THE OBJECT

AT TIME H� 4HE ACTION AT TIME T YIELDING THE LOWEST

COST TRAJECTORY IS THE ONE SELECTED AND THIS PROCESS IS
REPEATED FOR EACH TIMESTEP�

4HE RESULTS OF THIS EXPERIMENT ARE SHOWN IN
FIGURE �� 4HE TOP PLOT SHOWS THE ERROR GENERATED BY

��
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THE DYNAMICS MODEL WITH RESPECT TO THE TRIAL NUMBER�
3HORTLY AFTER TRIAL ���� THE CENTER OF MASS IS SWITCHED�
CAUSING A SPIKE IN THE ERROR�7ITHIN ABOUT �� TRIALS� THE
MODEL HAS ADAPTED AND ITS PERFORMANCE HAS IMPROVED
TO BE BETTER THAN IT WAS BEFORE THE SWITCH� 4HE BOTTOM
PLOT SHOWS THE PERFORMANCE OF THE CONTROLLER AS MEAS
URED BY THE ABSOLUTE VALUE OF THE ROLL OVER THE COURSE
OF THE TRIAL� 4HE RESULTS SHOW THAT THE ROBOT IS ABLE TO
ADAPT QUICKLY TO THE CHANGING CENTER OF MASS� ALBEIT
NOT AS QUICKLY AS A HUMAN� 4HE ROBOT IS ABLE TO ADAPT
IN A LITTLE OVER ��� TRIALS� WHILE THE HUMAN IS ABLE TO
ADAPT WITHIN �� TRIALS�

4HERE ARE MANY POSSIBLE SOURCES OF INEFFICIENCY
FOR THE ROBOTIC CONTROLLER THAT COULD EXPLAIN THIS PER
FORMANCE GAP� &IRST� THE DYNAMICS MODEL IS UPDATED
USING RANDOM BATCH SAMPLING FROM PAST EXPERIENCE�
!RGUABLY� HUMANS DO NOT RANDOMLY SAMPLE FROM ALL
PAST EXPERIENCES WITH THE OBJECT WHEN FACED WITH
SUBOPTIMAL PERFORMANCE� 4HEY ARE ABLE TO DRAW
FROM PAST EXPERIENCE BASED UPON HYPOTHESES AS TO
THE CAUSE OF THE ERRORS� .EXT� THE DYNAMICS MODEL
IS RELATIVELY SIMPLE AND CONTAINS NO PRIOR KNOW
LEDGE BEFORE TRAINING ABOUT HOW SUCH OBJECTS BEHAVE�
4HE HUMAN MIND CONTAINS AN ENORMOUS AMOUNT OF
PAST EXPERIENCE TO DRAW ON TO GENERATE HYPOTHESES
EXPLAINING ERRORS� 4HE REPRESENTATION OF THE OBJECT
IN THE HUMAN MIND IS ALSO MUCH HIGHER DIMEN
SIONAL THAN THE REPRESENTATION USED BY THE ROBOT�
CONTAINING TACTILE� VISUAL� AND AUDITORY INFORMATION�
9ET� WHILE THE PERFORMANCE OF THE ROBOTIC CONTROL
LER IS NOT AT THE LEVEL OF THE HUMAN� THESE EXPER
IMENTS DEMONSTRATE THAT THE $4$- OBJECTIVE CAN
ACTUALLY BE USED TO SOLVE A CONTROL PROBLEM THAT
IS SIMILAR TO THE ONE SOLVED BY HUMANS� 6IDEOS
DEMONSTRATING THE ROBOT�S PERFORMANCE CAN BE FOUND
AT �.AIVE MODEL� HTTPS���YOUTU�BE�!MM�ZI-3V�5�
5PDATED MODEL� HTTPS���YOUTU�BE��ZQL8�4V#5 	�

�� $ISCUSSION

7E HAVE PROPOSED A DISTRIBUTIONAL LEARNING OBJECTIVE
FOR USE DURING MOTOR CONTROL AND USED THIS REPRES
ENTATION TO CONSTRUCT A MODEL OF MOTOR LEARNING� 4O
SO DO� WE EXTENDED 4EMPORAL $IFFERENCE -ODELS TO
$ISTRIBUTIONAL 4EMPORAL $IFFERENCE -ODELS� 7E HAVE
SHOWN THAT BEHAVIOR APPEARS TO OPTIMIZE THIS DISTRI
BUTIONAL OBJECTIVE AND THAT DEVIATIONS IN GLOBAL NEURAL
ACTIVITY ARE PROPORTIONAL TO THE MAGNITUDE OF THE DIS
TORTION OF THE VALUE DISTRIBUTION� $4$- IS NOT SIMPLY
USEFUL AS A MODEL OF MOTOR LEARNING� 7E HAVE SHOWN
THAT IT CAN BE INCORPORATED INTO A ROBOTIC CONTROL
LER AND USED FOR ENGINEERING APPLICATIONS� 4HE STRONG
CONNECTION IMPLIED BETWEEN NEURAL AND ROBOTIC SYS
TEMS SUGGESTS THAT IMPROVED UNDERSTANDING OF THE
BRAIN CAN BE DIRECTLY USED TO IMPROVE ROBOTIC ENGIN
EERING� /UR WORK ALSO SUGGESTS THAT WORK EXPLORING
THE CONVERSE CLAIM MAY BE SUCCESSFUL AS WELL� 4HIS
CLAIM IS OFTEN MADE INDIRECTLY� FOR EXAMPLE� BY CIT
ING THE NEUROSCIENTIFIC ORIGINS OF MACHINE LEARNING�

THOUGH THERE IS CURRENTLY NO FORMAL FRAMEWORK FOR
EXTRACTING NEUROSCIENTIFIC PRINCIPLES FOR THE PURPOSE
OF ENGINEERING !) ;��=� 7E HOPE THAT THIS WORK WILL
BE A STEP IN THIS DIRECTION�

/UR RESULTS ALSO CONTRIBUTE TO THE ACCUMULATING
BODY OF EVIDENCE IN SUPPORT OF THE -INIMUM &REE
%NERGY �-&%	 THEORY OF NEURAL LEARNING ;�n��=� /UR
RESULTS CONCERN MOTOR LEARNING� WHILE THE -&% THE
ORY IS POSITED TO APPLY TO NEURAL LEARNING IN GENERAL�
4HIS THEORY POSITS THAT LEARNING PROCEEDS THROUGH THE
OPTIMIZATION OF A FREE ENERGY OF THE FORM %ρ[6] +
([ρ]� WHERE 6 IS A POTENTIAL FUNCTION� %;·= IS THE
EXPECTATION OPERATOR� AND ρ IS A PROBABILITY MEAS
URE� )NTERESTINGLY� OPTIMIZATION OF THIS FREE ENERGY IS
EQUIVALENT TO OPTIMIZATION OF $+,(ρ||E−6) ;�=� )N THIS
WORK� WE HAVE NOT EXPLORED THE EXTENT TO WHICH 7I

CAN BE APPROXIMATED BY A MEASURE OF THE FORM E−6 �
THIS INFORMATION WOULD ALLOW FOR EQUATION ��	 TO BE
DIRECTLY RELATED TO A FREE ENERGY FUNCTIONAL� 4HIS MAY
BE AN INTERESTING DIRECTION FOR FUTURE WORK� 4HE CON
NECTION BETWEEN THIS WORK AND -&% THEORY RAISES
QUESTIONS RELATED TO THE NEURAL ORIGINS OF THE $4$-
OBJECTIVE� 3PECIFICALLY� IS THIS MATHEMATICAL OBJECT
IVE EXPLICITLY ENCODED BY SOME POPULATION OF NEUR
ONS� 0REVIOUS WORK HAS SHOWN THAT POPULATIONS OF
NEURONS ARE CAPABLE OF PERFORMING "AYESIAN INFER
ENCE AND BOTH -&% LEARNING AND OPTIMIZATION OF THE
$4$-OBJECTIVE ARE EXAMPLES OF VARIATIONAL "AYESIAN
INFERENCE ;�=� &URTHER WORK IS NECESSARY TO EXPLICITLY
DEMONSTRATE THE MECHANISM OF HOW NEURONS ARE CAP
ABLE OF ENCODING THE $4$- OBJECTIVE�

7E HAVE PROPOSED A DISTRIBUTIONAL FRAMEWORK FOR
MOTOR LEARNING� BUT HAVE NOT EXPLORED IN DEPTH HOW
DIFFERENT ASPECTS OF THE VALUE DISTRIBUTION COULD BE
USED DURING MOTOR ADAPTATION� "Y EXTENDING 4$-�S
TO THE SETTING WHERE POLICIES ARE ABLE TO OPTIMIZE THE
STRUCTURE OF VALUE DISTRIBUTIONS� WE ALLOW FOR EXPLICIT
MODELING OF PROPERTIES OF LEARNING THAT CANNOT BE CAP
TURED BY 4$-�S ALONE� /NE SUCH PROPERTY OF HUMAN
LEARNING IS RISK AVERSION� WHERE HUMANS NOT ONLY LEARN
TO MAXIMIZE REWARD� THEY ALSO LEARN TO AVOID POOR
PERFORMANCE �IN THE CASE OF THIS WORK� LOW REWARD	�
)N FIGURE �� WE SHOW THAT 7E HAS A MUCH LONGER TAIL
THAN7I IN ADDITION TO HAVING A HIGHERMEAN� AND THAT
THE SHAPE OF THE TAIL OF 7E IS ALSO OPTIMIZED DURING
LEARNING� 4HIS IS CAUSED BY A REDUCTION IN THE RELATIVE
NUMBER OF LARGE ROLLS �SHRINKING THE SIZE OF THE TAILS
OF 7E	� WHICH IS A FORM OF RISK AVERSION� 5SING THE
DIFFERENCE IN THE MEANS OF 7E AND 7I OBSCURES THIS
INFORMATION� DESPITE THE FACT THAT IT IS USEFUL IN A NUM
BER OF DIFFERENT SETTINGS� #ERTAINLY� THERE ARE SITUATIONS
IN WHICH RISKAVERSE BEHAVIOR IS BEST AND SITUATIONS
WHERE IT RESULTS IN OVERLY CAUTIOUS BEHAVIOR� "Y MAIN
TAINING A REPRESENTATION OF THE VALUE DISTRIBUTION� THE
BRAIN IS ABLE TO GENERATE POLICIES BY OPTIMIZING DIFFER
ENT ASPECTS OF THE DISTRIBUTION� 4HESE POLICIES CAN BE
SELECTED FROM� TO PRODUCE BEHAVIOR THAT IS APPROPRI
ATELY CAUTIOUS FOR A GIVEN SITUATION� 4HE ISSUE OF SELECT
ING FROM AMONGST A POPULATION OF POSSIBLE ACTIONS IS
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INTERESTING IN THE CONTEXT OF $4$- FOR OTHER REAS
ONS AS WELL� /FTEN� THE REPRESENTATION OF ERRORS USED
IN CONTROL PROBLEMS AND IN MODELING NEURAL CON
TROLLERS IS SUBORDINATE TO THE TYPE OF CONTROLLER USED�
FOR EXAMPLE� EITHER MODELBASED OR MODELFREE� 4HIS
WORK SUGGESTS THAT FROM BOTH A NEUROLOGICAL AND AN
ENGINEERING STANDPOINT� THIS MANNER OF THINKING MAY
BE REVERSED� 3PECIFICALLY� IT MAY BE BETTER TO DEVELOP
A REPRESENTATION OF ERRORS THAT CAN BE USED FOR EITHER
MODELFREE ORMODELBASED CONTROL� AND THEN DEVELOP
A CONTROLLER THAT CAN BEST OPTIMIZE THIS ERROR IN THE
SYSTEM OF INTEREST� )N THE CONTEXT OF NEUROLOGICAL SYS
TEMS� THIS SUGGESTS THE EXISTENCE OF A GENERIC ERROR
ENCODING THAT ARE INDEPENDENT OF THE CLASS OF CON
TROLLER� 4HE UTILITY OF SUCH A GENERIC ERROR REPRESENTA
TION WOULD FACILITATE� FOR EXAMPLE� ACTION SELECTION IN
THE SETTING WHERE A NUMBER OF CANDIDATE ACTIONS MUST
BE SELECTED FROM AND THE CANDIDATE ACTIONS ARE GENER
ATED FROM BOTH MODELFREE AND MODELBASED SYSTEMS
;��n��=� )N THIS SETTING� A GENERIC REPRESENTATION OF
ERROR WOULD ALLOW FOR A UNIVERSAL WAY OF COMPARING
THE PERFORMANCE OF CONTROLLERS AND SELECTING ACTIONS�
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