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Abstract. Multi-Electrode Arrays (MEAs) have been widely used to
record neuronal activities, which could be used in the diagnosis of gene
defects and drug effects. In this paper, we address the problem of clas-
sifying in vitro MEA recordings of mouse and human neuronal cultures
from different genotypes, where there is no easy way to directly utilize
raw sequences as inputs to train an end-to-end classification model. While
carefully extracting some features by hand could partially solve the prob-
lem, this approach suffers from obvious drawbacks such as difficulty of
generalizing. We propose a deep learning framework to address this chal-
lenge. Our approach correctly classifies neuronal culture data prepared
from two different genotypes — a mouse Knockout of the delta-catenin
gene and human induced Pluripotent Stem Cell-derived neurons from
Williams syndrome. By splitting the long recordings into short slices
for training, and applying Consensus Prediction during testing, our deep
learning approach improves the prediction accuracy by 16.69% compared
with feature based Logistic Regression for mouse MEA recordings. We
further achieve an accuracy of 95.91% using Consensus Prediction in one
subset of mouse MEA recording data, which were all recorded at six days
in vitro. As high-density MEA recordings become more widely available,
this approach could be generalized for classification of neurons carrying
different mutations and classification of drug responses.

Keywords: Deep learning · Convolutional neural network · Classifica-
tion · MEAs.

1 Introduction

Deep learning models have achieved remarkable success in computer vision [1],
speech recognition [2], natural language processing [3] and the game of Go [4].
Recently there has been increasing interest in using deep learning in end-to-end
neuroscience data analysis [6, 5, 7]. Inspired by biology, deep learning models
share many common properties with neuron functions. Deep learning models
enable the extraction of information from action potential recordings of neuron
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activity, playing a vital role in several important neuron-based research and
application areas [8].

Convolutional neural networks (CNN) can learn local patterns in data by
using convolution filters as their key components [9]. Originally developed for
computer vision, CNN models have recently been shown to be effective for neuro-
science data analysis. Deep learning has recently been used to identify abnormal
EEG signals [5]. In [6], researchers designed an end-to-end EEG decoding for
movement-related information using deep CNNs. With the latest development
in fabrication of MEAs, a CNN was used to classify different neuronal cell types
using simulated in-vivo extracellular recordings [10]. However, most of the work
in this area has focused on simulated data [10, 11] since the experimental in
vitro recordings are too noisy and there are not sufficient training samples for
deep learning models. Researchers have also manually extracted features for deep
learning training [10, 11]. However, this does not fully exploit the deep learning
model’s ability of end-to-end learning, which learns from the raw data without
any prior feature selection.

MEAs with advanced neural probes have been widely utilized to measure
neuronal activity by recording local field potential [12]. Since the same units
are measured on multiple recording sites, MEA recordings provide rich spatial
information, which could be used to help diagnose diseases and genetic abnor-
malities. Our objective in this work has been to develop a deep learning frame-
work which can distinguish MEA recordings of different genotypes. For example,
delta-catenin is a crucial brain-specific protein of the adherens junction complex
that localizes to the postsynaptic and dendritic compartments. It is enriched in
dendrites and can be localized to the post-synaptic compartment. Recent studies
indicate that delta-catenin is required for the maintenance of neural structure
and function in the mature cortex [13–15]. Williams syndrome (WS) is a neu-
rodevelopmental disorder caused by a genomic deletion of about 28 genes [16,
17]. As a result of this hemideletion, the subjects display a characteristic pheno-
type with mild to moderate intellectual disability as well as behavioral features
such as an outgoing personality and conserved communication skills. Studying
those genes is of particular interest in order to decipher the social behaviors in
humans [18].

In the present work, we propose an end-to-end CNN architecture to classify in
vitro MEA recordings with different genotypes. We test our framework on mouse
recordings to classify Wild Type and delta-catenin Knockout. We also attempt
to classify human derived induced Pluripotent Stem Cell (iPSC) neuron cultures
from Williams syndrome versus Control cultures. We split the long recordings
into smaller slices for training to provide more training samples, and then apply
Consensus Prediction during testing.

The key contributions of this paper include:

1) We propose a CNN based model to classify the genotype of in vitro MEA
recordings, which outperforms Logistic Regression by 16.69%. To the best of our
knowledge, this is the first paper using deep leaning to classify in vitro MEA
recordings.
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2) We split the long recordings into smaller slices for training, which not only
eases the burden on GPU memory but also provides many training samples for
deep learning models.

3) We define Consensus Prediction as the majority voting result of the sam-
pled short slices for testing, since not all of the short slices can be expected to
contain enough useful information. We achieve an accuracy of 95.91% using Con-
sensus Prediction in one subset of MEA recording data, which were all recorded
at 6 days in vitro (DIV).

The rest of this paper is organized as follows. Section 2 describes how our
MEAs are recorded and introduces the classification problem. We delineate the
deep learning model in Section 3 and describe the experimental setup in Sec-
tion 4. Evaluation and discussion are provided in Sections 5 and 6, respectively.

2 Data Collection and Classification

2.1 Mouse neuron culture

Commercial MEAs (MultiChannel Systems) were sterilized with UV irradiation
for > 30 minutes, incubated with poly-L-lysine(0.1 mg/ml) solution for at least
one hour at 37◦C, rinsed several times with sterile deionized water and allowed
to dry before cell plating. Wild-type mice were in a C57BL/6 background and
littermate controls were obtained by breeding heterozygote male and female
delta-catenin transgenic mice. For the delta-catenin transgenic mice, a targeted
mutation in the delta-catenin gene is located within axon 9 of the delta-catenin
locus and consists of a GFP reporter fused to a PGK-hyygro-pA cassette fol-
lowed by a stop condon, which results in the prevention of transcription of the
rest of the delta-catenin gene. Mouse pups were decapitated at P0 or P1, the
brains were removed from the skulls and the hippocampi were dissected from the
brain followed by manual dissociation and plating of 250,000 cells in the MEA
chamber [19]. After one week, cultures were treated with 200 µM glutamate to
kill any remaining neurons, followed by a new batch of cells added at the same
density as before. Cultures were grown in a tissue culture incubator (37◦C, 5%
CO2), in a medium made with Minimum Essential Media with 2 mM Glutamax
(Life Technologies), 5% heat-inactivated fetal calf serum (Life Technologies), 1
ml/L of Mito+ Serum Extender (BD Bioscience) and supplemented with glu-
cose to an added concentration of 21 mM. All animals were treated in accordance
with University of California and NIH policies on animal care and use.

2.2 Culture of iPSCs neurons

iPSCs were cultured in mTeSR1 media (Stem Cell Technologies) and routinely
passaged with ReleSR (Stem Cell Technologies). The cells were subsequently in-
fected with TetO-hNgn2-UBC-puro (plasmid from Addgene # 61474) and rtTA
(plasmid from Addgene # 20342) lentiviruses. Briefly, the cells were passaged
as single cells into 4 wells with accutase (Life Technologies) and Y-27632 dihy-
drochloride (Tocris) at a final concentration of 10 M. On day 2 the cells were
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infected with hNgn2 in fresh mTeSR1 media. On day 3, the infected iPSCs
were selected by adding puromycin at 2 ug/ml for a 2 day period. The cells
were infected with rtTA virus on day 5 and incubated overnight. The neurons
were differentiated by adding doxycycline at a final concentration of 2 ug/ml.
Two days after addition of doxycycline, the neurons were replated on poly-l-
lysine coated MEAs at a density of 180,000 cells concentrated in a 15 ul droplet.
iPSCs-derived neurons were cocultured with mouse primary astrocytes in Brain-
Phys complete medium (Stem Cell Technologies). Doxycycline was kept in the
media for 14 days total.

2.3 Electrophysiology

We used 120 electrode MEAs (120MEA100/30iR-ITO arrays; MultiChannel Sys-
tems) for recording as is shown in Fig. 1. All recordings were performed in cell
culture medium so as to minimally disturb the neurons. The osmolality of the
culture medium was adjusted to 320 mosmol. Recordings were performed us-
ing MultiChannel Systems MEA 2100 acquisition system. Data were sampled at
20 kHz. Recordings were performed at 30◦C. All recordings were performed on
neurons at 2-30 DIV. Data recordings were typically 3 minutes long. The record-
ing duration was controlled to minimize the effects of removing MEAs from the
incubator.

Fig. 1. Neural networks were grown on arrays of 120 electrodes. The purpose of this
research was to determine whether neural cultures derived from genetically different
neurons could be distinguished by analysis of their electrical activity.
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2.4 Spike Detection

For each MEA recording, we performed spike detection [21]. Extracellular signals
were band pass filtered using a digital 2nd order Butterworth filter with cutoff
frequencies of 0.2 and 4 kHz. Spikes were then detected using a threshold of
5 times the standard deviation of the median noise level. Since there are 120
electrodes in our MultiChannel Systems, the spike detection result of a 3 min
recording is a 120×180000 shape matrix made up of 1s and 0s, where 1 represents
neuron firing and 0 represents not firing.

2.5 Classification

For the remainder of this paper, Wild Type (WT) means that there is no gene
mutation. Knockout (KO) means that the gene delta-catenin is knocked out or
not expressed in the mouse neurons. WS is Williams syndrome neurons, com-
pared with Control. Fig. 2 shows Raster Plots for some sample mouse MEA
recordings from WT and KO. From the figure, the recording patterns vary dras-
tically according to different mice, different DIV and even different recording
numbers. However, recordings of different genotypes sometimes perform simi-
larly. It is challenging for human eyes to distinguish KO from WT. There are
several reasons: 1. The recordings are noisy due to the errors in measuring poten-
tials and spike detection. 2. The firing pattern will change drastically according
to many factors like different DIV, different mice and even different recordings.
A deep learning classification framework is therefore introduced to automatically
predict the genotype, given an MEA recording.

We use two separate sets of MEA recordings in our classification: one dataset
consists of mouse neuron recordings to classify KO and WT, while the other
dataset consists of human iPSC neuron recordings to distinguish WS and Control
human cells. Our mouse recordings consist of 5 separate experiments (Exp1,
Exp2, Exp3, Exp4, Exp5) and 331 180000 ms recordings in total, of which 198
recordings are WT and the remainder are delta-catenin KO. Our iPSC recording
data are made up of 12 WS recordings and 8 Control recordings. Considering
the size of the two datasets, we randomly shuffle and split the mouse MEA data
into training, validation and testing by 70%, 10% and 20%, while we apply 5-fold
cross-validation for human iPSC recordings.

3 Deep Learning Model

The model architecture, shown in Fig. 3, consists of convolution-pooling lay-
ers followed by fully connected layers. To learn temporal and spatial invariant
features, the convolution is performed on both time and space dimensions. We
split the long recordings into smaller slices with length of seq length. Detected
spikes with shape of (120, seq length) serve as input x for the neural network.
A convolution operation involves a filter w ∈ Rst, which is applied to a win-
dow of s electrodes and t ms to produce a new feature. For example, a feature
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Fig. 2. Raster Plots of WT and delta-catenin KO. Blue represents WT and red in-
dicates delta-catenin KO. The title of each raster plot is formatted as ”MEA device-
Mouse-Gene type-DIV-Record Number”. (a) KO and WT share some common firing
patterns. (b) Different recordings with the same gene type, as well as the same DIV
look different. (c) Recordings with the same mouse, the same gene type but differ-
ent DIV look different. (d) Recordings with the same gene type, the same DIV, but
different mouse look different.
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fi,j , (0 ≤ i ≤ 120− s+ 1, 0 ≤ j ≤ seq length− t+ 1) is generated from a window
size (s, t) of the spike train:

fi,j = ReLU(wxi:i+s−1,j:j+t−1 + b), (1)

where b ∈ R is a bias term. This filter is applied to each possible window of the
spike trains to produce a feature map:

f =


f1,1 f1,2 ... f1,seq length−t+1

f2,1 f2,2 ... f2,seq length−t+1

... ... ... ...
f120−s+1,1 f120−s+1,2 ... f120−s+1,seq length−t+1

 , (2)

with f ∈ R120−s+1,seq length−t+1. We then apply a max-pooling operation over
the feature map and take the maximum value m = max f as the feature cor-
responding to this particular filter. The idea is to capture the most important
feature, the one with the highest value, for each feature map. Our model uses
multiple filters to obtain multiple features. These features form the penultimate
layer and are passed to a fully connected softmax layer whose output is the
probability distribution over two different genotypes. We adjust the number of
convolutional ReLU layers from 2 to 5, based on the choice of seq length.

We use Batch Normalization [25] to accelerate training. For regulaization,
dropout [23] and early stopping methods [24] are implemented to avoid over-
fitting. Dropout prevents co-adaptation of hidden units by randomly dropping
out a proportion of the hidden units during backpropagation. Model training
is ended when no improvement is seen during the last 100 validations. Softmax
cross entropy loss is minimized with the Adam optimizer [26] for training.
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filter widths and 
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Segments with
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Fig. 3. Model architecture: 3 minute recordings of the electrical potentials measured
on the 120 electrodes are collected from the neuron cultures. Segments with seq length
= 4 ms of these recordings are individually classified. These individual classifications
are conducted for Consensus Prediction in mouse MEA recordings.
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4 Experimental Setup

4.1 Training and Hyperparameters

We use 1 ms time bins for our spike train data, thus the dimensionality of time is
extremely high. For example, a slice of 10 seconds has 10,000 data points along
the time dimension. Thus, the CNN model has a very high demand for memory,
while the memory for the graphics processing unit (GPU) is limited. In practice,
we randomly sample segments from each recording for training, which not only
decreases the GPU memory usage by reducing the dimensionality of time but
also increases the number of training samples. For example, if we use seq length
of 1000ms, then a 180000ms recording can provide 180 independent samples.

We implement the deep learning framework using Tensorflow [22] with the fol-
lowing configurations. The (120, seq length) spike detected matrices (see Fig. 3)
are input to convolutional ReLU layers which filter the input spike train with
2 × 5 kernels and stride of (1, 1). It is interesting to note several biologically
inspired hyperparameters in Table 1. Seq length is the slice length that we use
to split the recordings. Kernel size and stride in CNN correspond to propaga-
tion signals, synaptic coupling and correlation between channels. Short latency,
monosynaptic, interactions are in a range of 2-4 ms. Propagation signals occur-
ring between nearby electrodes have an average latency of 0.3 ms to 0.7 ms. We
choose a kernel size of 2 × 5 and stride of (1, 1) to capture propagation signals
and synaptic coupling. Hyperparameters are described in Table 2. Max pooling
is then applied after each convolutional ReLU layer. The feature maps are input
for fully connected layers with 2 output nodes for the binary classification.

4.2 Testing

For testing, we define Consensus Prediction to measure the performance of pre-
dictions for the whole recordings. Consensus Prediction synthesizes results from
odd numbers of short slices by majority voting, which can significantly improve
the prediction accuracy for a long recording. This is because not all of the short
time-slices can be expected to contain useful information. The results of mouse
MEA recordings in Section 5 are reported with Consensus Prediction.

4.3 Implementation

We implement a framework that can distribute the convolutional neural network
into multiple (N) GPUs to ease the burden on GPU memory. Each GPU con-
tains an entire copy of the deep learning model. We first split the training batch
evenly into N sub-batches. Each GPU only processes one of the sub-batches.
Then we collect gradients from each replicate of the deep learning model, ag-
gregate them together and update all the replicates. With 3 NVIDIA GeForce
GTX 1080s, each of which has a memory of 11178 MB, we can handle spike train
segments of 14 seconds with batch size of 24.
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Table 1. Bio-inspired parameters

Para Biological Justification value

Seq length The appropriate slice length which can represent a recording 4000 ms
Kernel size Propogation signals (2,5)
Stride Synaptic coupling, correlation between channels (1,1)

Table 2. Hyperparameters

Hyperparameters Value

Batch size 24
Epoch 5000
Dropout rate 0.5

5 Empirical Evaluation

We focus our evaluation mainly on the accuracy of predicting genotype. We use
Consensus Prediction, which is the majority voting result of the sampled short
slices, for the mouse recordings. We report the initial prediction accuracy of
short slices for human iPSC recordings without Consensus Prediction, since the
recording experiments are better controlled.

5.1 Performance Analysis

Results of our framework compared against other machine learning models on
mouse recordings and human iPSC recordings are shown in Table 3 and Table 4
respectively. We compare our CNN model with Multilayer Perceptron(MLP)
and feature based Logistic Regression. We use a two layer MLP, which shares
the same hyperparameters with our model’s fully connected layers. For Logis-
tic Regression, we first extract features of firing rate and Pearson correlation
coefficient between different electrodes for each recording, and then classify neu-
ron genotypes based on these two features. For the mouse recordings, our CNN
based deep learning approach improves the Consensus Prediction accuracy by
16.69% compared with feature based Logistic Regression. Fig 4 shows the Con-
sensus Prediction accuracy. The accuracy improves by 5.92% using Consensus
Prediction. Although not all of the short slices can be expected to contain enough
useful spike patterns, we can overcome that when we synthesize multiple individ-
ual classification results from these short slices. For the human iPSC recordings,
we report the prediction accuracy of short recording slices. Our model achieves
accuracy of 96.18% even without Consensus Prediction, which is a 15.59% im-
provement over feature based Logistic Regression. Our CNN based deep learning
model also outperforms MLP on both of the two sets of recordings by 7.00% and
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7.81% respectively, which shows CNN’s advantage of local feature extraction
using convolutional kernels over MLP.
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Fig. 4. Consensus Prediction accuracy vs. number of short slices used for mouse record-
ings.

Fig 5 shows the trend of accuracy versus the choice of seq length for human
iPSC. For the effect of seq length on accuracy, there exists a trade off between
number of training samples and representation of a whole recording. The short
slices contain less information but can provide more independent training sam-
ples. For deep learning models, larger numbers of training slices help more than
a larger sample. However, we still cannot choose too small of a seq length, since a
too short slice is not representative for a recording. Given the data we currently
have, we use a seq length of 4000 ms.

Dropout proved to be such a good regularizer that it was fine to use a larger
than necessary network or train too many epochs and simply let dropout regular-
ize it [27]. Dropout consistently added 2% - 4% relative performance. Our model
converged best with Adam optimizer compared with Vanilla gradient descent,
Adagrad [28], Adadelta [29] and RMSprop [30].

5.2 Case Study

It is challenging to classify the genotype of mouse MEA recordings due to the
differences in recordings taken from neurons of different DIV, different mice
and different recordings. Considering that the neuron firing patterns change
drastically with different DIV, we use two subsets of mouse recording data (Exp1
and Exp2), recorded at 6 DIV and 10 DIV respectively, to study the effect
of Consensus Prediction. Fig. 6 shows the prediction accuracy versus number



Deep Learning Classification for in vitro MEA 11

0 2000 4000 6000 8000 10000 12000 14000
seq_length (ms)

0.75

0.80

0.85

0.90

0.95
Pr

ed
ict

io
n 

ac
cu

ra
cy

Accuracy vs. seq_length for human iPSC

Fig. 5. Accuracy vs. seq length trend for human iPSC recordings.

Table 3. Consensus Prediction performance comparison of our deep learning model
with Multilayer Perceptrons and Logistic Regression on mouse recordings.

Model Accuracy on Testing

Convolutional Neural Network 0.8951
Multilayer Perceptron 0.8366
Logistic Regression 0.7671

Table 4. Performance comparison of our deep learning model with Multilayer Percep-
trons and Logistic Regression on iPSC recordings.

Model Accuracy on Testing

Convolutional Neural Network 0.9618
Multilayer Perceptron 0.8921
Logistic Regression 0.8321
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of voting slices in Consensus Prediction. By taking one subset of experiments
all recorded at 6 DIV, we achieve a Consensus Prediction accuracy of 95.91%
for Exp1. Similarly, we achieve a Consensus Prediction accuracy of 94.12% for
recordings in Exp2, which are all at 10 DIV. Using Consensus Prediction, we
improve the prediction accuracy by 12.70% and 11.68% for Exp1 and Exp2
respectively, which indicates that combining information from different parts of
one recording significantly helps improve the performance.

Fig. 6. Consensus Prediction accuracy for Exp1 and Exp2.

6 Discussion

We have addressed the issue of classifying different genotype MEA recordings by
proposing a deep learning framework. We split the long recordings into smaller
slices, which not only eases the burden on GPU memory but also provides more
training samples for the deep learning model. We use Consensus Prediction dur-
ing testing, to predict the genotype for a recording. This paper is a proof of
principle for classification via deep learning of in-virtro MEA recordings. Clearly,
however, more work is needed before it can be known if deep learning will be
a generally useful technique for classification of neural cell genotypes or drug
effects from in vitro MEA recordings. For example, one can use more recordings
and MEAs with larger numbers of probes in future work.
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