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Abstract:  In numerically simulating the time evolution of a well-stirred chemically 

reacting system, the recently introduced “tau-leaping”  procedure attempts to accelerate 

the exact stochastic simulation algorithm by using a special Poisson approximation to leap 

over sequences of non-critical reaction events.  Presented here is an improved procedure 

for determining the maximum leap size for a specified degree of accuracy. 
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I.  Introduction 

 In a well-stirred chemically reacting system, the state vector 

( )1( ) ( ), , ( )Nt X t X t=X � , where ( )iX t  is the number of molecules of species iS  in the 

system at time t, evolves stochastically because of the inherent randomness of thermal 

molecular motion.  Random molecular collisions give rise to random chemical 

transmutations in accordance with some specified set of reaction channels { }1, , MR R� .  

The dynamics of reaction channel jR  are mathematically defined by a propensity function 

ja  together with a state-change vector 1( , , )j j N jν ν=� � :  ( )ja dtx  gives the probability 

that one jR  reaction will occur in state x during the next infinitesimal time interval dt, and 

ijν  gives the change in the iS  molecular population produced by one jR  reaction.1 

 For numerically simulating the stochastic evolution of ( )tX , there exist several exact 

procedures that actualize every molecular reaction event.2,3  But efforts to model the 

complex reactions inside living cells, where small molecular populations of some key 

reactants can set the stage for major stochastic effects,4-6 have revealed the need for faster, 

possibly less meticulous stochastic simulation strategies. 

 The recently proposed “leaping” methodology7 attempts to sacrifice some exactness 

for greater speed, and to do so in a way that segues as the system size becomes infinite to 

standard solution methods for the conventional deterministic reaction rate equation.  The 

“τ -leap method,”  for instance, tries to leap down the history axis of the system by some 

chosen time τ  that encompasses many reaction events.  But theoretical considerations 

demand that the size of τ  be constrained by a Leap Condition, which says that the state 

change in any leap should be small enough that no propensity function will experience a 

macroscopically significant change in its value. 

 The mathematical rationale for the τ -leap method7 is the fact that, to the extent that 

the Leap Condition is satisfied, then given ( )t =X x , the number of times ( ; )jK τ x  that 

reaction channel jR  will fire in ( , )t t τ+  can be approximated by a Poisson random 

variable: 
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  ( ; ) ( ( ), )j j jK aτ τ≈x x
�

. (1) 

This is so because the generic Poisson random variable ( , )a τ�
 can be defined as the 

number of events that will occur in a time τ , given that the probability for an event to 

occur in the next infinitesimal time dt  is adt , where a  can be any non-negative constant.  

This last requirement is approximately ensured by the Leap Condition, and the consequent 

approximation (1) allows us to estimate the state change in the leap, 

  
1

( ) ( ; ) ( ; )
M

j j
j

t Kτ τ τ
=

+ − ≡ = �X x x x
� �

, (2) 

by simple Poisson sampling.8  But for this approach to be practicable, we need a reliable, 

expeditious, and preferably automatic way of determining the largest value of τ  that is 

compatible with the Leap Condition. 

 In Ref. 7, it was suggested that a plausible mathematical framing of the Leap 

Condition would be to require the leap time τ  to be such that 

  0( ; ) ( ) ( ) 1, ,j ja a a j Mτ ε+ − ≤ ∀ =(x x ) x x
� �

, (3) 

where ε  is a pre-specified error control parameter (0 1)ε< � , and 0( ) ( )ll
a a≡ �x x  is 

the sum of all the propensity functions.  It might seem more appropriate to use on the 

right-hand side of (3) ( )ja x  instead of 0( )a x ; however, that leads to problems if ( )ja x  

approaches zero during a simulation, as will happen if the population of any jR  reactant 

species approaches zero.  A reasonable alternative to 0( )a x  in (3) would be 

( )[1, ]max ( )j M ja′ ′∈ x .  With either choice, smaller values of ε  ensure smaller changes in the 

propensity functions during a leap, and that in turn leads to greater accuracy in the 

approximation (1).  But of course, smaller values of ε  also imply shorter leaps, and 

therefore longer simulation times. 

 How can we find the largest value of τ  that is consistent with (3) for a specified 

value of ε ?  This would be a reasonably straightforward problem were it not for the fact 

that the left-hand side of (3) is a random variable (since ( ; )τ x
	

 is a random variable).  In 

any case, we would like to make our determination of τ  without performing repeated 
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“trial”  leaps, checking after each one to see if condition (3) is satisfied and adjusting τ  

accordingly; such a post-leap procedure not only would consume much time and many 

random numbers, but it might also discriminate against statistically rare but nonetheless 

legitimate large changes in the system’s state. 

 A specific pre-leap τ -selection procedure was proposed in Ref. 7; however, it was 

subsequently realized that that procedure does not always adequately ensure condition (3).  

In this paper we present a new τ -selection procedure that should be more robust.  We 

shall first describe the procedure operationally, then outline its theoretical justification, and 

finally give a numerical example that illustrates its improved performance. 

II.  The New Tau-Selection Procedure 

 The new τ -selection procedure requires us to determine in advance first the 2M  

functions 

  ( )
1

( )
( ) , 1, ,

N
j

j j i j
i i

a
f j j M

x

∂
ν

∂′ ′
=

′ =
� x

x � � , (4) 

and then the 2M  functions 

  
1

( ) ( ) ( ) ( 1, , ),
M

j j j j
j

f a j Mµ ′ ′
′=

=
�

x x x
� �

 (5a) 

  2 2

1

( ) ( ) ( ) ( 1, , ).
M

j j j j
j

f a j Mσ ′ ′
′=

=
�

x x x
� �

 (5b) 

This obviously represents some computational overhead, but the task is not quite as 

daunting as it might at first appear:  The functional dependence of ja  on each ix  will 

typically be very simple – often constant, sometimes linear, but rarely more than quadratic.  

Furthermore, for large systems the matrix ijν  will typically be sparse.  In any case, with 

the functions (4) and (5) determined, then given a current state ( )t =X x , the largest τ  

that is compatible with the Leap Condition (3) is taken to be 

  
2 2

0 0
2[1, ]

( ) ( )
Min ,

( )( )j M
jj

a aε ετ
σµ∈

� �� �
= 	 
� �� �x x

xx
. (6) 
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Acceptance of this τ -value is, however, subject to the proviso that if it is less than a few 

multiples of 01 ( )a x , which is the mean time step for the exact stochastic simulation 

algorithm (SSA),2 then it would be better to forego leaping and instead use the SSA. 

 As will be discussed later, the essential difference between the τ -selection 

procedure described above and the one proposed in Ref. 7 is that the earlier procedure 

lacks the second argument in the minimization braces of (6).  The major extra effort 

involved in using this new τ -selection procedure is thus the repeated evaluation of the 

2( )jσ x  quantities in Eq. (5b).  Ameliorating that effort is the fact that the quantities 

( )j jf ′ x  and ( )ja ′ x  needed for the 2( )jσ x  computations are already at hand from the 

( )jµ x  computations in Eq. (5a). 

III.  Derivation 

 To derive Eq. (6), we begin by approximating the leap-induced propensity function 

change on the left hand side of Eq. (3) by a first-order Taylor expansion: 

  ( ; ) ( ; ) ( )j j ja a a∆ τ τ+ −x (x x ) x
��

 

  
1

( )
( ; ) ( ) ( ; )

N
j

j i
i i

a
a

x

∂
τ Λ τ

∂=
≈ ⋅∇ = � x

x x x
�

. (7) 

From Eqs. (1) and (2) we have the approximation 

  
1

( ; ) ( ( ), )
M

i j j i j
j

aΛ τ τ ν′ ′ ′
′=

≈ �x x
�

. (8) 

Substituting this into Eq. (7), interchanging the order of the two summations, and then 

invoking the definition (4), we obtain 

  
1

( ; ) ( ) ( ( ), )
M

j j j j j
j

a f a∆ τ τ′ ′ ′
′=

≈ �x x x
�

. (9) 

 Equation (9) evidently expresses the random variable ( ; )ja∆ τ x  as a linear 

combination of statistically independent Poisson random variables.  It follows from a 



 6 

general result in statistics that the mean and variance of ( ; )ja∆ τ x  can then be computed 

as 

  
1

( ; ) ( ) ( ( ), )
M

j j j j j
j

a f a∆ τ τ′ ′ ′
′=

≈ �x x x
�

, (10a) 

  { } { }2

1

var ( ; ) ( ) var ( ( ), )
M

j j j j j
j

a f a∆ τ τ′ ′ ′
′=

≈ �x x x
�

. (10b) 

Since { }( , ) var ( , )a a aτ τ τ= =
� �

, this gives, using the definitions (5), 

  ( )
1

( ; ) ( ) ( ) ( )
M

j j j j j
j

a f a∆ τ τ µ τ′ ′
′=

≈ ≡
�

x x x x , (11a) 

  { } ( )2 2

1

var ( ; ) ( ) ( ) ( )
M

j j j j j
j

a f a∆ τ τ σ τ′ ′
′=

≈ ≡
�

x x x x . (11b) 

 Now, the Leap Condition (3) requires that each random variable ( ; )ja∆ τ x  be 

bounded in absolute value by 0( )aε x .  Leaving aside the question of whether the 

multiplier of ε  in this bound ought to be 0( )a x  or ( )[1, ]max ( )j M ja′ ′∈ x  or perhaps 

something else, we are faced here with the interesting question of how we should go about 

ensuring an inequality condition on a random variable.  We shall take the position that the 

inequality should be enforced only in some approximate statistical sense. 

 Since we expect ( ; )ja∆ τ x  to be “small” , then to a first approximation we should be 

able to write it as 

  { }( ; ) ( ; ) sdev ( ; )j j ja a a∆ τ ∆ τ ∆ τ≈ ±x x x . (12) 

Note that the first term on the right hand side here can be positive, negative, or zero, while 

the standard deviation (the square root of the variance) is always positive (becoming zero 

if and only if ( ; )ja∆ τ x  becomes a sure variable).  The problem with the approximation 

(12) is that we have to allow for both signs on the right hand side.  A conservative 

maximal estimate of the above approximation would be { }( ; ) sdev ( ; )j ja a∆ τ ∆ τ+x x , 

and if we required that quantity to be bounded by 0( )aε x  for each j , we could use Eqs. 
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(11) to obtain a computable formula for the largest τ .  But it would be easier, and in the 

final analysis probably just as reasonable, to require each of the two terms on the right 

hand side of (12) to be absolutely bounded by 0( )aε x .  Imposing that requirement and 

then invoking the approximations (11), we obtain 

  1/ 2
0 0( ) ( ) and ( ) ( ), 1, ,j ja a j Mµ τ ε σ τ ε≤ ≤ ∀ =x x x x � . (13) 

Of course, the two alternative bounding procedures just described are not equivalent to 

each other for a given value of ε ; however, given the intrinsic arbitrariness in choosing a 

value for ε  in the first place, both procedures achieve approximately the same end.  And 

since neither procedure is obviously “more correct”  than the other, it seems reasonable to 

go with the computationally simpler one. 

 Accepting, then, conditions (13) as a reasonable quantification of the Leap Condition 

(3), it is easy to see that this condition is secured by choosing τ  according to Eq. (6). 

IV.  k � -Leaping 

 A variation of the τ -leaping strategy is “ kα -leaping” ,7 in which we leap down the 

history-axis of the system by a specified number kα  of firings of some chosen reaction 

channel Rα .  Whereas in τ -leaping we are faced with the task of finding the largest value 

of τ  that is compatible with the Leap Condition, in kα -leaping we are faced with the task 

of finding the largest value of kα  that is compatible with the Leap Condition. 

 One way to solve the kα -selection problem is to observe that, when the Leap 

Condition is satisfied, the average number of firings of channel Rα  in a time τ  will be 

  ( ; ) ( ( ), ) ( )K a aα α α ατ τ τ≈ =x x x
�

. (14) 

So a leap by time τ  is on average equivalent to a leap by  

  [ ]( )k aα α τ= x  (15) 

Rα  events, where [z] denotes “the greatest integer in z ” . 



 8 

 Therefore, a plausible way to choose a suitable value for kα  would be to first 

compute the τ  value in Eq. (6), and then use it to compute kα  according to Eq. (15).  

That done, the τ -value computed from Eq. (6) should be discarded, since (as is explained 

more fully in Ref. 7) the time increment τ  associated with the pre-selected value kα  

should be obtained by sampling the gamma random variable ( )( ),a x kα αΓ .8  Using that 

τ -value as the leap time, the numbers of firings of all the other reaction channels jR α≠  are 

then generated according to formula (1). 

 If the value of kα  found using the above procedure turns out to be zero, one would 

want to rethink the wisdom a making a kα -leap.  But in practice, kα -leaping is more 

likely to be used in situations where one wants to avoid leaping over occurrences of some 

pivotally important reaction Rα  – e.g., when one would like to leap precisely to the next 

Rα  event.  (For instance, Rα  might a reaction that initiates some critical transcription or 

translation sequence inside a cell.)  In that case, if the selection rule (15) produces any 

positive value for kα , one could safely assume that leaping with 1kα =  would not violate 

the Leap Condition. 

V.  A Numerical Example 

 In Ref. 7, the tau-leaping methodology was demonstrated on the model reaction set 

  21 4

3
1 1 1 2 2 30, ,

cc c

c
S S S S S S→ + →�����

�

����� � . (16) 

In these reactions, a decay-prone monomer 1S  reversibly dimerizes to an unstable form 

2S , which can convert to a stable form 3S .  For the parameter values 

  1 1c = , 2 0.002c = , 3 0.5c = , 4 0.04c = , (17) 

and the initial conditions 5
1(0) 10X = , 2 3(0) (0) 0X X= = , numerical simulations were 

performed in Ref. 7 using both the exact stochastic simulation algorithm (SSA) and the 

tau-leaping algorithm, the latter using a τ -selection scheme that is equivalent to (6) but 

without the 2
jσ -test.  For 0.03ε = , the tau-leaping method produced results that agreed 
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reasonably well with the SSA results [see Ref. 7, Figs. 4 and 5]; however, the tau-leaping 

trajectory showed a high degree of unevenness in the sizes of the leaps.  That tau-leaping 

trajectory is recreated in Fig. 1, and the unevenness in the step sizes for 0.2t >  is 

apparent. 

 In Fig. 2 we show a tau-leaping simulation made with the new τ -selection scheme 

(6), using the same value of ε .  It is apparent that the sizes of the time leaps in Fig. 2 are 

much more uniform than they are in Fig. 1.  A detailed monitoring of the Fig. 2 run 

revealed that, between times 2t =  and 20t = , a total of 143 leaps occurred, and in 59 of 

those leaps (roughly 40% of the leaps) the limiting constraint on τ  was imposed by the 

2
jσ  requirement in (6).  This suggests, in light of our analysis in Sec. III, that the 

simulation run in Fig. 1 was frequently taking leaps that were larger than warranted by the 

Leap Condition (3) for the chosen value of ε .  Although it might be argued that those 

larger leaps simply correspond to larger values of the somewhat arbitrary parameter ε , it 

is clearly an inefficient strategy to allow the accuracy of a single leap to vary randomly and 

uncontrollably during a simulation run. 

 The important question is whether the larger-than-warranted leaps in Fig. 1 were 

materially affecting the accuracy of the overall simulation.  To answer this question, we 

made a series of repeated simulations to examine the statistics of the trajectories between 

times 2t =  and 12t = .  More precisely, using the parameter values (17), we started each 

simulation run with the initial condition 

  1 2 3(0) 4150, (0) 39565, (0) 3445X X X= = = , (18) 

and we ran to 10t = , at which time we recorded the populations of the three species.  We 

made 10,000 such simulation runs each using (i) the exact SSA, (ii) the tau-leaping 

method with 0.03ε =  using the new τ -selection scheme, and (iii) the tau-leaping method 

with 0.03ε =  using the old τ -selection scheme.  Figure 3 shows the resulting population 

histograms (normalized and smoothed) at time 10t = . 

 In Fig. 3a we see that both τ -selection procedures accurately reproduce the mean of 

1(10)X , but they give standard deviations for 1(10)X  that are too large according to the 

SSA histogram (solid curve) by a factor of 1.5 for the new τ -selection procedure (dashed 
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curve), and a factor of 2.2 for the old τ -selection procedure (dotted curve).  For ( )2 10X  

and ( )3 10X  there is a much lesser broadening of the tau-leaping peaks; however, the 

means of those peaks are noticeably shifted relative to the SSA peak:  The shift is 

downward for 2(10)X  by 0.9 standard deviations for the new τ -selection procedure and 

2.5 standard deviations for the old, and upward for 3(10)X  by 0.6 standard deviations for 

the new τ -selection procedure and 1.5 standard deviations for the old.  But in all cases, 

the new τ -selection procedure gives significantly more accurate results than the old τ -

selection procedure; hence, we conclude that the erratic leap sizes in the simulation of Fig. 

1 is indeed accompanied by a loss of simulation accuracy. 

 What prompts us to accept such tau-leaping errors?  A monitoring of the execution 

times for the simulation runs used to obtain the plots in Fig. 3 revealed that both tau-

simulations are faster than the SSA simulation by over two orders of magnitude:  Using 

Mathcad 11 on a 2 GHz processor running Windows XP, the 10,000 tau-leaping 

simulations took about 6 minutes and 4 minutes, respectively, for the new and old τ -

selection procedures, whereas the 10,000 exact SSA simulations took almost 32 hours. 

 Figure 4 shows the results obtained in a repeat of the simulations made for Fig. 3 

with the tau-leaping accuracy control parameter ε  reduced from 0.03 to 0.02.  As we 

should expect, the accuracy of both tau-leaping simulations is improved in every respect 

from the 0.03ε =  results in Fig. 3.  And although the run times for the two tau-simulation 

series were increased by a factor of about 50% over what they were with 0.03ε = , both 

were still more than two orders of magnitude smaller than the run time for the SSA series.  

Note that the new τ -selection procedure with 0.03ε =  produced results that are more 

accurate than the old τ -selection procedure results with 0.02ε = . 

VI.  Discussion 

 The τ -selection procedure used in Ref. 7 essentially approximates each leap 

component ( ; )iΛ τ x  by its mean.  That approximation should be justified whenever the 

standard deviation of ( ; )iΛ τ x  is small compared to its mean.  But in cases where 

{ }sdev ( ; )iΛ τ x  is large compared to ( ; )iΛ τ x , a situation that typically arises when the 
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system is in a slowly varying “quasi-equilibrium” mode with ( ; ) 0iΛ τ ≈x , replacing 

( ; )iΛ τ x  by ( ; )iΛ τ x  could lead one to conclude that a large τ -leap could be made 

without changing ja  very much, whereas in fact the natural fluctuations in ( ; )iΛ τ x  for 

that large τ  could result in unacceptably large changes in ja .  Because our new τ -

selection procedure approximates ( ; )iΛ τ x  in a way that retains the full random variable 

character of ( ; )iΛ τ x  [cf. Eq. (8)], the new procedure is able to anticipate fluctuation-

induced changes in the propensity functions for a prospective τ -leap, and thus make a 

more informed choice for τ . 

 We can see from Figs. 1 and 2 that both τ -selection procedure perform well in the 

early transient stage (up to about 0.2t = ), as reaction channel 2R  rapidly and 

determinedly brings the 1S  and 2S  populations to “quasi-equilibrium” levels with respect 

to channels 2R  and 3R .  Thereafter, the changes in the means of the species populations 

occur much more slowly.  But there are rapid fluctuations occurring in the system during 

this later period, some of which are larger than one might expect at these population 

levels.  This is illustrated in Fig. 5, which shows for an exact SSA run how the normalized 

propensity functions 0( ) ( )ja ax x  for reaction channels 2R  and 3R  “fight”  each other 

during this period with surprisingly large, anti-correlated fluctuations.  Given such 

fluctuations, the need to consider more than just the mean of ( ; )ja∆ τ x  becomes clear.  

The new τ -selection procedure attempts to meet this need through Eq. (11b).  And the 

numerical experiments described in Sec. V demonstrate that this new procedure is indeed 

an improvement:  it makes successive leap sizes less erratic and the overall simulation 

more accurate. 

 But Figs. 3 and 4 also show that the new τ -selection procedure does not eliminate 

all inaccuracy.  We believe that this residual inaccuracy is mainly a consequence of the 

“stiffness”  of the dynamical system (16), and probably cannot be further reduced (apart 

from reducing the size of ε ) so long as we use the simple leaping approximation (1).  The 

system (16) is “stiff”  because it evolves slowly when it is on its “slow manifold” , but when 
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it is off that manifold it wants to move very rapidly toward the manifold.  Stiffness is a 

common and computationally troublesome problem for many if not most real-world 

chemical systems.  But it is important to recognize that many effects of stiffness, such as 

the earlier noted large fluctuations in the 2R  and 3R  propensity functions in the exact SSA 

run of Fig. 4, are real physical effects, so we must take care not to eliminate them in the 

process of trying to get around the computational difficulties associated with stiffness.  

The ramifications of stiffness in a stochastic context are addressed more fully in a 

concurrent publication,9 which describes an “implicit”  version of the tau-leaping 

approximation (1). 

 Although the exact stochastic simulation algorithm (SSA) often takes a long time to 

execute, the simple mechanics of its application are the same for any system.  By contrast, 

the general tau-leaping strategy of leaping over “unimportant”  reaction events requires us 

to pay some attention to the specifics of the system – essentially so that we can decide 

which reaction events are “unimportant” .  The degree of such circumspection involved in 

using the new τ -selection procedure (6) is actually rather minimal, since it requires us 

only to decide on an “appropriate”  value for ε .  This procedure seems to work 

surprisingly well, though, for the model reactions (16); e.g., Figs. 2-4 show that the τ -

selection algorithm (6) and the leaping formula (1) together are able to track with 

reasonable accuracy both the initial fast transient behavior ( 0.2t < ), and the subsequent 

quasi-stationary behavior, without our having to pay special attention to the transition 

from the former region to the latter.  But leaping simulation strategies are still in their 

infancy, and cannot yet be regarded as a robust tool that automatically and reliably handles 

all situations.  We may hope that continuing efforts will lead to new τ -selection 

procedures and leaping formulas which, by paying closer attention to the specifics of the 

given reaction set, will give simulations that are even faster and more accurate. 
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  Figure Captions 

Figure 1.  A τ -leap simulation of reactions (16) using the parameter values (17), 

0.03ε = , and the old τ -selection procedure of Ref. 7, which anticipates only the average 

change in each propensity function during a leap.  Note the unevenness in the successive 

leap sizes. 

Figure 2.  A repeat of the simulations in Fig. 1 using the new τ -selection formula (6), 

which anticipates also the fluctuations in the propensity function changes by adding to the 

old procedure the 2( )jσ x -argument in Eq. (6).  The leap sizes here are evidently much 

more uniform than those in Fig. 1. 

Figure 3.  Comparing the results obtained in three sets of simulation runs of reactions 

(16), using the parameter values (17).  Each run starts at 0t =  with the initial condition 

(18) (which approximates the 2t =  state in Figs. 1 and 2) and ends at 10t = .  The three 

curves in (a) show the smoothed frequency histograms of the 1(10)X  values obtained in 

10,000 simulation runs each using: the exact SSA (solid curve), the tau-leaping method 

with 0.03ε =  and the new τ -selection procedure (dashed curve), and the tau-leaping 

method with 0.03ε =  and the old τ -selection procedure (dotted curve).  The curves in 

(b) and (c) show, for the same runs, the smoothed frequency histograms of 2(10)X  and 

3(10)X , respectively. 

Figure 4.  A repeat of the simulation experiment in Fig. 3, but with the accuracy control 

parameter ε  for the two tau-leaping sets of runs reduced from 0.03 to 0.02.  As expected, 

all tau-leaping results here are more accurate than those in Fig. 3.  But note that the 

0.02ε =  results for the old τ -selection procedure are not as accurate as the 0.03ε =  

results for the new τ -selection procedure.  Both tau-leaping simulations here were over 

100 times faster than the SSA simulations. 

Figure 5.  An exact stochastic simulation of reactions (16), recorded at 1000 reactions per 

dot, showing the evolution of the normalized propensity functions 0( ) ( )ja ax x , a ratio 

that essentially measures the probability that the next reaction will be an jR  reaction.  The 

surprisingly large fluctuations in this ratio for the two dominant channels 2R  and 3R  in the 
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region after the initial transient show that stochasticity is present even at these relatively 

large population levels.  These intrinsic fluctuations are no doubt a major contributor to 

the erratic performance of the old τ -selection procedure in Fig. 1. 

 



 16 

  Figure 1 

  Figure 2 
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