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Abstract

In biological systems formed by living cells, the small populations of some reactant species

can result in dynamical behavior which cannot be captured by the traditional reaction rate

equations. In that case, a more accurate simulation can be obtained by using the machinery of

Markov process theory, specifically the Stochastic Simulation Algorithm (SSA). Since for re-

alistic, practical biochemical systems the simulation by the SSA carries a high computational

cost, several formulations have been proposed to increase the efficiency of this algorithm. In

this paper we propose a highly efficient formulation of SSA, with computational complexity

that is independent of the ordering of the reactions.
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1 Introduction

Chemically reacting systems have traditionally been simulated by solving a set of coupled

ordinary differential equations (ODEs).1 Though traditional ODE-based approaches are

sufficient for most systems, they fail to capture the stochasticity in some biochemical systems

formed by living cells.2–4 The dynamics of those systems can be simulated accurately by using

the machinery of Markov process theory, specifically the stochastic simulation algorithm

(SSA) of Gillespie.2,5 SSA, which is an essentially exact procedure for well-stirred (spatially

homogeneous) systems, is now in widespread use for the stochastic simulation of biochemical

systems. For realistic modelling of biochemical systems, the computational cost of simulation

by the SSA can be very high.

It is very important to have a highly efficient formulation of SSA, because this algorithm is

the foundation of all discrete stochastic and multiscale algorithms for biochemical systems.6

The Next Reaction Method (NRM),7 the Optimized Direct Method (ODM)8 and the Sort-

ing Direct Method (SDM)9 are three mathematically equivalent formulations of SSA which

have been proposed recently to reduce the computational cost for simulation of biochemical

systems.

Recent results8 have shown that ODM is faster than NRM, unless the system is very nearly

uncoupled. This was in contrast to a widely-held belief in the systems biology community

that the Next Reaction Method formulation of SSA was the fastest. NRM uses an indexed

priority queue 1 to reduce the search depth and reuse random numbers, and a dependency

graph 2 to reduce the calculation of the propensities.7 ODM is basically the original direct

1The indexed priority queue consists of a tree structure of ordered pairs of the index of reaction and the

putative time when this reaction occurs.
2The dependency graph is a directed graph that describes how reactions affect each other. In other words,

it is a data structure to tell which propensities need to be changed when a give reaction is executed.
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SSA method, where the reactions have been re-ordered via the results of a single SSA simu-

lation so that the most frequently accessed reactions are first. Subsequently, SDM9 improved

on ODM by dynamically ordering the reactions to eliminate the pre-simulation. Both ODM

and SDM focused on the optimization of the system instead of the method itself. ODM

loses some benefit when system behavior shifts during a simulation so that different sets of

reactions are the most frequent ones to fire.9 Similarly, frequent shifts during a simulation

of the group of reactions which is fastest can defeat the efficiency of the bubble-up sorting of

reactions in SDM. SDM’s search depth8 for locating the reaction which will fire in the next

step (which is one of the time consuming parts of the simulation) is still O(M), where M is

the number of reactions.

In this paper we present an alternative formulation of the SSA, called the Logarithmic

Direct Method (LDM). The computational cost of LDM is independent of the ordering of

the reactions.

This paper is organized as follows. In Section 2 we briefly review SSA. Section 3 intro-

duces LDM. Section 4 compares the performance of LDM with the previous best-performing

algorithms.

2 Stochastic Simulation Algorithms

Gillespie’s Stochastic Simulation Algorithm (SSA)2,5,10 was the first rigorous numerical

method using Monte Carlo techniques for stochastic chemical kinetics. It applies to a well-

stirred (spatially homogeneous) chemically intact system, inside a fixed volume and at a

constant temperature. The system contains M chemical reaction channels {R1, . . . , RM}

involving N molecular species {S1, . . ., SN}. The N molecular species {S1, . . ., SN} are

represented by the dynamical state vector X(t) = (X1(t), . . . , XN(t)), where Xi(t) is the
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number of molecules of species Si in the system at time t. X(t) is a Markov process.

Each reaction channel Rj is characterized by a propensity function aj and state change

vector νj = {ν1j , . . . , νNj}, where aj(x)dt is the probability, given X(t) = x, that one Rj

reaction will occur in the next infinitesimal time interval [t, t + dt), and νij is the change in

the number of species Si due to one Rj reaction. The N ∗ M matrix ν is the stoichiometric

matrix.

The SSA computes one realization of a dynamic trajectory of a chemically reacting system.

Often an ensemble of trajectories is computed, to obtain an estimate of the probability

density function of the system.

The SSA is based on the so-called Next Reaction Density Function,10 which gives the joint

probability that reaction Rj will be the next reaction and will occur in the infinitesimal time

interval [t, t + dt), given (X(t) = x). The joint density function is formulated as follows:

P (τ, j |xt, t) = aj(xt)e
−a0(xt)τ , (1)

where a0(xt) =
∑M

j=1 aj(xt).

Based on the above Next Reaction Density Function,10 the SSA creates random pairs (τ ,j)

via a Monte Carlo method, which answer the following two questions: “when will the next

reaction occur?” and “Which reaction will occur next?”

The Direct Method is the original method proposed by Gillespie.2,5 Starting from (1), we

can write the probabilities P (τ |x, t) and P (j|τ, x, t) in the following form:

P (τ |x, t) = a0(xt)e
−a0(xt)τ (τ ≥ 0), (2)

P (j|τ, x, t) =
aj(xt)

a0(xt)
(j = 1, ...., M) (3)

On each step of the simulation the random pairs (τ, j) are obtained based on the standard

Monte Carlo inversion generating rules: Generate two uniform random numbers r1 and r2
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from U(0, 1), the uniform distribution on [0, 1]. τ is given by

τ =
1

a0(xt)
ln

(

1

r1

)

. (4)

The index j of the selected reaction is the smallest integer in [1, M ] such that

j
∑

j′=1

aj′(xt) > r2a0(xt). (5)

Finally, the population vector X is updated by ν, and the simulation is advanced to the

next reacting time.

3 Logarithmic Direct Method

Locating the reaction to fire next is the most expensive step of SSA. In all current SSA

formulations, the search procedure accumulates the summation of ai(x) for i = 1, . . . , j by

adding each propensity in turn until the sum is larger than the product of a0(x) and a

uniform random number. The idea behind ODM and SDM is to reduce the average number

of operations required to obtain the index of the next reaction to fire. This average is called

the search depth.8 The search depth of all current SSA algorithms is highly dependent on

the biochemical system. For ODM and SDM, the search depth is O(M). LDM reduces the

search depth to O(logM).

On each step of DM, the total propensity a0 is first calculated by adding all of the

propensities ai together. Then, in the selection of which reaction to fire next, the propensities

ai are accumulated by adding each propensity in turn until the partial sum is larger than

the product of a0 and a random number. Thus the propensities are summed almost twice.

In the first step of LDM, we accumulate the partial sums of the propensities and store them

in an array. With this ordered sequence of partial sums, we do a binary search to select the

reaction to fire next. The basic idea of binary search is to divide the search interval in half
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repeatedly,11 so that each search step will select between two distinct alternatives. In the

SSA, we find the position j such that subtotal[j − 1] ≤ key < subtotal[j]. The search key

in LDM is the product of a0(x) and a uniform random number on [0, 1]. At the end of each

LDM step, the ordered sequence of partial sums is updated from the point where the first

partial sum has been changed.

LDM achieves its efficiency by locating the reaction to fire next via binary search, which is

well-known to have an average search depth of O(logM). For LDM, the average search depth

is independent of the ordering of the reactions. Hence there is no need for a pre-simulation.

In our implementation, we also improve the efficiency of the system state update stage

through the use of sparse matrix techniques. The stoichiometric matrix is sparse, since each

reaction involves only a few species. The use of sparse matrix techniques can reduce memory

accesses, and can eliminate the subtraction or addition of terms which will always be 0.

4 Simulation Results

4.1 Models

In this paper we use three models as test problems to compare the efficiency of different SSA

formulations.

Phage-λ: The lysis-lysogeny decision circuit in phage-λ infected Escherichia coli is a well-

characterized competitive regulatory mechanism. The core of the regulatory mechanism is

the four-promoter, five-gene regulatory network.4 A stochastic model has been formulated

based on this phenomenon. The stochastic model demonstrates that the stochastic variations

in the populations of two independently produced regulatory proteins function as a control

switch to select the pathway. In our numerical experiments, we use the simplified model,12
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obtained from Dr. Chris Myers at the University of Utah, which consists of 75 reactions and

61 species.

M.tuberculosis: The stringent response in M.tuberculosis is the set of metabolic and

regulatory changes which has been found to be crucial for potential survival in the infected

host. The model we use in our numerical experiments is from the Biocomputation Group at

the University of Pennsylvania, which is a comprehensive model for the stringent response.13

There are 23 reactions and 17 species in this model.

Pap switch: The Pap epigenetic switch is an inherently stochastic genetic switch.14 This

switch determines whether or not E. coli bacteria will express Pap pili, the hairlike surface

structures which enable E. coli to attach to host cells and establish infections. The model

is very complicated if it includes all the details. In our experiments we use only the small

subset of the full Pap system from.14 There are 8 reactions and 6 species in this model.

4.2 Results

All codes were implemented on an Intel(R) Pentium(R) 4 CPU 2.80GHz 2 processor with

cache size 1024 KB and 2G memory, running a Linux environment. We used the program-

ming language C and compiled with the optimization flags. The different formulations of

SSA share the same main procedure, but use different functions for the propensities calcu-

lation, the selection of the next reaction to fire, the update of the system state, and the

calculation of a0. SDM and ODM have been implemented with the dependency graph as de-

scribed in,8,9 while LDM has been implemented without a dependency graph because there

is no explicit need for it in this formulation of the algorithm. In the performance comparison,

LDM denotes LDM without the sparse matrix update, and SLDM is LDM with the sparse

matrix update. ODM and SDM are not using the sparse matrix update.

For each of the test problems, we found that the accuracy of the simulation by the various
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formulations of the SSA were quite comparable, as is to be expected.

We didn’t compare the performance with the original DM, since the performance of DM

is not well-defined, i.e. it depends on the ordering of the reactions, and ODM is always

faster than DM. To compare the performance of the four formulations: ODM, SDM, LDM

and SLDM, we used the above three models: Phage-λ model, M.tuberculosis model, and Pap

switch model.

Figure 1 shows the performance of ODM, SDM, LDM and SLDM for the three test

problems. LDM performs better than ODM and SDM for all of the models, even for the

small Pap switch model. LDM with sparse matrix state updating performs better than LDM

with original matrix state updating. The benefits of both LDM and the sparse matrix update

increase as the system size increases.

5 Conclusion

Gillespie’s stochastic simulation algorithm (SSA) is in widespread use for stochastic simu-

lation of biochemical systems. It will undoubtedly play a role in any multiscale algorithm

for biochemical simulation. Thus it is important to formulate this method as efficiently as

possible. In this paper we proposed a new SSA formulation, the Logarithmic Direct Method

(LDM), with a logarithmic search depth for locating the next reaction. LDM reduces the

computation time and avoids the pre-simulation step of previous SSA formulations.

FIGURE CAPTION Figure 1: Performance comparison (with error bars) of ODM, SDM,

LDM and SLDM on the three test problems.
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