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Abstract—Chronic pain is defined as pain that lasts or recurs
for more than 3 to 6 months, often long after the injury or illness
that initially caused the pain has healed. The “gold standard”
for chronic pain assessment remains self report and clinical
assessment via a biopsychosocial interview, since there has been
no device that can measure it. A device to measure pain would
be useful not only for clinical assessment, but potentially also
as a biofeedback device leading to pain reduction. In this paper
we propose an end-to-end deep learning framework for chronic
pain score assessment. Our deep learning framework splits the
long time-course data samples into shorter sequences, and uses
Consensus Prediction to classify the results. We evaluate the
performance of our framework on two chronic pain score datasets
collected from two iterations of prototype Pain Meters that we
have developed to help chronic pain subjects better understand
their health condition.

Index Terms—deep learning; chronic pain

I. INTRODUCTION

Deep learning models have achieved remarkable success in
computer vision [1], natural language processing [2], speech
recognition [3] and the game of Go [4]. Recently there has
been increasing interest in applying deep learning for end-to-
end health data analysis [5]. However, e-health data analysis is
even more challenging since well-being data can be affected by
many factors, for example individual differences, measurement
errors in data collection and missing data.

Chronic pain is described as persistent or recurrent pain that
lasts for at least 3 to 6 months [6]. According to the 2016
National Health Interview Survey (NHIS), roughly 20.4%
(50.0 million) of U.S. adults suffer from chronic pain. Chronic
pain affects individuals, their families, and society, and results
in complications harming both physical and mental health.
The economic costs of chronic pain and pain-related disability
in the United States cannot be overstated. One influential
report [7] conservatively estimated an annual toll of $560-
$650 billion dollars—far exceeding the costs of cardiovascular
disease, cancer, and diabetes. Therefore, identifying the score
of chronic pain is of significant value to reduce further
complications.

Neurophysiological signals have been used to quantify
pain [8]-[10]. In the last decade, there has been some progress
towards discovering the neurobiological substrates of pain.

However, none of those methods is low-cost or easy-to-use.
Clearly, there is an unmet need for a low-cost, easy-to-use
Pain Meter. According to recent research results [11]-[13],
classical physiological measurements can effectively quantify
pain. Inexpensive technology is now available to measure
relevant physiological features. Taken together, it is clear that
objectively quantifying pain is possible. We thus investigated a
number of inexpensive commercial sensors capable of measur-
ing physiological variables for pain score assessment. We have
thus far built prototype Pain Meters that offer the immense
potential to revolutionize pain treatment and the development
of therapeutics.

To this end, we collected two new chronic pain datasets,
using prototype Pain Meter 1 and 2, respectively. For Dataset
1, our subject has been suffering chronic pain for more than
10 years. Neck and shoulder pain were causing her difficulty
to perform daily activities. For Dataset 2, we recruited chronic
pain subjects from our local community. All subjects signed
an informed consent form according to a protocol approved
by a Human Subjects Committee. Our chronic pain datasets
are characterized by the following unique properties: First, we
use Photoplethysmography (PPG) [14], which is low cost and
comfortable for patients, to collect pulse signals. Secondly,
we also include several temperature signals and Galvanic Skin
Response(GSR) signals to detect the chronic pain symptoms
like nervousness. For Dataset 2, we also use accelerometers
and gyros to detect movements.

Given the pain score datasets, we introduce the task of
chronic pain score prediction, which is to train an end-to-
end oridinal classifier to accurately predict pain score. The
illustration of our workflow is shown in Fig. 1. An accurate
chronic pain score assessment will

1) Facilitate the development of new therapies both in the
laboratory and in Phase II and Phase III clinical trials.

2) Make it possible for physicians to quantify the effects
of existing therapies on individual patients.

3) Minimize the harm caused by diagnostic delays and
the under/overtreatment of pain due to the influence of
gender, race, or age.

4) Allow a patient to decide, with objective personal data,
whether current treatments are effective in his/her quest



to reduce chronic pain.

5) Serve as a biofeedback device for chronic pain subjects.
The unconscious mind can learn to control things it
can monitor [15]. If people are enabled to accurately
monitor their chronic pain score with a Pain Meter,
their unconscious mind can figure out how to decrease
the chronic pain score. It is trained and rewarded by
the tiny decreases in pain score that are accurately and
continuously monitored.

Our main contributions are threefold:

1) We propose a deep learning ordinal regression frame-
work for chronic pain score assessment. To the best of
our knowledge, this is the first paper to use deep learning
for chronic pain score assessment.

2) We collect two new chronic pain datasets using our
prototype Pain Meters to predict the score of chronic
pain.

3) We split the long recordings into smaller slices for
training, which not only eases the burden on GPU
memory but also provides many training samples for
deep learning models. We define Consensus Prediction
as the majority voting result of the sampled short slices
for testing, since not all of the short slices can be
expected to contain enough useful information.

The remainder of this paper is organized as follows. Sec-
tion II discusses related work. Section III describes the Pain
Meters we used for data collection and introduces the clas-
sification problem. Section IV delineates the methodology.
Section V introduces the experimental setup for comparison
of our results to those obtained via multilayer perceptron and
logistic regression. Results and case studies are described
in Section VI. Section VII shows that our deep learning
framework can also be used to provide feedback to improve
the design of the Pain Meter. Section VIII is the Discussion.

II. RELATED WORK
A. Deep Learning for E-Heath

Since the emergence of deep learning in e-health, more
and more researchers have been implementing deep learning
models for medicine, aiming to improve health care [5],
classify diseases [16], and prevent misdiagnosis [17]. More
specifically, the prediction of medical events has been popular,
including the prediction of death rates [18], prescriptions [19],
and successful extubation [20]. Although many researchers
have applied deep learning to e-health, to the best of our
knowledge no researcher has applied deep learning from
pulse signals to the prediction of chronic pain scores [21].
There are image based models for automatic estimation of
pain [22], [23]. Deep Pain [22] uses long short term-memory
(LSTM) and analyzes images of facial expression. However,
images alone are not reliable since images alone may not
contain enough relevant information for pain score prediction.
Many factors affect pain score, including stress and mood,
which might not be fully captured by image based methods.
Physio-based models have been developed for assessments of

physiological pain [24] but these have not been applied to
chronic pain. Motivated by this need, we propose a Convo-
lutional Neural Network (CNN)-based framework that uses
physiological signals to assess chronic pain scores.

B. Chronic Pain and Traditional Machine Learning

In the context of pain assessment research, physiologically-
based pain has been the main focus for many pain researchers
[25]. Chronic pain, on the other hand, is prolonged, lasting
anywhere from months to years [26]. In the past, traditional
machine learning methods have been applied to e-health, but
this has required extensive feature extraction [27]. Human
feature extraction has many disadvantages. For example, it is
costly and can result in the “loss of data interpretability” [28].
Random Forest has been used to monitor the nociception
(perception of pain) level, which requires feature extrac-
tion [29]. Physiological parameters like heart rate, heart rate
variability, plethysmograph wave amplitude, skin conductance
level, number of skin conductance fluctuations, and their time
derivatives are extracted for prediction. In contrast, our end-
to-end deep learning framework requires no feature extraction
and little data preprocessing.

C. Physiological Sensors

Photoplethysmography (PPG) is a widely used non-invasive
method for measuring pain intensity, in which changes in
blood volume and light absorption are detected [14]. This
type of technology is commonly used because it is simple
and can easily collect data, while being cost-efficient and
accessible [30]. A PPG device has also been developed to
monitor respiratory and heart rates of infants, and this has
been proven to perform well [31]. PPG is favored not only for
clinical use, but also for home use as a biofeedback device. In
addition, it is more comfortable for patients because it does
not involve gel and electrodes contacting their skin [32]. Thus,
in our prototype Pain Meter, we use PPG [33] to collect pulse
recordings. We also included axis accelerometer gyroscope
modules (MPU-6050), force sensitive resistors to measure the
forces that cause low frequency motion (DF9-40), and a GSR
sensor (ZIYUN Grove GSR sensor).

ITII. DATA COLLECTION AND CLASSIFICATION
A. Prototype Pain Meter

Fig. 2 shows the device we used for collecting Dataset 1.
Pain Meter 1 contains: 1) two PPG pulse sensors held to the
temples via a headband, three at the three arteries supplying
blood to the brain mounted in a neck pillow, and two at the
fingertip and palm, 2) temperature sensors at each location of
the PPG pulse sensors, and 3) GSR sensors embedded in the
block on which the hand rests. These provide a total of 15
signals, recorded in Dataset 1.

As is shown in Fig. 3, it turned out that the PPG sensors
were sensing more than pulse. They were also sensing subtle
motion. Motivated by these phenomena, we added actual
motion sensors in our Pain Meter 2. As is shown in Fig. 4,
Pain Meter 2 contains: 1) PPG pulse sensors in a headband,
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Fig. 1: The workflow for chronic pain score assessment. The brain image is from Google.

in a neck band, and on the fingertip, 2) temperature sensors
on the neck and fingertip, 3) 3-axis accelerometers and 3-axis
gyros in the head band and wrist band, 4) force sensors on
the forehead, back of neck, side of neck, and wrist band, and
5) GSR sensors between the middle and ring fingers. These
provide a total of 25 signals, recorded in Dataset 2.

For both Pain Meters, a Teensy 3.6 microcontroller with
a 32-bit 180 MHz ARM Cortex-M4 processor is used to
sample all signals every 15ms. A data acquisition program
was designed in MegunoLink Pro for Pain Meter 1 data and
a customized data acquisition program was written in Python
for Pain Meter 2 data.

Headband with sensors
on right and left temples

Neck pillow with
sensors on arteries
supplying the brain

Hand unit with
sensors under
fingers and
palm

Fig. 2: Pain Meter 1 sensed temperature, pulse and GSR, but
it did not directly sense motion.

B. Data Collection

Using Pain Meter 1 from Fig. 2, our chronic pain Dataset
1 was collected from one subject who self-reported the pain
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Fig. 3: Motion affects the pulse sensor signals, which are based
on measuring the intensity of light reflected from the skin. Part
A shows a pulse sensor at the carotid artery, far from motion.
Part B shows a pulse sensor at the finger. Motion is generated
by flexing the wrist and is measured in part C by a wrist
acceleration sensor. Part D shows data from wrist gyro sensor
and part E shows data from a wrist force sensor. Note that
the pulse sensor on the finger (sensor B), which is closer to
the motion, is strongly affected by the motion, while the pulse
sensor on the carotid artery (sensor A) is not.

score. The subject was asked to fix the headband and neck
pillow into a comfortable position. Once secured, real-time
plots of the pulse and temperature data were viewed to verify
that the head and neck sensors were collecting accurate and
reliable signals for the subject. Minor adjustments to the sensor
positions can be made if needed. After adjustments were made,
the subject placed the left hand on the module to read the hand
signals. A final verification step viewing all plots of data was
performed. Then the subject was asked to close their eyes
and relax before the recording begins. After 10 minutes, the
recording was ended. Each recording was taken on a different
day at the same time in the afternoon, the same temperature
and the same environment brightness. During recordings with
Pain Meter 1 we noticed that some of the pulse signals became
erratic compared to other pulse signals and that this erratic
behavior seemed to correlate with pain. We hypothesized that



Fig. 4: Pain Meter 2 consists of: 1) PPG pulse sensors in a
headband, in a neck band, and on the fingertip, 2) temperature
sensors on the neck and fingertip, 3) 3-axis accelerometers and
3-axis gyros in the head band and wrist band, 4) force sensors
on the forehead, back of neck, side of neck, and wrist band,
and 5) GSR sensors between the middle and ring fingers.

TABLE I: Data statistics for Dataset 1

Pain score
Data Classes | jistribution
Chronic Pain | 2 1:1

this was due to subtle movement [34] and constructed Pain
Meter 2 (Fig. 4) to have motion sensors. With the addition of
motion sensors we could confirm this hypothesis (Fig. 3) and
measure the motion directly.

Pain score distributions for the 2-class Dataset 1 and 7-class
Dataset 2 are shown in Table I and Fig 5, respectively. Each
recording has a length of 10 minutes, with signals sampled
every 15 milliseconds. We have 4 recordings from one subject
in Dataset 1 and 62 recordings from 20 subjects in Dataset
2. We divide each 10-minute recording into ten mutually
exclusive 1-minute samples.

C. Classification Problem

The classification problem for chronic pain assessment is to
classify a Pain Meter dataset of time sequences into pain scores
on a scale of 0 for no pain to 10 for the worst pain possible.
The model is first trained on Dataset 1 from a chronic pain
subject who self reports her pain score for each of the datasets

Fig. 5: Distribution of pain scores in Dataset 2. The numbers
outside the pie chart are the corresponding pain scores and the
percentages of time for which each pain score is reported are
shown in the pie chart.

on a 0 to 10 scale. Note that seldom has our subject reported
a pain score higher than 2 in Dataset 1. Thus in Dataset 1,
we use pain scores 1 and 2. In Dataset 2, we have pain scores
from O to 6, which formulates to be a 7 class classification
problem. Our goal is to use the trained deep learning model to
accurately classify chronic pain datasets into the self reported
pain scores.

IV. METHODOLOGY

The model architecture, shown in Fig. 6, consists of
convolution-pooling layers followed by fully connected layers.
To learn temporal and correlation features, the convolution
is performed on both the time and sensor dimensions. We
split the 1-minute samples into smaller slices with length
of seq_length. Sensor recording signals with a dimension of
(number of sensors (N) x seq_length) serve as input x for
the neural network. A convolution operation involves a filter
w € R, which is applied to a window of s sensors and
t samples to produce a new feature. For example, a feature
fij;(0<i< N—-s5+1,0<j < seq_length—t+1) is
generated from a window size (s,t) of the sensor signals:

fi,j = ReLU (Wit s—1,5:j4+¢—1 + b), 1)

where b € R is a bias term. This filter is applied to each
possible window of the voltage signals to produce a feature
map:

fl,l f1,2 fl,seq_length—t+1
f — f2,1 f2,2 f2,seq_length—t+1 , (2)
fos+1,1 fN73+1,2 fos+1,seq_length7t+l

with f € RN—stlsealength—t+1 We then apply a max-
pooling operation over the feature map and take the maximum
value m = max (f) as the feature corresponding to this



particular filter. The idea is to capture the most important
feature, the one with the highest value, for each feature map.
Our model uses multiple filters to obtain multiple features.
These features form the penultimate layer and are passed to a
fully connected softmax layer whose output is the probability
distribution over different pain scores. We adjust the number
of convolutional ReLLU layers from 2 to 5, based on the choice
of seq_length. The prediction of our model, parameterized by
W, is given by p(y|xz, W).

Due to the existence of the inherent ordering information in
our chronic pain score, we apply ordinal regression, a setting
that bridges metric regression and classification, to predict
chronic pain scores of ordinal scale. Compared to regular
regression problems, these pain scores are discrete. These pain
scores are also different from the labels of multiple classes in
classification problems due to the existence of the ordering
information. The cross entropy loss of our ordinal regression
for input vector x,, is as follows,

1+ |argmax(pg7|_w,£, W) —y )
¢ 3)
O~y - log(p(§lan, W),

i=1

where y represents the true pain scores, p(9) denotes the
predicted probability vector with one value for each possible
pain score, and C' is number of pain scores. Divided by
C — 1, the absolute error |argmax(p(g|z,, W)) — y| is
normalized between O and 1, with C' classes in total. By
multiplying |2rgmaz(p gzlf”’w))_ﬂ, the normalized absolute
error between prediction and ground truth, with cross entropy
loss, we include the ordinal information in our loss function.
We penalize more in our loss function if the absolute error

between ground truth and prediction is larger.

For testing, we define Consensus Prediction to measure the
performance of predictions for the whole sensor signal sample.
Consensus Prediction synthesizes results from multiple short
slices by majority voting, which can significantly improve the
prediction accuracy for a long sample. This is because not
all of the short time slices can be expected to contain useful
information for classification.

We use Batch Normalization [35] to accelerate training. For
regularization, dropout [36] and early stopping methods [37]
are implemented to avoid overfitting. Dropout prevents co-
adaptation of hidden units by randomly dropping out a propor-
tion of the hidden units during backpropagation. Model train-
ing is ended when no improvement is seen during the last 100
validations. Softmax cross entropy loss is minimized with the
Adam optimizer [38] for training. Since both frequency infor-
mation and correlation between sensors are captured through
convolution filters, our CNN-based framework automatically
deals with the features needed for classificaiton. We use grid
search for hyperparameter tuning. The hyperparameters are
described in Table II.

V. EXPERIMENTAL SETUP

We introduce two baselines: Multilayer Perceptron (MLP)
and Logistic Regression, to compare with our proposed CNN
framework for the two classification problems.

A. CNN based Model and Consensus Prediction

We implement a parallel processing framework that
distributes the convolutional neural network into multiple
(N) GPUs to ease the burden on GPU memory. Each GPU
contains an entire copy of the deep learning model. We first
split the training batch evenly into /N sub-batches. Each
GPU processes only one of the sub-batches. Then we collect
gradients from each replicate of the deep learning model,
aggregate them together and update all the replicates. We
train our CNN based framework with two NVIDIA GeForce
GTX 1080s, each of which has a memory of 11178 MB.

B. Multilayer Perceptron

We use a four layer fully connected network, whose output
is the probability distribution over two different classes, as a
baseline. We use a parallel processing framework similar to
our CNN model implementation. We train our MLP on two
NVIDIA FeForce GTX 1080s.

C. Logistic Regression

Since the signals are periodic, we extract individual voltage
signal FFT (z) and pairwise sensor signal Pearson Correlation
(x2) as features (X) for a Logistic Regression classifier:

1

PY =1|X) = 1 4 e~ (wotwizi+wez2)’

4)

where Y is the label for classification and P is the probability
of predicting Y as label 1 (pain score 1). wg, wy and wy are
model parameters to be learned during training.

D. Split Training and Testing

Since each of our recordings is long enough to split
into multiple informative samples and there exists different
settings among different recordings, we implement two
methods of splitting the training and testing data. We first
divide each 10-minute recording into ten mutually exclusive
1-minute samples.

1) Considering the size of our datasets in prediction, we
use S-fold cross validation. For each of the 10-minute
recordings, we use between 2 (i — 1) and 2 *¢ minutes
as testing, and the rest for training, for the ¢-th fold.
This training/testing split fits well with the scenario of
practical use of pain score assessment. It is known that
different subjects have different perceptions of pain.
For real use, our pain meters need some self-calibration
before getting accurate pain score readouts.

2) Leave-one-recording-out cross validation on all the
recordings. Each recording is used once as a test set
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I-minute samples of the voltages measured on the physiological sensors are collected from

our prototype Pain Meter. Segments with seq_length = 15 s of these samples are individually classified. These individual
classifications are conducted for Consensus Prediction in Pain score recordings.

TABLE II: Hyperparameters

Hyperparameters | Value
Batch size 24

Epoch 2000
Dropout rate 0.5
Seq_length 15 seconds
Learning rate 0.5

while the remaining recordings form the training set.
We note that, due to differences in subjects’ sensitivity
to pain, different settings while recordings, and the size
of our data, it is much more difficult to predict across
subjects than within one recording. We report the result
using this splitting method in Section VIII.

VI. RESULTS AND ANALYSIS

Considering the size of our dataset in prediction, we use
5-fold cross validation and report the average results in this
section. Note that Dataset 2 is unbalanced. We also report the
confusion matrix for evaluation.

Confusion matrices are shown in Fig. 7 and Fig. 8 for
chronic pain score prediction. Dominant numbers on the
confusion matrix diagonal indicates that our model achieves
high accuracy for each class. Fig. 9 shows the individual
class prediction distribution for Dataset 2. The infrequent
prediction mistakes scatter around the ground truth. For ex-
ample, although 11% of the predictions from pain score 3
are incorrect, they are still close to 3 (either 2 or 4). Fig 10
further demonstrates that the probability of making an error
decreases as the absolute prediction error increases. This is the
benefit from ordinal regression, which penalizes more in the
loss if the absolute error between ground truth and prediction
is larger. Fig. 11 is a scatter plot of expected predicted pain
score vs. self-reported pain score. The relationship between
predicted pain score and ground truth is highly linear, with an
R-squared (R?) of 0.9463.

Since we use seq_length to split long recordings into shorter
slices, some of the short slices may not contain enough
information for pain score prediction. However, these effects
can be eliminated using Consensus Prediction. Although we
have imblanced data in Dataset 2, we still use accuracy to
compare different models and check the benefits obtained from
Consensus Prediction, since chronic pain subjects are most
interested in prediction accuracy.

Confusion Matrix

1 2

0.8

0.6

- 0.4

Pain Score

0.2

Prediction

Fig. 7: Confusion matrix for chronic pain score prediction in
Dataset 1.

Results of our framework compared against other machine
learning models on chronic pain recordings are shown in
Tables III and IV respectively. We compare our CNN based
model with two baselines: Multilayer Perceptron (MLP) and
feature-based Logistic Regression. For Dataset 1, our CNN-
based deep learning approach improves the prediction accu-
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Fig. 8: Confusion matrix for chronic pain score prediction in
Dataset 2. Our model achieves high accuracy for each class.

TABLE III: Cross-validation performance comparison of our
deep learning model with Multilayer Perceptrons and Logistic
Regression on Dataset 1.

Model Accuracy on Testing
Convolutional Neural Network | 0.9630
Multilayer Perceptron 0.9321
Logistic Regression 0.9150

racy by 5.25% compared to feature-based Logistic Regression.
Fig. 12 shows the Consensus Prediction accuracy. The accu-
racy improves by 3.84% using Consensus Prediction. Although
not all of the short slices can be expected to contain enough
useful recording patterns, we can overcome that when we
synthesize multiple individual classification results from these
short slices. For Dataset 2, our model achieves accuracy of
95.23% for short recording slices, which is a 2.8% improve-
ment over feature based Logistic Regression. The accuracy
further improves to 98.30% with Consensus Prediction as
shown in Fig. 13. Our CNN based deep learning model also
outperforms MLP on both of the two sets of recordings by
3.32% and 2.91% respectively, which shows CNN’s advantage
of local feature extraction using convolutional kernels over
MLP. Also from Fig. 12 and Fig. 13, 100 time slices for each
recording are sufficient in Consensus Prediction.

Fig. 14 shows the trend of accuracy versus the choice of
seq_length for Dataset 1. For the effect of seq_length on
accuracy, there exists a trade-off between number of training
samples and representation of a whole recording. The short
slices contain less information but can provide more inde-
pendent training samples. For deep learning models, larger
numbers of training slices help more than a larger sample.
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Fig. 9: Individual class prediction distribution for Dataset 2.
The occasional incorrect predictions scatter close to the ground
truth.

TABLE IV: Cross-validation performance comparison of our
deep learning model with Multilayer Perceptrons and Logistic
Regression on Dataset 2. Although we have imblanced data
for 7 classes, subjects are still most interested in prediction
accuracy. We showed confusion matrix for our CNN model in
the previous figure.

Model Accuracy on Testing
Convolutional Neural Network | 0.9523
Multilayer Perceptron 0.9238
Logistic Regression 0.9063

However, we still cannot choose too small of a seq_length,
since a too short slice is not representative for a recording.
Given the data we currently have, we use a seq_length of 15
seconds.

We show some failure cases for our CNN classifiers in
Fig. 15. The upper figure shows the histogram of short
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Fig. 10: The distribution of absolute prediction error using
ordinal regression for Dataset 2. The chance of making an
error decreases with the increase of absolute prediction error.

Predicted Expectation vs. Ground Truth in testing

Predicted pain score

Pain score

Fig. 11: Scatter plot of expected predicted pain score vs. self-
reported pain score for Dataset 2. The larger size of the point
corresponds to the higher appearance frequency of the data
point. We keep a decimal in calculating the expected predicted
pain score because 0.1 is a reasonable precision to estimate
pain in real life. The predicted pain score exerts high linear
relationship with ground truth with a high R? of 0.9463.

sequence prediction for one recording, where blue indicates
predicted successfully and red indicates predicted incorrectly.
The x axis is the starting point of the sampled short sequences.
The lower figure shows the corresponding voltage signals from
our prototype Pain Meter recording. There is a period from
0.55 minute to 0.65 minute, during which the classifier con-
sistently makes incorrect predictions. From the pulse signals,
they also perform abnormally compared to other periods. This
is also true for the short peak in the data coming from the palm
near wrist at 0.28 minute. This illustrates that for those periods,
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Fig. 12: Consensus Prediction for chronic pain score prediction
in Dataset 1.
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Fig. 13: Consensus Prediction for chronic pain score prediction
in Dataset 2.

by looking at shorter sequences, it is easy to make a wrong
prediction for both human experts and a classifier. This is due
to the fact that our sensors are sensitive to movements. Noise
can be introduced with a contact position change between
sensors and skin. However, by using Consensus Prediction,
these errors have no effect on the final prediction.

VII. OPTIMIZING THE PAIN METER DESIGN

One of the benefits of our deep learning framework is that
it can distinguish which sensors are most useful for pain
score assessment. We compare the performance of each of the
separate signals in Pain Meter 1 as shown in Fig. 16. We report
the average accuracy using 5-fold cross validation. This can
help us to further improve our chronic Pain Meter. By testing
individual signal performance, we find that the accuracy for
temperature signals are all around 0.5, which is similar to a
random guess in binary classification. Thus the temperature
signals are not very informative. We also find that the temple
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Pain Level

80 -

704

60 -

50 -

40 -

30 A

201

101

0.8 1.0

0.4 66
tarting Time of Sli:ce (min)

Pain Level

1600 I
Right Carodlél
1400 Left Carotidli
Basilar i
H
1

1200 A Right Templ

Left Templg
1
H

=
15
S
S
L

800 -

Pulse Amplitude

600

400 -

200 -

0.0 Oj2 ] 014 ] 016 018 1.0
Time (min)
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incorrectly. In the upper figure, red color bars represent incor-

rect predictions while blue bars represent correct predictions.

pulse and the palm near wrist pulse contribute substantially to
our pain score prediction.

VIII. DISCUSSION

We have addressed the issue of predicting a chronic pain
score by proposing a deep learning ordinal regression frame-
work. We split the long recordings into smaller slices, which
not only eases the burden on GPU memory but also pro-
vides more training samples for the deep learning model.
We define and use Consensus Prediction during testing. We
present the Confusion Matrix of leave-one-recording-out in
Fig. 17. Leave-one-recording-out does not perform well due
to subjects’ differing perceptions of pain intensities. Also since
we have much more pain score 2 samples compared with other
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Fig. 16: Individual sensor signal classification performance for
Dataset 1.

pain score samples in Dataset 2, as is shown in Fig. 5, the
model is prone to make predictions of pain score 2.

This paper is a proof of principle for chronic pain score
assessment via deep learning. It can provide an objective pain
assessment for each patient. More data for additional chronic
pain subjects is needed before it can be definitively known if
deep learning will be a generally useful technique for chronic
pain assessment.
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