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Abstract— Trauma is one of the main causes of 

hospitalization. Time is of the essence in diagnosis and 
treatment of trauma patients with severe injuries. To assist in 
decision-making, we propose a hidden Markov model for 
identification of disease states through which patients progress. 
An important property of our model is that it is based on 
features which are routinely collected in hospital trauma 
centers. Using a hidden Markov model based on fifteen 
features, six different patient states are identified. The 
resulting Markov model can be useful in identifying patients’ 
states to assist in diagnosis and treatment.  

Keywords—hidden Markov model, trauma, mortality, MIMIC 
dataset 

I. INTRODUCTION 
Trauma is the leading cause of death between the ages of 

1- and 54 and has he highest morbidity for those who survive 
[1]. Different causes and severities of trauma have their own 
characteristics of injury, physiology and biology requring 
different approaches to resuscitation and treatment . 
Categorizing trauma patients into physiologic states and 
knowing the possible transitions between these states would  
be of huge importance providing actionable clinical decision 
support. In this paper, we infer the states from patients’ time-
series data. Among these states, we are particularly interested 
in coagulopathic states because of their high mortality. 
Coagulopathy is a condition in which blood fails to clot 
properly, therefore blood loss is accelerated. Being able to 
understand the progression of patient states using a hidden 
Markov model can assist medical care providers by alerting 
them of the need for interventions when the patient’s state 
changes.  Earlier work of Zhang et al. [2] has addressed this 
problem; however, the hidden Markov model was inferred 
from only blood-related factors. These tests are usually more 
costly than other measurements such as the ones used in this 
study, and are not commonly performed in a clinical setting. 
Moreover, we are interested in knowing how well widely 
available features can represent the physiologic states of 
trauma patients.  

In this study, we have used the latest version of a publicly 
available dataset called MIMIC [3]. MIMIC comprises de-
identified health data associated with more than 40,000 
critical care patients. We have selected fifteen features that 
are measured at different time points, and applied a hidden 
Markov model that generated six different states.  

The contributions of this study are twofold. First, by 
applying a hidden Markov model we infer the different states 
that trauma patients transition through on their way to 
recovery or death. Having the states and transitions, and 
understanding the progression through states can enhance the 
decision-making process. Second, we identify states in which 
early intervention may be critical to influencing patient 
outcomes. This paper is organized as follows. The dataset 
and preprocessing used in this work are described in Section 
2. Section 3 describes the methods briefly. Section 4 
discusses the results generated by our model. In Section 5 we 
provide some remarks of the work and finally, Section 6 
concludes the paper.  

II. DATASET AND METHODS 
We made use of data in the MIMIC-III dataset v1.3 [3], 

which is a freely available dataset containing medical records 
for Intensive Care Unit (ICU) patients at the Beth Israel 
Deaconess Medical Center between 2001 and 2012. It 
includes demographics, vital signs, laboratory tests, 
medications, and more. This dataset also includes notes 
describing patients’ states during different times. 

A. Preprocessing and data extraction 
As we are interested in trauma patients, we extracted. 

time-series measurements (different factors measured at 
different time points such as heart rate, blood pressure, etc.) 
and mortality (whether a patient died or survived) for every 
trauma patient, using ICD-9 codes [4]. To retrieve the data of 
trauma patients, we used the ICD-9 codes ranging from 800 
to 999, which are related to trauma. We aggregated the 
measurements for each patient over 4-hour time slots. We 
wanted to make sure that there are enough measurements 
taken for a patient so that the model can make use of the 
provided information for its predictions. Using shorter 
intervals would create more missing values, while using 
longer intervals might ignore some important measurements. 

The resulting trauma data includes about 70,000 records 
with more than 900 features. Due to data sparsity, several 
additional steps of preprocessing were performed. Columns 
representing features with less than 2,000 non-missing values 
were dropped so that the ones measured for a large number 
of patients remained. Moreover, features were processed to 
remove duplicates. Later, correlation analysis (described in 
the Supplement A) of the remaining features and selection of 
only one of the correlated features resulted in fifteen features. 



Table 1 in the Supplement B shows the feature names and 
their representations used throughout the paper. 

As the hidden Markov model requires the initial hour 
measurements, patients with no initial measurements were 
removed. After applying multiple levels of preprocessing, the 
dataset included 1,275 patients with 6,127 records. 

B. Hidden Markov Model 
The HMM is widely used in natural language processing 

[5], speech recognition [6] and for biological sequence 
analysis [7]. It can be viewed as a specific instance of the 
state space model in which the latent variables are discrete 
and can take on K distinct values. The latent variables are the 
discrete multinomial variables zn describing which 
component of the mixture is responsible for generating the 
corresponding observation xn. The probability distribution of 
zn depends on the state of the previous latent variable zn−1 
through a conditional distribution p(zn|zn−1).  The hidden 
states of the Markov model satisfy the Markov property, i.e., 
the probability to be in the current state at time n depends 
only on the previous state at time n-1.  

In our dataset, observations (for each patient) at time tn 
are denoted by xn vectors containing 15 features representing 
the different measurements of each patient. The joint 
probability distribution for each patient over both latent and 
observed variables is then given by: 

𝑝 𝑋, 𝑍 q = 	𝑝(𝑧)|p) 𝑝(𝑧,-
,./ |𝑧,0), 𝐴) 𝑝(𝑥3-

3.) |𝑧3,f)     (1) 

where X = {x1, …, xN}, Z = {z1, …, zN}, and θ = {π, A, φ} 
denotes the set of parameters governing the model. N is the 
number of observations for each patient. Here, the time 
interval between two consecutive observations is 4 hours, 
therefore each xn represents the measurements of different 
features every four hours. A is the transition matrix 
representing probabilities of transition between states, π is 
the initial probability of states and φ includes parameters (µk 
the mean vector and Σk the covariance matrix) controlling the 
emission probabilities distribution. 

 Calculating the parameters of the hidden Markov model 
using the likelihood function directly is difficult. We 
therefore turn to the expectation maximization (EM) 
algorithm for an efficient framework for maximizing the 
likelihood function in our hidden Markov model [8]. 

 The EM algorithm can be used to find the parameters of 
our HMM since it involves latent variables in addition to 
unknown parameters and known data observations. To find a 
maximum likelihood solution we need to take the derivatives 
of the likelihood function with respect to all the unknown 
values of both the parameters and the latent variables, and 
simultaneously solve the resulting equations.  The 
derivations result in equations in which the solution to the 
parameters requires the values of the latent variables and vice 
versa. Using the EM algorithm, we pick arbitrary values for 
one of the two sets of unknowns, use them to estimate the 
second set, then use these new values to find a better 
estimate of the first set, and then keep alternating between 
the two until the resulting values both converge to the fixed 
points.  

 We train our hidden Markov model using the EM 
algorithm with the following steps. We first make an initial 
selection of the parameters θ where θ ≡ (π, A, φ). For the 
Gaussian distributions used in this paper, the parameters µk  

Fig. 1.  BIC values for different numbers of states 

were initialized by applying the K-means algorithm to the 
data, and Σk was initialized to the covariance matrix of the 
corresponding K-means cluster. We calculated the 
parameters needed for the maximization step and evaluated 
the likelihood function. We used the results to find a revised 
set of parameters θ using the M-step equations. We then 
continued to alternate between E and M steps until the 
difference of the values of two consecutive likelihood 
estimates is lower than 0.01. 

C. Missing Values 
 There are two types of missing data in the dataset.  The 
first type usually occurs due to the critical nature of trauma 
settings where data can be difficult to measure or record .  
Moreover, patients might be either too sick to get a 
measuremnet at some points or too well to require a certain 
piece of information. This type of missing data which refers 
to incomplete measurements for patients can be considered 
as missing at random (MAR) [9]. The second type of missing 
data is mainly due to data censoring, which occurs when 
patients are discharged or die. The first type of missing data 
(MAR) needs to be taken into consideration, while the 
second type is not a problem and the hidden Markov model 
can be applied to it directly.  

 For the MAR data, not only the latent variables but also 
the missing data are unobserved. The EM algorithm needs to 
be modified so that the missing data is also considered. The 
expectation step (E step) can be separated into two parts: 
expectation with respect to the latent variables and 
expectation with respect to the missing values. The first step 
is similar to the situation where missing data is ignored. To 
find the expectation with respect to the missing values, we 
calculate the posterior distribution of the missing data. As 
our data is assumed to be normally distributed, the posterior 
probabilities will also be normally distributed and their 
means and covariances can be calculated using the sweep 
operator [10]. In the M step, the parameters are maximized 
using evaluated expectations both from latent variables and 
missing data. 

III. RESULTS 
In the next following sections, we discuss different 

results of applying our approach to infer the hidden states 
which trauma patients transition through on their way to 
recovery or death. 

A. Number of States 
To apply the hidden Markov model on our data to infer 

hidden states from observations, we need to specify the 
number of states. To select the best number of states, the 
Markov model was run 10 times for each possible number of 

 
 
 
 
 
 
 
 
 
 
 



states from 3 to 8 and the BIC (Bayesian Information 
Criterion) was calculated as follows [2]. 

BIC = −2 · logP(X) + params * log(ndata)    (2) 

where ndata is the number of samples and params is the 
number of parameters. 

Params = (K-1) + K*(K-1) + d*K + 4∗(46))
/

∗ 𝐾    (3) 

Where K is the number of states. There are K − 1 values 
for the initial probability, K*(K − 1) parameters representing 
parameters for the transition probability matrix, d is the 
number of features, which is 15, and d×K and 4∗(46))

/
∗ 𝐾 for 

the mean and covariance matrix for the Gaussian emission 
probability.  

After trying different numbers of states, the model with 6 
states, which has the minimum BIC, was selected. We 
computed the minimum value for each state and plotted the 
BIC. The minimum BIC value for different numbers of states 
is shown in Fig. 1. 

 

B. Trauma Patients’ States 
After deciding on the number of states, the hidden 

Markov model was applied and six states with initial 
probabilities shown in Table 1 were identified.  
Table 1: Initial probabilities of hidden Markov model states 

State S0 S1 S2 S3 S4 S5 
Initial 
probability 0.653 0.155 0.013 0.023 0.14 0.015 

 

The transition probabilities are shown in Fig. 2. 
Transition probability is the probability of going from one 
state to another state. Transition probabilities less than 0.01 
are not shown in the figure. Each state is represented by a 
name which describes the characteristics of the state along 
with the mortality rate associated with it. 

Patients can arrive in any of these states, however state 
S0 is the most likely. Each state and its transitions is shown 
with a distinct color. To be able to better describe different 
states, normalized mean values of features are also plotted in 
Fig. 3. 

We also calculated the mortality rates of different states 
as follows: the mortality feature is calculated based on the in-
hospital hour of death. Mortality is assigned to the final state 
of each patient. To calculate the mortality rate for each state, 
the number of patients that died is divided by the total 
number of patients whose last state before death or discharge 
is that state. To remove the effect of data censoring, we 
ignored the patients whose death or discharge occurs 24 
hours after the last state is recorded. Table 2 shows the 
calculated mortality rates for different states.  

Table 2: Mortality rates of the states 
State S0 S1 S2 S3 S4 S5 

Mortality 0.017 0.394 0.049 0.033 0.108 0.231 

 

Finally, we summed up posterior probabilities P(zn|xn) of 
different states across all patients at each time t, to obtain the 
total number of patients in each state at time t, shown in Fig. 
4. 

 

 
Fig. 2. Transition matrix diagram. The states are described in the text, and 
the mortality rate of each state is given under the state name, in its respective 
circle. 

 

 

 
Fig. 3.  Normalized mean values of features in each state 



 
Fig. 4: Number of patients in each state at different times 
 

Based on the values of features in different states, the 
mortality rates calculated in Table 2 and the change in 
number of patients in different states shown in Figure 5, we 
can consider states 3 and 2 as the healthiest, and states 1, 5 
and 4 as the unhealthiest, respectively. The description of 
different states is as follows: 

State S0 (Early state): This state is the most probable 
initial state. It is also highly unstable, so timely interventions 
may be critical in this state. The values of the features that 
are associated with this state are representative of multiple 
fractures. State S0 has the lowest mortality rate over all the 
states. The reason is probably due to its instability, so that 
patients transition to other states very quickly. Patients in this 
state never transition to states S1 or S5. States S1 and S5, 
which will be described later, are states related to bleeding 
and coagulation deficiencies.  Thus, if a patient arrives in 
state S0, this patient is not at that point at immediate risk of 
transitioning to an unhealthy state. The most common 
transitions for this state are to either S0 to S2 (p=0.146) or S0 
to S3 (p=0.152). Some of the patients may also transition to 
state S4, which represents the trauma shock state. Figure 5 
shows the initial number of patients in state 0 and how 
quickly this state transitions to other states. As time passes, 
the number of patients in this state decreases.  

State S1 (coagulopathic state): This is the unhealthiest 
state, with the highest mortality rate. The clotting-related 
features, prothrombin time (PT) and partial thromboplastin 
time (PTT), are both high in this state, indicating coagulation 
problems. Moreover, some other features have unique 
characteristics. In this state, WBC (white blood cell count) 
and platelets are the lowest. On the other hand, glucose and 
lactic acid have the highest values. Although state S1 is the 
least healthy state, it is not highly stable and it can transition 
to state S2 with reasonable probability. The other possible 
transition is to S4, which is the shock state. Thus, 
interventions need to be performed as early as possible to 
increase the chance of survival. The number of patients in 
this state also decreases as time passes. 

State S2 (transitional state): This is one of the healthier 
states because of its low mortality. However, there are still 
some issues related to clotting time as this state is the 
destination of states S1 and S5. Transitions out of S2 are 
either to itself with high probability (which shows its 
stability) or to S3, another healthy state. There is an 
interesting yet unknown transition from state S2 to S1, which 
is from a healthy state to an unhealthy one. The probable 

explanation is that the bleeding (corresponding to states S1 
and S5) is initially controlled but later it occurs unexpectedly 
and the state of the patient’s condition worsens (it transitions 
back to state S1). Patients may not yet have enough injury or 
shock or physiologic perturbation to yet be in sicker state. 
More exploration is required to find the causes of this 
transition. One possible solution is to go over the notes 
written by medical service providers and find the possible 
causes. The length of the red bar in Figure 5 increases as 
time passes, which shows that more patients will be in this 
state as time passes. 

State S3 (relatively healthy state): The healthiest and 
most stable state of the Markov model is state S3. Most 
features are in good shape. All states can transition to this 
state. States S0 and S4 can directly go to this state and states 
S1 and S5 can transition to S3 via S2. More patients will be 
in this state as time passes. The only transition out of S3 is to 
S2.  

State S4 (shock state): This state is probably associated 
with shock. Shock is a life-threatening condition that occurs 
when the body is not getting enough blood flow. Lack of 
blood flow means that the cells and organs do not get enough 
oxygen and nutrients to function properly. Many organs can 
be damaged as a result. Shock requires immediate treatment 
and can worsen very rapidly. Low blood pressure, low heart 
rate and low blood oxygen in state S4 are all possible 
symptoms of shock [11]. There are also different causes for 
shock. In the case of trauma patients, heart damage, severe 
blood loss and spinal cord injury can all result in shock [12]. 
Very low blood pressure and heart rate are the discriminatory 
features for this state. It is also highly stable. States S0, S1 
and S5 may transition to this state, so medical service 
providers must make timely decisions to prevent this 
transition. The only transition out of this state is to S3. 

State S5 (acidotic state): Similar to state S1, this state is 
quite unhealthy. Features usually have extreme values. Low 
pH, CO2 and blood pressure values in addition to high PT, 
and potassium are specific to this state. This state can also 
represent shock due to low blood pressure. More 
significantly, this state is characterized by acidosis, the 
condition in which body fluids contain too much acid. Low 
pH indicates the acidity of blood. Acidosis occurs when the 
kidneys and lungs cannot keep the body’s pH in balance and 
it becomes lower than 7.36 [16]. Some experiments suggest 
that low pH during the first 24 hours of trauma seems to be a 
good predictor for the development of organ failure [13]. The 
most common cause of ultra-high potassium (hyperkalemia) 
is related to failing kidneys [14]. Also, any condition in 
which there is massive tissue destruction can result in 
elevated levels of blood potassium, as the damaged cells 
release their potassium [15]. Early intervention can make it 
possible to transition to other states, specifically to state S2. 

IV. DISCUSSION 
By applying the hidden Markov model and finding its 

parameters, we can estimate states of patients and make 
predictions of possible future states and trajectories for new 
patients based on their data. Suppose a patient is in state S5 
(acidosis), which has a high mortality rate.  This state 
transitions into state S1 (unhealthy) or state S2 (healthy).  
Data like PTT which goes up if the patient transitions to state 
S1 (unhealthy) or goes down if transitioning toward state S2 
(healthy) can be monitored. Glucose also increases if 



transitioning toward state S1 and down toward state S2.  
Lactose increases if transitioning to state S1, and decreases 
toward state 2.  Thus, specific features can be identified to 
monitor which type of transition a patient is experiencing. 
Similar reasoning can be applied to other states.   

While in each state, the increase or decrease of the values 
of different features may result in a transition to a new state. 
Table 3 shows the change of features for all possible state 
transitions. Not only the change of features but also their 
level of change can result in different states. For instance, a 
patient who is in state S5 can transition to all states except 
S3. Two predictive features of state S5, PT and PTT, must 
decrease so that the state will transition. However, the 
amount of change in these features can determine the next 
state more precisely.  Moreover, multiple features need to be 
considered simultaneously. For example, suppose a patient is 
in state S1, then a decrease of PT and PTT will result in 
transition to S0, S2 or S4. Therefore, other features such as 
respiratory rate, blood pressure and heart rate can help in 
determining what the new state will be.  

There is one important point to remember. From this 
analysis, we cannot determine what causes the transition. We 
can only say features are associated with the transition. It is 
possible that we could temporarily move these features to 
these of the desired state but that the patient just reverts to 
his/her earlier state because of some hidden underlying 
disease mechanisms. On the other hand, the change in 
features required for the transition may provide a clue that 
together with a mechanistic understanding of the system, 
could identify the cause.  

Finally, we evaluated the states by looking at the existing 
literature and checked the reasonability of our states 
consulting a trauma surgeon. Since these states are not well-
defined in clinical settings and the existing datasets do not 
contain necessary information describing the states patients 
transition through, we were not able to conduct any 
numerical success and error analysis calculating the number 
of time our model fails or succeeds. Therefore, it is possible 
that the predicted model by the state at some points does not 
reflect the true state of a patient. However, considering the 
trajectory reaching that state may also help determine the 
current state of the patient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: change of features for different state transitions. The first 
column represents the current states of the patients. The second column 
gives the states which the current state can transition to. The remaining 
columns are the features used in the study. (+) sign represents the 
increase of a feature and (-) sign represents the decrease of a feature in 
different transitions. For example, the transition from S0 to S3 occurs 
when the values of PT and PTT are lowered. The (o) sign means no 
significant change of values. 
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S0 
S2 + + + - - - - + - + - - - + - 
S3 - - + + - - - + - - - - - - - 
S4 + + + - - - + + - - + + - - - 

S1 
S0 - - - - + + - + + - - o - - + 
S2 - - - - + - - + + + - - - - - 
S4 - - - - + + - + + - + + - - - 

S2 
S1 + + + + - + + - - - + + + + + 
S3 - - + + + + - + + - - - - - + 

S3 S2 + + - - - - + - - + + + + + - 
S4 S3 - - + + + - - + - + - - - + + 

S5 

S0 - - - + + + + + + - - - + + + 
S1 - + + + - + + + - + - - - + - 
S2 - - - + - - - + - + - - - + - 
S4 - - - + - + + + + - - - - + - 

 

V. CONCLUSION 
Using a hidden Markov model, we identified six states 

associated with trauma patients. Based on the type and 
severity of the injury, patients might have different 
trajectories and transition through multiple states while in the 
hospital. Among the inferred states, two (S1, S5) are related 
to coagulation deficiency. The coagulation-related factors 
(PT and PTT) are the highest in these two states, and death 
often occurs due to massive blood loss. Bleeding is one of 
the major causes of early death in trauma patients and it 
needs to be controlled as early as possible. Aside from heavy 
bleeding in state S5, low PH and CO2, high blood urea 
nitrogen (BUN) and potassium represent other problems 
such as acidosis, failure of kidneys and or respiration 
deficiency. Another critical state is S4 which is related to 
shock. Shock may also occur as a result of a traumatic injury. 
Knowing which states may transition to the shock state, it is 
possible that actions to avoid it can be taken. State S0 is 
mostly associated with blunt trauma, which usually results in 
multiple fractures. Finally, effective interventions can help 
trauma patients to transition to the healthy states S2 or S3. 

Moreover, our model is able to determine the states even 
if only some of the measurements are available. Using our 
model, medical service providers can quickly assess patients’ 
current states and predict their future conditions and make 
optimal decisions.  

The selection of features for this study was based on the 
availability in the dataset and the fact that all chosen features 
are commonly measured in clinical settings. During 
preprocessing, the removal of features was mainly due to 
their sparsity and possible correlation with other features.  
There is a possibility that these features are not all the ones 
used in hospital procedures, or a different set of features are 
considered during different stages of a hospital stay to 



monitor patients’ conditions. However, our model can be 
generalized based on different needs so that we can apply our 
model to various sets of features or even to other diseases 
and try to find their progression as well. Moreover, our 
methodological approach is mainly focused on the results for 
the application under study and not on the complexity of 
techniques used in achieving those results. This work is the 
initial attempt, however more complicated techniques may 
be used for future studies. 

 

 

REFERENCES 

 
[1]  Trauma Fact Sheet.  

"https://www.nigms.nih.gov/education/pages/Factsheet_Trauma.aspx
". Accessed: 30 March 2018 

[2] Zhang, Yuanyang, Tie Bo Wu, Bernie J. Daigle, Mitchell Cohen, and 
Linda Petzold. "Identification of disease states associated with 
coagulopathy in trauma." BMC medical informatics and decision 
making 16, no. 1 (2016): 124. 

[3] Johnson, Alistair EW, Tom J. Pollard, Lu Shen, H. Lehman Li-wei, 
Mengling Feng, Mohammad Ghassemi, Benjamin Moody, Peter 
Szolovits, Leo Anthony Celi, and Roger G. Mark. "MIMIC-III, a 
freely accessible critical care database." Scientific data 3 (2016): 
160035. 

[4] International Classification of Diseases, Ninth Revision, Clinical 
Modification (ICD-9-CM). 
"https://www.cdc.gov/nchs/icd/icd9cm.htm". Accessed: 28 March 
2018 

[5] Stratos, Karl, Michael Collins, and Daniel Hsu. "Unsupervised part-
of-speech tagging with anchor hidden markov models." Transactions 
of the Association for Computational Linguistics 4 (2016): 245-257. 

[6] Champion, Colin, and S. M. Houghton. "Application of Continuous 
State Hidden Markov Models to a classical problem in speech 
recognition." Computer Speech & Language 36 (2016): 347-364. 

[7] Baldi, Pierre, Yves Chauvin, Tim Hunkapiller, and Marcella A. 
McClure. "Hidden Markov models of biological primary sequence 
information." Proceedings of the National Academy of Sciences 91, 
no. 3 (1994): 1059-1063. 

[8] Christopher, M. B. (2016). Pattern recognition and machine learning. 
Springer-Verlag New York. 

[9] Sterne, Jonathan AC, Ian R. White, John B. Carlin, Michael Spratt, 
Patrick Royston, Michael G. Kenward, Angela M. Wood, and James 
R. Carpenter. "Multiple imputation for missing data in 
epidemiological and clinical research: potential and pitfalls." Bmj 338 
(2009): b2393. 

[10] Little, Roderick JA, and Donald B. Rubin. Statistical analysis with 
missing data. Vol. 333. John Wiley & Sons, 2014. 

[11] Maier, R. V. "Approach to the patient with shock." HARRISONS 
PRINCIPLES OF INTERNAL MEDICINE 16, no. 2 (2005): 1600. 

[12] Johansson, Pär I., Anne Marie Sørensen, Anders Perner, Karen Lise 
Welling, Michael Wanscher, Claus F. Larsen, and Sisse R. Ostrowski. 
"Disseminated intravascular coagulation or acute coagulopathy of 
trauma shock early after trauma? An observational study." Critical 
Care 15, no. 6 (2011): R272. 

[13] Toninelli, A., C. Agapiti, P. Terenghi, N. Latronico, and A. Candiani. 
"Gastric intramucosal pH in trauma patients: an index for organ 
failure risk?." Minerva anestesiologica 61, no. 1-2 (1995): 9-14. 

[14] Polson, Michael, Todd C. Lord, Anne Kangethe, Lindsay Speicher, 
Carolyn Farnum, Melanie Brenner, Nina Oestreicher, and Paula 
Alvarez. "Clinical and economic impact of hyperkalemia in patients 
with chronic kidney disease and heart failure." Journal of managed 
care & specialty pharmacy23, no. 4-a Suppl (2017): S2-S9. 

[15] DeFronzo, Ralph A., Margaret Bia, and Douglas Smith. "Clinical 
disorders of hyperkalemia." Annual review of medicine 33, no. 1 
(1982): 521-554. 

[16] De Waele, J. J., and F. E. G. Vermassen. "Coagulopathy, hypothermia 
and acidosis in trauma patients: the rationale for damage control 
surgery." Acta Chirurgica Belgica 102, no. 5 (2002): 313-316. 

 

 

SUPPLEMENT 

A. Correlation Analysis 
The features available in the dataset may be correlated, 

but the hidden Markov model assumes features to be 
independent so we tried to remove the correlation as much as 
possible. To do so we used the Pearson correlation 
coefficient and calculated the correlation of all pairs of 
features. Later, if the correlation coefficient of features was 
more than some threshold, (we used 0.6 as the threshold), 
one of the features was kept and the others not used. After 
calculating the correlation of the features, there were mainly 
two groups of features: the ones with high correlation (>0.7) 
and others with correlation coefficient of less than 0.5. 
Therefore, selecting a threshold of 0.6 was a safe choice so 
that only one of the highly-correlated features pairs were 
removed. To select the best feature out of all correlated 
features, we used each one separately in the analysis to see 
how the results are improved. 

 

B. Abbreviations 
Table 1: Features and their names used throughout the paper 

Feature Representation 
Prothrombin time PT 
Partial Thromboplastin Time PTT 
Respiratory rate Resp 
Blood pressure BP 
White blood cell count WBC 
Hemoglobin Hemo 
Glucose Glu 
Potential of hydrogen PH 
Platelet count Platelet 
Heart rate Heart Rate 
Blood Urea Nitrogen BUN 
Potassium Pot 
Lactic acid Lac 
Carbon dioxide CO2 
Oxygen O2 

 
 

 


