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Abstract

We have developed a new algorithm which merges discrete stochastic simulation, using the spatial stochastic
simulation algorithm (sSSA), with the particle based fluid dynamics simulation framework of smoothed dis-
sipative particle dynamics (SDPD). This hybrid algorithm enables discrete stochastic simulation of spatially
resolved chemically reacting systems on a mesh-free dynamic domain with a Lagrangian frame of reference.
SDPD combines two popular mesoscopic techniques: smoothed particle hydrodynamics and dissipative par-
ticle dynamics (DPD), linking the macroscopic and mesoscopic hydrodynamics effects of these two methods.
We have implemented discrete stochastic simulation using the reaction-diffusion master equations (RDME)
formalism, and deterministic reaction-diffusion equations based on the SDPD method. We validate the new
method by comparing our results to four canonical models, and demonstrate the versatility of our method
by simulating a flow containing a chemical gradient past a yeast cell in a microfluidics chamber.

Keywords: Particle Based Fluid Dynamics, Reaction-Diffusion Master Equation, Discrete Stochastic
Simulation
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1. Introduction

In recent years, the complexity of the models used to simulate systems in science and engineering has
dramatically increased. These models span microscopic to macroscopic scales and multiple types of physics
simulations, including fluid dynamics, solid mechanics, chemical reactions and transport, and thermody-
namics. For systems in which the scales of time and space are sufficiently small (microscale), simulations5

are performed using molecular dynamics (MD) [1] with potential energy functions derived from classical me-
chanics. For macroscale systems involving a well-mixed system, a continuum approach (i.e., Navier-Stokes
equations) is typically employed. At the intermediate mesoscale, recent work by Li et al. [2] has integrated
reaction-diffusion of chemical species within a particle-based fluid dynamic framework. In the field of cell
biology, it has been found that models with discrete stochastic dynamics are often required to recapitulate10

biologically relevant phenotypes [3]. Recent work has shown the importance of cellular level models with
dynamic domain shapes and external flows coupled to discrete stochastic biochemical simulations [4, 5].

Typically in fluid dynamics simulations, macroscale approaches based on continuum methods rely on
the continuum hypothesis and local equilibrium assumptions. By considering volumes of particles as local
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thermodynamic systems, one can reduce the number of degrees of freedom by several orders of magnitude,15

because not all the scales of the system are resolved. This truncation of scales allows the simulation of larger
systems for longer physical times. In this sense, continuum theories can be seen as coarse-grained versions
of the atomic system [1].

The Knudsen number (Kn), defined as the ratio of the mean free path of the molecules being transported
over a characteristic length scale [6], helps to determine whether it is meaningful to use a macroscopic20

approach. According to Karniadakis et al. [7], molecular effects become the dominant transport mechanism
in fluid motion when Kn ≥ 10. However, at the so-called transitional regime, 10−1 ≤ Kn ≤ 101, several
important phenomena involving molecular effects take place in complex systems [1] such as biological flows,
and the behavior of polymers and colloids. In this regime, scales are considered mesoscopic, with spatio-
temporal ranges in the interval O(10−9) - O(10−5) meters and O(10−9) - O(10−3) seconds [1], making the25

number of degrees of freedom required in a MD simulation currently impractical [8, 9, 10, 1]. The most
recent MD simulations are constrained to O(109) atoms and up to O(10−9) seconds [10].

To capture the effect of a wide range of scales, researchers have developed methods that solve on one scale
while modeling the others. For example, dissipative particle dynamics (DPD), proposed by Hoogerbrugge
and Koelman [11] and later modified by Español and Warren [12], models mesoscale systems as a collection30

of particles which interact via a soft potential (conservative forces), while dissipative and stochastic forces
provide the missing degrees of freedom of the formulation. The method has been applied to a wide range of
problems in physics and chemistry [13] including heat transfer [14, 15, 16], reactive flows [2], flow through
porous media [17, 18] and shock-capturing [19, 20].

Despite the success of DPD as a simple, robust and intuitive method, a number of conceptual short-35

comings have been reported [8, 21, 10]. The lack of a direct connection between the model parameters and
the physical parameters of the system is still an open area of research. As a consequence, DPD parameters
must be calibrated on a case-by-case basis using empirical equations, often in a non-unique way [22, 23, 21].
Other shortcomings of the DPD method include the impossibility of imposing an equation of state directly
in the model [21] and the risk of particle overlap due to the use of soft potentials [8].40

N
B

1) Stochastic Reaction/Diffusion 
(microscopic)

2) Advection (macroscopic)

Fig. 1. Example of biological system
possessing reaction, diffusion,
advection, and stochastic dynamics.
In an artery, a neutrophil (N)
chemotaxes against the blood flow
toward a bacterium (B) by sensing
the gradient of individual bacterial
peptides (blue triangles) that bind
receptors (green Y-shapes) on the
neutrophil cell surface.

These shortcomings of the DPD formulation were addressed by
Español and Revenga [24], who proposed a generalization of the
Smoothed Particle Hydrodynamics (SPH) method to model the hy-
drodynamics, along with an additional stochastic term to model the
thermal fluctuations in the mesoscale. The resulting method, named45

Smoothed Dissipative Particle Dynamics (SDPD), inherits the ben-
efits of second-order discretization of the Navier-Stokes equations in
the Lagrangian form from SPH [8, 9], along with the thermodynamic
consistency of DPD [24]. For this method, transport coefficients and
equations of state can be imposed as inputs directly in the model.50

Moreover, physical scales are consistent with the Navier-Stokes equa-
tions, and therefore hydrodynamic behavior is obtained.

In this paper we introduce a novel formulation of advection-
diffusion-reaction in SDPD. For systems where the molecular discrete-
ness is relevant, we propose to simulate the reaction-diffusion of species55

by use of the spatial stochastic simulation algorithm (sSSA) to resolve
the reaction-diffusion master equation (RDME) [25, 26, 27]. An im-
mediate advantage of the spatial stochastic approach is that transport
of species is computed exactly, instead of approximately by adding a
fluctuation term to the deterministic reaction-diffusion equations. On60

the other hand, in regions where small scales are negligible, we solve
a deterministic form of the SDPD reaction-diffusion equation, thereby avoiding over-resolving scales and
increasing computational efficiency.

Compared to mesh-based standard approaches, such as finite elements (FEM), finite differences (FDM)
and finite volume (FVM) methods, the new hybrid sSSA-SDPD method introduced by this work presents65

important advantages. First, as a consequence of its Lagrangian description, the method allows the simu-
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lation of advection-diffusion-reaction systems with complex geometries without the need of using adaptive
meshes or interface tracking. Additionally, the method is capable of simulating a broader range of problems,
when compared with standard approaches. In particular, the method is well-suited for fluid flow problems
where stochastic reactive-diffusive mass transport is relevant.70

One class of problems in which the hybrid method is expected to excel compared to alternative approaches
is the simulation of biological systems where advection and reaction-diffusion occur at different scales, ranging
from the microscopic (e.g. stochastic molecular binding interactions) to the macroscopic (e.g. fluid flow).
For example, a neutrophil in the blood can track down a single bacterium by sensing individual bacterial
peptides that diffuse to and bind neutrophil receptors, triggering a biochemical response while experiencing75

the hydrodynamic forces from blood flow (Fig. 1). Physical forces, chemical reactions, diffusion, active
transport, stochastic dynamics, and advection must all be modeled, which presents a formidable challenging
for any computational framework. Commercial software solutions such as Comsol Multiphysics can capture
the deterministic spatial dynamics but not the stochastic dynamics. The spatial stochastic simulation
algorithm (sSSA) [29] simulates stochastic reaction-diffusion dynamics, but is ill-suited for representing80

fluid flow.
This paper is organized as follows: Section 2 briefly describes the SDPD and sSSA formulations. Section 3

focuses on the algorithmic description of the method proposed, with a discussion about its appropriate use
in multiscale systems. Section 4 presents validations, applications and discussion of relevant results. Finally,
conclusions and future perspectives are described in Section 5.85

2. Background

The hybrid method addressed in this paper is based on the combination of two formulations: SDPD and
SSA. In this section, we provide a brief theoretical overview of these two key elements in the proposed hybrid
method. In SDPD [24], the domain is discretized as a finite number of particles, each representing a small
volume of material that carries properties such as momentum, mass and energy. The position of the particles90

evolves in time according to some mechanistic model, such as the fluctuating Navier-Stokes equations for
fluid flow [28]. In contrast, the sSSA algorithm [29] consists of a stochastic model for mesoscopic-scale
stochastic reaction-diffusion kinetics, where the domain is discretized in voxels and the system is modeled
as a Markov process. For each voxel, the number of molecules of diluted species characterize the state of
the system that evolves in time according to the Kolmogorov equation.95

The hybrid method proposed uses either the sSSA algorithm or the SDPD formulation to compute
mass reaction-diffusion processes, and SDPD to compute advection and other body force dynamics. This
is achieved by treating each particle in the system as a voxel for the sSSA. The immediate consequence of
using the hybrid sSSA-SDPD method is the ability to correctly predict the dynamics of multiscale systems
in an unified framework, resolving hydrodynamics and low-concentration reaction-diffusion systems at the100

same time.
An overview of the mathematical models of an arbitrary system from a deterministic, SDPD and hybrid

method perspective is depicted in Fig. 2. For detailed formulations of SSA and SDPD, we refer the reader
to the work of Gardiner et al. [29] and Español and Revenga [24], respectively.

2.1. SDPD105

2.1.1. Theoretical aspects

Consider a domain Ω ⊂ <3, composed of a collection of particles representing fluid volumes, that evolve
in time according to the isothermal Navier-Stokes equations and the reaction-diffusion equation:
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Fig. 2. Comparison between mathematical and physical models of (a) a typical deterministic approach, (b) SDPD, (c) sSSA,
for the idealized case of a channel flow with diluted species. In the hybrid method, advection is solved using SDPD, while the
mass transport can be solved using either a spatial stochastic algorithm or SDPD, depending if stochastic effects are relevant
or not. In Figs. (a) and (b), the dotted parts denote magnified regions, illustrating the differences between the methods. In
Fig (b), vij , Qij and Rij denote the pairwise velocity, flux of mass and reaction term, respectively. In Fig. (c), p in the
Kolmogorov equation denotes the probability that the system can be found in state X at time t.

Dρ

Dt
= −ρ∇ · v, (1)

Dv

Dt
= −1

ρ
∇P + Fvisc + Fbody, (2)

DC

Dt
= ∇ · (κ∇C) +R, (3)

where ρ, v, P , Fvisc, Fbody, C, κ and R denote the fluid density, velocity, pressure, viscous force, body force,
concentration, mass diffusivity and reaction term, respectively. The D(·)/Dt operator denotes the material110

derivative [30], defined as

D(·)
Dt

=
∂(·)
∂t

+ v ·∇(·), (4)

thus the characteristic curves of this operator are the particle trajectories [31]. Adopting a Lagrangian
description, we consider each particle as a non-inertial frame of reference. Therefore, the advective accelera-
tion term in Eq (4), v ·∇(·), vanishes identically, by virtue of having a zero relative velocity. Consequently,
Eqs. (1)-(3) can be rewritten as:115

∂ρ

∂t
= −ρ∇ · v, (5)

∂v

∂t
= −1

ρ
∇P + Fvisc + Fbody, (6)

∂C

∂t
= ∇ · (κ∇C) +R. (7)
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Equations (5)-(7) show that the temporal variation of the variables of interest depends on the evaluation
of spatial derivatives of these physical quantities. The solution of these equations numerically, therefore,
raises the question of how to approximate the derivatives and transform these expressions into a set of
algebraic equations involving the unknowns of the problem [31, 32].

In Eulerian-based methods, at each time step, points of space are arbitrarily selected as inertial frames of120

reference and therefore the spatial grid spacing is, in general, fixed; thus, derivatives are typically piecewise-
approximated using linear functions, polynomials, etc. In contrast, in a Lagrangian-based method, since
particles are moving along with the flow, the evaluation of derivatives involves interpolation processes,
usually based on radial smoothing kernel functions [31].

In order to find a good candidate for the interpolation process, consider a continuous function f(x),125

defined at coordinates x. Consider the following identity [32]

f(x) =

∫
Ω

f(x′)δ(x− x′)dx′, (8)

where δ(x − x′) is the Dirac delta function. Due to the infinitesimal support of the Dirac function and
the finite decimal precision of computers, it is not possible to write a discrete numerical method using this
integral representation of a function. In order to overcome this limitation, SPH theory approximates Eq. (8)
by replacing the Dirac function with a smoothing kernel function W with finite support h130

f(x) ≈
∫

Ω

f(x′)W (x− x′, h)dx′. (9)

Note that Eq. (9) is an approximation. The accuracy of the approximation depends on the choice of W .
In the SPH literature, the smoothing kernel function is often chosen based on three conditions [17, 33]: a)
the normalization of the smoothing function, that requires its integral to be identically one in the volume
Ω; b) the Dirac delta condition, which requires that W (x− x′, h)→ δ(x− x′) as the support h approaches
zero; c) kernel compactness, which guarantees that W = 0 outside of its support.135

After judiciously choosing a function W , the next step consists of rewriting the integral approximation
given by Eq. (9) as a discrete sum. The domain Ω is then discretized using N particles, each located at
coordinates xi

〈f(xi)〉 =

N∑
j=1

mj
fj
ρj
W (xi − xj), (10)

where mj and 〈fj〉 denote the mass of particle j and the kernel approximation of the field f(x) at position
xj , respectively. As a consequence of the SPH formulation, since mj and fj are defined locally (i.e., they are140

particle properties), linear operators (such as the gradient) will affect only the weight function. Therefore,
the gradient of f is given by

〈∇f(xi)〉 =

N∑
j=1

mj
fj
ρj

∇W (xi − xj), (11)

where the resulting directional gradient operator is evaluated as

∇W (xi − xj) =
xij
xij

dW (ξ)

dξ
, (12)

with xij = xi − xj , xij = ||xij ||2 and ξ denoting a generalized coordinate. In this work, we have adopted
the Lucy kernel, proposed by Lucy [34], with ξ = xij/h145
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W (ξ) =

{
αD (1 + 3ξ) (1− ξ)3

, if 0 ≤ ξ ≤ 1,

0, otherwise.
(13)

where the normalization parameter αD depends on the number of dimensions of the problem

αD =


5/4h, if 1D,

5/πh2, if 2D,

105/16πh3, if 3D.

(14)

We proceed now by applying this methodology to Eqs. (5)-(7). The derivation of the deterministic
part of the mathematical model, i.e., the SPH formulation, can be found in Monaghan [31]. For a complete
derivation of the SDPD method, the reader may refer to Español and Revenga [24]. The resulting equations,
disregarding body forces, are given by150

dρ

dt
= −

N∑
j=1

mj (vij · xij)
1

xij

dW

dξ
,+ξhc0

N∑
j=1

ψij · xij
1

xij

dW

dξ
(15)

dv

dt
=

− N∑
j=1

mj

(
Pi
ρ2
i

+
Pj
ρ2
j

)
1

xij

dW

dξ

+

5η

3

N∑
j=1

1

x3
ij

dW

dξ

vij + (vij · xij)xij
ρiρj

+
dṽ

dt
, (16)

dC

dt
=

− N∑
j=1

mj
(κi + κj)(Ci − Cj)

ρiρjxij

dW

dξ

+
dC̃

dt
. (17)

In Eq. (15), ψij and ξ denote the artificial density diffusion and its amplitude, respectively. This
correction was proposed by Molteni and Colagrossi [35], as a way to reduce the numerical noise in the
pressure valuation for weakly-compressible SPH, and has the form

ψij = 2

(
miρj
mjρi

− 1

)
xij

x2
ij + εhh2

, (18)

where εh ∼ 0.01 is a small scalar set to prevent numerical singularities [31, 36]. Considering the significant
improvements presented by Molteni and Colagrossi [35] in terms of stability, we have taken the amplitude155

of the artificial density diffusion to be ξ = 0.1.
The random terms dṽ/dt are introduced in the equations as a tensorial generalization of a stochastic

Wiener process [21],

dṽ

dt
=

N∑
j=1

[(
40

3

ηκBT0

ρiρj

dW

dξ

)1/2
dŴij

dt
· xij
xij

]
, (19)

(20)

where

dW̃ij =
W̃ij + W̃

T

ij

2
, (21)
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is the symmetric part of a matrix of independent increments in the Wiener process [21], κB is the Boltzmann160

constant and T0 is a characteristic temperature of the system. For the random term in the reaction-diffusion
equation, we follow the assumptions described by Li et al. [2], that disregard the influence of the random
term in diffusive processes, based on the fact that the mass of a single solute molecule ms,i is small compared

to the mass of the SDPD particle mi. Therefore, we assume that dC̃ � dC.
In order to close the model described by Eqs. (15)-(17), a relationship between density and pressure field165

must be established. In the Lagrangian fluid dynamics literature, two different approaches are widely used:
1) treat the flow as incompressible, either by solving a pressure-Poisson equation to obtain a divergence-free
velocity field [36, 37], or by requiring as a kinematic constraint that the volume of the fluid particles is
constant [38]; or 2) treat it as weakly compressible, and impose an equation of state [34, 39, 21, 40, 33].

In the present work, we followed the classical weakly-compressible SPH approaches, where the pressure170

of a fluid particle is obtained from the density field using an equation of state [41]. A common choice is the
so-called Tait’s equation of state [42, 40, 33]:

p = p0

[(
ρ

ρ0

)γ
− 1

]
, (22)

where p0, ρ0 denote reference pressure and density, respectively, and γ is the polytropic constant. It is a
common practice [40, 33] to select p0 = ρ0c

2
0/γ, where c0 is the artificial speed of sound. In order to limit

density variations to 1%, we choose γ = 7. Here, c0 is chosen such that it is at least two orders of magnitude175

higher than the characteristic velocity of the problem.

2.1.2. Numerical aspects

Following several authors [43, 35, 41], the integration of Eqs. (15)-(17) was performed using a two-step
predictor-corrector scheme. Specifically, considering Y = [vi, ρi, Ci] the vector of unknowns of the system

∂Y

∂t
= f(Y , t), (23)

the explicit trapezoidal method is given by180

Ỹ = Y n−1 + ∆tf(tn−1,Y n−1), (24)

Y n = Y n−1 +
∆t

2

(
f(tn−1, vn−1) + f(tn, Ỹ )

)
,

which requires the evaluation of f only once per time step. A necessary condition for stability, given by the
Courant-Friedrichs-Lewy condition based on the artificial speed of sound c0, was used to estimate a suitable
time step ∆t for each simulation [33].

2.2. SSA and RDME

It has been observed that mean-field or deterministic models are often insufficient to capture the relevant185

dynamics of many biological systems [44, 45, 46]. At this cellular level, biochemical systems in which the
copy number of any relevant chemical species is sufficiently small can be more accurately modeled with
discrete stochastic simulation, of which the most popular method is the Stochastic Simulation Algorithm
(SSA) or Gillespie algorithm [47]. The SSA assumes that the system is spatially homogeneous, or well-mixed.
To model spatially inhomogeneous stochastic biochemical systems at the mesoscopic scale, reaction-diffusion190

master equation (RDME)[29]-based methods discretize space into spatially homogeneous voxels [25, 26, 27]
are often used. In our spatial SSA (sSSA), we integrate the RDME-based methods with a particle-based
fluid dynamics simulation framework by using each SDPD particle as a RDME voxel. Thus, the stochastic
chemical reactions are solved within each of the SDPD particles, and the stochastic diffusion are solved
between each of the SDPD particles.195
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The spatial SSA algorithm is based in the Reaction-Diffusion Master Equation (RDME) formalism [29].
The RDME is a mathematical model for spatially-resolved mesoscopic-scale stochastic chemical reaction-
diffusion kinetics. It gives the time evolution of the probability distribution for the state of the system.
First, the physical domain is partitioned into K non-overlapping subvolumes or voxels, similar to numerical
methods for PDEs. Molecules are taken to be point particles and the state of the system is the discrete200

number of molecules of each species for each of the voxels in the domain. Modeling the reaction-diffusion
dynamics as a Markov process gives the following forward Kolmogorov equation for the time evolution of
p(X, t) = p(X, t|X0, t0) (the probability that the system can be found in state X at time t, conditioned on
the initial condition X0 at time t0)

∂p(X, t)

∂t
= Rp(X, t) +Dp(X, t), (25)

Rp(X, t) =

K∑
i=1

M∑
r=1

air(X− νir)p(X− νir, t)− air(X)p(X, t), (26)

Dp(X, t) =

S∑
s=1

K∑
i=1

K∑
j=1

dsij(X− µsij)p(X− µsij , t)− dsij(X)p(X, t), (27)

where X is a K × S state matrix, and S is the number of chemical species. The functions air(Xi) define205

the propensity functions of the M chemical reactions, and νir are stoichiometry vectors associated with the
reactions. The propensity functions are defined such that air(X)∆t gives the probability that reaction r
occurs in a small time interval of length ∆t. The stoichiometry vector νir defines the rules for how the state
changes when reaction r is executed. dijs(Xi) are propensities for the diffusion jump events, and µijs are
stoichiometry vectors for diffusion events. µijs has only two non-zero entries, corresponding to the removal210

of one molecule of species Xs in voxel i and the addition of a molecule in voxel j. The propensity functions
for the diffusion jumps, dijs, are selected to provide a consistent and local discretization of the diffusion
equation.

We do not solve the RDME directly. Instead, we generate sample paths of the underlying stochastic
process. The SSA does this by generating two random numbers on each time step r1 and r2. These determine215

which reaction event r will fire next and at what time τ it will fire. These are based on the probabilistic
reaction rates (called propensities). Then the system state is updated by applying the stoichiometry vector
ν∗r for reaction r to the state vector X. The propensity functions are updated, the time is incremented by
τ , and the procedure continues until the final time. This procedure is shown in Algorithm 1.

Algorithm 1 SSA Reactions

Input: Current population of species in each particle: Xis, Set of SSA reactions r ∈ R and propensity
functions ar(Xi∗), Integration timestep τstep

Output: Population of each SSA species in each particle at time t+ τstep.
1: Calculate air = ar(Xi∗) ; a0 =

∑
i

∑
r air

2: t′ = 0; r1, r2 ∈ URN(0, 1); t′ += − log(r1)/d0

3: while t′ < tsplit do
4: Find: maxµiµr

[a0r1 >
∑µi

i

∑µr

r air]
5: Xµiµs

+= νµiµr

6: Update: air, a0

7: r1, r2 ∈ URN(0, 1)
8: t′ += − log(r1)/a0

9: end while

For SSA diffusion, we use a K ×K matrix, the diffusion matrix D, where Dij is the diffusion propensity
for molecules to jump from particle i to particle j. Following the formulation of Tartakovsky et al. [48], it
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is defined as:

Dij =

−2
mimj

mi+mj

ρi+ρj
ρiρj

x2
ij

x2
ij+εhh2

dW
dξ , if i 6= j,

−
∑
n,n6=j Dnj . if i = j.

(28)

This procedure to solve the SSA diffusion over a time interval [t, t+ τstep] is shown in Algorithm 2.220

Algorithm 2 SSA Diffusion

Input: Current particle positions: xi, Current population of species in each particle: Xis, Set of SSA
species diffusion coefficients: κijs, Integration timestep τstep

Output: Population of each SSA species in each particle at time t+ τstep.
1: Create flux K × S matrix Q = 0
2: Calculate diffusion matrix D [Eq.(28)]
3: Calculate dijs = κijsDijXis ; d0 =

∑
i

∑
j

∑
s dijs

4: t′ = 0; r1, r2 ∈ URN(0, 1); t′ += − log(r1)/d0

5: while t′ < tsplit do
6: Find: maxµiµjµs

[
d0r1 >

∑µi

i

∑µj

j

∑µs

s dijs
]

7: Xµiµs
−−; Qµiµs

−−; Qµjµs
++

8: Update: dijs, d0

9: r1, r2 ∈ URN(0, 1)
10: t′ += − log(r1)/d0

11: end while
12: Xis += Qis∀i, s

3. Proposed method

3.1. Overview

The goal of the proposed hybrid method is to provide an alternative framework, for the simulation of
multiscale systems that potentially involve a broad spectra of Knudsen numbers, involving micro-, meso-
and macro-scopic scales. In this sense, advection-diffusion-reaction problems could be resolved by the same225

method and numerical solver, without the burden of over-resolving small scales when not needed, nor
truncating fluctuations in meso/microscale regimes.

The algorithm treats advection via the Navier-Stokes equations using the SDPD formulation, and
reaction-diffusion by either SSA, SDPD or both. Coupling between advection and diffusion with body
forces, e.g., in natural convection phenomena, take place via SSA or SDPD diffusion, depending on the230

nature of the problem.
As described in Eq. (15), the SDPD formulation includes a random force term, and the momentum

equation is then treated as a stochastic differential equation (SDE). Depending on the Knudsen number,
random effects might be relevant or not. For instance, consider a flow of red blood cells: in a macroscale
regime, the effects of the random force do not change significantly the bulk motion that is transporting the235

cells; therefore, the force term might be disregarded and the SDPD equations are reduced to the standard
SPH formulation. For the transport inside one of the cells, however, diffusion occurs in a meso/microscale
regime, and thus SSA could be used to resolve interactions.

3.2. Algorithm

Our algorithm utilizes a first order operator splitting method to decouple and simultaneously solve the240

SDPD fluid dynamics, the SDPD deterministic reaction-diffusion, and the SSA stochastic reaction-diffusion
equations over the same time interval [t, t+τstep]. First, we time integrate equations (15), (16), and (17) over
the interval using an explicit trapezoidal method. Then, we execute the SSA chemical reaction simulation
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[Algorithm 1] within each voxel/SDPD particle. Finally, we execute the SSA diffusion simulation [Algorithm
2] between all voxel/SDPD particles. The procedure to solve the full system is shown in Algorithm 3.245

Algorithm 3 Hybrid SDPD-SSA method

Input:
1: Domain region and boundary conditions,
2: Initial Particle Positions/masses/velocities,
3: Particle pair interactions,
4: Set of SDPD species: diffusion coefficients & initial concentrations,
5: Set of SDPD reactions,
6: Set of SSA species: diffusion coefficients & initial populations,
7: Set of SSA reactions,
8: Integration timestep τstep, h, ρ, e, tfinal

Output: At each sample time, for each particle: position, velocity, concentration of each SDPD species,
population of each SSA species.

9: t = 0
10: while t < tfinal do
11: Solve for new position of SDPD particles [Eq.(15)]
12: Solve for new velocity of SDPD particles [Eq.(16)]
13: Solve deterministic reaction-diffusion [Eq.(17)]
14: Solve SSA reactions [Algorithm 1]
15: Solve SSA diffusion [Algorithm 2]
16: t = t+ τstep
17: end while

3.3. Implementation

The hybrid method summarized in Algorithm 3 was implemented in a stable version of the open-source
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)[49] (v. 11 Aug. 2017). LAMMPS
was originally developed as a molecular dynamics code, but its portability allow the implementation of new
methods and particle interactions without modifying the kernel of the code, responsible for the efficient250

link-cell and neighbor list of the particles.
Our source code is available at the Github page: https://github.com/briandrawert/hybrid_SSA_

SDPD

4. Results

In this section we provide experimental validations of the proposed hybrid method. Section A discusses255

a one-dimensional, stationary reaction-diffusion problem, and Section B compares results of a classical
advection-diffusion problem with the literature. Validations for 1D and 2D diffusion are provided in the
Supplementary Information.

4.1. Validation for one-dimensional reaction-diffusion

The diffusion cases presented so far validated the diffusion treatment with sSSA and SDPD for Dirichlet260

boundary conditions. We now proceed by allowing reactions of different species to take place. The following
test case was also used in the validation of the software Stochastic Simulation Service (StochSS [50]), for
the case of a three-dimensional cylinder. For this case, all the physical parameters are expressed in SI units.

Consider a domain Ω = [0, 1], with non-homogeneous Dirichlet boundary conditions imposed in the
left and right walls. The walls are constrained with imposed concentrations arbitrary species CA and265

CB , as depicted in Fig. 3a. The initial conditions are homogeneous, CA(x, t = 0) = CB(x, t = 0) = 0,
∀x ∈ Ω | x 6= ∂Ω.
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Species CA and CB interact with each other via mass action at a constant kinetic rate kAB , leading to

annihilation, i.e., CA + CB
kAB−−−→ ∅. The mathematical model that describes the system is given by

∂

∂t

[
CA
CB

]
=

[
κA 0
0 κB

]
∂2

∂x2

[
CA
CB

]
+

[
RA
RB

]
, (29)

where κA, κB are the mass diffusivities, and RA, RB denote the reaction source terms. Based on the law of270

mass action, the reaction terms are given by

[
RA
RB

]
=

[
−kABCACB
−kABCACB

]
, (30)

The resulting system is a set of non-linear, coupled, second-order partial differential equations. Since
there is no systematic way of obtaining the exact solution of this initial-boundary value problem, we propose
its validation using high-fidelity numerical data as reference. Thus, we performed the validation using in-
house code that solves the aforementioned problem using a 6th order tridiagonal compact finite-difference275

scheme [51], with grid spacing equivalent to the distance between particles used in the spatial SSA and SDPD
simulations. The source code for our implementation of this solver is included as a file in the Supplementary
Material.

0.00 0.20 0.40 0.60 0.80 1.00
0.00

0.20

0.40

0.60

0.80

1.00

Fig. 3. (a) Schematic of degradation reaction of two arbitrary species, with initial and boundary conditions. (b) Plot of the
concentration of the chemical species along the length of the cylindrical domain, at t = 0.2, 0.4, 0.6, 0.8 and 1.0[s] for N = 33
particles.

Numerical simulations were performed using mass diffusivities κA = κB = 0.1[m2/s] and reaction kinetic
rate kAB = 0.1[s−1molecules−1]. Three levels of spatial refinement were used: 17, 33 and 65 equally-spaced280

particles, spaced ∆x = 1/16, 1/32, 1/64 [m] of each other, respectively. A comparison of the concentration
profiles solved using SSA and SDPD and contrasted with the compact finite difference solution is shown in
Fig. 3b. SSA solutions were obtained as an average of Nr = 100 realizations.

Results shown good agreement with the high-order reference solution. As expected, concentration curves
monotonically decrease towards the half-length of the domain, due to the symmetric nature of the problem.285

Table 1 summarizes the errors for each simulation. Errors with SSA and SDPD showed the same order
of magnitude, which indicates that SSA-based reaction-diffusion is able to accurately predict the physics of
the problem. This result, along with the diffusion validations, indicate that there is no penalty in using SSA
except for the burden of over-resolving scales, which increases the computational effort. However, notice
that the opposite is not true, i.e., the usage of a deterministic approach does not necessarily reproduce the290

physics of the problem, as stochastic effects are relevant for Kn ≥ 10−1. Thus, our method allows the
simulation of cases even when it is not clear whether the stochastic effects are relevant or not, covering the
whole spectrum of Knudsen numbers.
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Table 1
Estimated errors of reaction-diffusion in a cylinder.

∆x N εSDPDa εSSAb C0

1/16 17 1.856× 10−4 7.285× 10−4 1.6× 105

1/32 33 1.698× 10−4 5.334× 10−4 3.2× 105

1/64 65 2.325× 10−4 6.644× 10−4 6.4× 105

a Error computed at steady-state, t = 100.
b Error computed based at the mean profile of Nr = 100 at steady-state.

4.2. Validation for natural convection in a cylinder inside a square enclosure

The final validation case consists of comparing flow effects (advection), resolved via SDPD, and molecular295

transport (diffusion), resolved with both SSA and SDPD.
Instead of treating diffusion as a passive scalar, as in the validation of the tDPD model [2], the present

work proposes the validation of advection-diffusion using a coupling force, based on the Oberbeck-Boussinesq
approximation [52].

A classical test case widely used in the literature is the natural convection over a cylinder immersed in300

a square cavity. A complete description of the problem is given by Fig. 4a. The system consists of a square
enclosure, filled with fluid at rest. Non-slip is assumed in the walls of the cavity and in the interface between
the cylinder and the fluid. Initially, the fluid has no solute diluted, i.e., C(x, 0) = 0. At t > 0, the wall
concentration of solute in the circular cylinder and at the enclosure walls are set to CC and CE , respectively.
Since CE > CC , mass transfer starts to occur, and the system is treated as a binary mixture. The solute305

diffuses in the fluid over time, causing mass stratification.
Density gradients can exist in binary mixtures due to gradients in the concentration [53]. Thus, an

Oberbeck-Boussinesq approximation can be written for mass transport phenomena, such that a driven body
force is proportional to the variation of concentration C, gravity acceleration g and coefficient of mass
expansion β. The body force in Eq. 6 takes the form310

Fbody = gβ∆C êy, (31)

where ∆C = C −Cref, Cref is a reference concentration and êy is the y-direction component of the standard
basis, (êx, êy, êz).

The problem was addressed by multiple authors, usually considering it as natural convection of heat
[54, 55, 56, 57]. Some works also explored convection in different geometries, including super-elliptical [55]
and squared-shaped [58] cylinders, as well as cubical [59] and rectangular cavities [60].315

In order to validate results with the work of Moukalled and Acharya [54], the equations are rendered
dimensionless, using the reference groups proposed by Gray and Giorgini [52]

xo = L, (32)

vo =
√
gβL∆C, (33)

to = xo/vo, (34)

∆Co = CC − CE , (35)

Po = ρov
2
o , (36)

where ρo is a reference density, considered here as unity. Using these groups, Eqs. (5)-(7) read

12



∂ρ∗

∂t∗
= −ρ∗∇∗ · v∗, (37)

∂v∗

∂t∗
= − 1

ρ∗
∇∗p∗ +

1√
Gr
∇∗2v∗ + C∗êy, (38)

∂C∗

∂t∗
=

1√
GrSc

∇∗2C∗, (39)

where Gr and Sc denote the Grashof and Schmidt numbers, respectively. The mass transfer Rayleigh
number Ra can therefore be defined as320

Ra = GrSc =
gβ∆CL3

νκ
, (40)

thus one can rewrite Eqs. (37)-(39) as

∂ρ∗

∂t∗
= −ρ∗∇∗ · v∗, (41)

∂v∗

∂t∗
= −∇∗p∗ +

√
Sc

Ra
∇∗2v∗ + C∗êy, (42)

∂C∗

∂t∗
=

1√
RaSc

∇∗2C∗. (43)

The problem now depends only on Ra and Sc. Following Moukalled and Acharya [54], we take D = 0.2L.
Simulations were performed for Ra = 104, 105 and 106. The Schmidt number was taken to be equal to 0.7.

The range of Rayleigh numbers selected was chosen as a way to test the ability of the present method
to predict the onset of the convective plumes and their consequent concentration inversions, which are325

characteristics of regimes with moderately high Rayleigh numbers (Ra > 105).

Fig. 4. (a) Schematic of natural convection in a cylinder inside a square enclosure. (b), (c) and (d) show isocontour plots of
dimensionless concentration C∗ at steady-state, for (b) Ra = 104, (c) Ra = 105 and (d) Ra = 106. Results shown in (b), (c)
and (d) were interpolated using a Gaussian kernel, for clarity purposes.

A total of six numerical simulations were performed. For each value of Ra, mass diffusion was resolved
using SDPD (cases 1-3) and SSA (cases 4-6). For all the cases, the same number of particles N and same
initial conditions were provided. The initial setup consists of N = 812 equally-spaced particles distributed
in a squared domain of length L = 1. Boundary conditions are imposed using several layers of stationary330

particles with fixed concentrations. To guarantee stability, a time step of ∆t∗ = 10−5 was used. All the
results were averaged in NR = 100 realizations after reaching a sufficiently long simulation time (t∗ ∼ 50).
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Profiles of the dimensionless concentration, C∗, and y-velocity component, v∗y , are shown in Figs. 5a-5b.
Results were compared with the numerical simulation of Moukalled and Acharya [54]. Since Moukalled and
Acharya [54] uses a different normalization for the velocity, the dimensionless velocity v∗ obtained from the335

solution of Eq. (42) must be re-scaled, by multiplying v∗ by
√
Ra/Sc.

In Fig. 5a, for Ra = 104, the concentration profile decreases monotonically as the distance from the
cylinder increases, as observed in Moballa et al. [61]. For Ra = 105, the concentration profile flattens between
the wall and the cylinder surface, due to the formation of boundary layers in these regions, confirming the
ability of the present method to correctly predict diffusion in near-wall regions. Similarly, for Ra = 106, the340

method was able to capture the stratification [54] of the concentration profile that causes the flow to slow
down in the interval 0.65 . x∗ . 0.85 (c.f. Fig. 5b).

Results for the y-velocity profile are compared in Fig. 5b. A qualitative good agreement was observed
for Ra = 104 and Ra = 105. For Ra = 106, significant errors in the near-wall regions were observed,
in particular in the neighborhood of the right-wall, indicating excessive viscous damping in these regions,345

possibly caused by the artificial viscosity term used in the SPH and SDPD formulations. These errors,
however, do not seem to affect the mass diffusion with the same intensity, as the concentration profiles in
Fig. 5a show good agreement with the reference, even for Ra = 106.

Table 2
Natural convection in a cylinder inside a square enclosure: estimated errors in the concentration (C∗) and velocity (v∗y)

profiles.

Ra εSDPD(C∗) εSSA(C∗) εSDPD(v∗y) εSSA(v∗y)

104 2.587× 10−3 2.205× 10−3 0.347 0.347
105 2.307× 10−3 2.447× 10−3 1.373 1.409
106 3.222× 10−3 2.867× 10−3 4.378 4.666

The differences in magnitude between concentration and velocity errors becomes more evident with the
error estimates provided in Table 2. For the concentration profiles, Table 2 show that both SSA and SDPD350

diffusion-driven errors remain in the O(10−3), with the error increasing with the increase of Ra. It is
important to highlight that, for Ra = 106, the SSA error was smaller than the SDPD error, showing the
potential of the method.

For the velocity errors, shown in Table 2, SDPD seem to perform better than SSA. However, it is
important to highlight that advection was modeled using SDPD in both cases. Thus, the error in the355

velocity is most likely to be caused by the SDPD formulation, and not by SSA mass transport.

4.3. Application: micro-channel reactive flow past a cell

We apply our methodology to perform a challenging simulation of biological significance representing a
reactive micro-channel flow past a yeast cell that combines advection, diffusion, and reaction. The typical
experiment, depicted schematically in Fig. 6a, consists of a microfluidics chamber with cells immersed in a360

liquid working media. The system, initially at rest, starts to experience mixing when at t > 0 two different
fluids start to flow along the channel from different inlets. A solution containing working fluid and a diluted
species (the mating pheromone alpha-factor, denoted by L) is released through one of the inlets, while
through the other inlet, working fluid alone is injected into the system (Fig. S3).

As the flow develops, L reacts with the alpha-factor receptor R located at the cell surface, producing a365

third species, RL (receptor bound to ligand). We assume that the association reaction, R+L→ RL occurs
at a rate kRL[R][L]. Similarly, the dissociation reaction RL → R + L also takes place in the system, and
occurs at a rate kRLm[RL].

A general deterministic mathematical model that describes the system is given by Eqs. (5)-(7) which
can be conveniently written in a non-dimensional form. The reference parameters, evaluated using the370

dimensional parameters described in Table 3, are given by:
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Fig. 5. (a) Comparison of the mean dimensionless concentration (C∗) and (b) dimensionless (re-scaled by
√

Ra/Sc)
y-velocity (v∗y) centerline profiles, for Ra = 104, 105 and 106, computed at t = 50, over Nr = 100 realizations.

xo = H, (44)

vo = xo/to, (45)

Co = CL|x=0, (46)

Po = ρov
2
o , (47)

where H,CL|x=0 and ρo are respectively the channel height, the concentration of alpha-factor at the inlet,
and a reference density, considered here as unity. Using these dimensionless groups, Eqs. (5)-(7) are written
as

∂ρ∗

∂t∗
= −ρ∗∇∗ · v∗, (48)

∂v∗

∂t∗
= − 1

ρ∗
∇∗p∗ +

1

Re
∇2v∗, (49)

∂

∂t

 C∗RC∗L
C∗RL

 =
1

Pe
∇∗2

 C∗RC∗L
C∗RL

+

 R∗RR∗L
R∗RL

 , (50)

where R∗A, R
∗
B and R∗C are given by the law of mass action as375

 R∗RR∗L
R∗RL

 =

−1 1
−1 1
1 −1

[C∗RC∗L 0
0 C∗RL

] [
DaI/Pe
DaII/Pe

]
. (51)

The system now depends only on four dimensionless groups: DaI, DaII, P e and Re. In the present work,
we define these quantities as
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Table 3
Dimensional parameters used in the micro-channel numerical experiment.

Parameter Description Value

κL α-factor (L) diffusivity 347 [µm2/s]
ν kinematic viscosity 10−6 [m2/s]

CL|x=0 L concentration at inlet 1.0[mol/m3]
CR|cell R concentration at cell wall 1.0[mol/m3]
kRL kinetic association rate 1.0[m3/(mol · s)]
kRLm kinetic dissociation rate 1.0 [s−1]
D diameter of the cell 5.0 [µm]
H channel height 100.0 [µm]

Lchannel channel length 200.0 [µm]
Lcell streamwise cell position 25.0 [µm]
lcell thickness of cell membrane 1.0 [µm]
vo reference velocity 2.5× 10−4 [m/s]
xo reference length H [m/s]

mol/m3 is the molar concentration.

DaI =
τdiff

τreactI
=
x2
okRLCo
κL

, (52)

DaII =
τdiff

τreactII
=
x2
okRLm
κL

, (53)

Pe =
xovo
κL

, (54)

Re =
xovo
ν

. (55)

The first and second Damköhler numbers, denoted by DaI, DaII, are defined as the ratio between an
arbitrary mixing time scale τmix and the chemical time scale of a n-th order reaction τreact. It is important
to highlight that the mixing scale is problem-dependent; for combustion-dominated flows, the mixing scale380

is related to the turbulent time scale [62, 63], whereas in diffusion-dominant problems, the mixing scale is
related to the molecular diffusion time scale [64, 65, 66, 67].

Table 4
Dimensionless groups used in the numerical experiment.

Group Description Value

DaI first Damköhler number 28.82
DaII second Damköhler number 28.82
Pe mass Péclet number 72.06
Re Reynolds number 2.5× 10−2

The mass Péclet number, denoted by Pe, describes the ratio of advection and molecular diffusion trans-
port [66, 68]. Similarly, the Reynolds number Re describes the ratio of inertial to viscous transport in the
flow[68].385

The problem was solved using three different approaches: the present method, i.e., hybrid sSSA-SDPD,
SDPD, and the finite element method (FEM). All of the cases were computed using the parameters described
in Tables 3-4. Both hybrid sSSA-SDPD and SDPD simulations were performed using N = 1250 particles.
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Fig. 6. (a) Upper: schematic of our model of a yeast cell in a microfluidics channel flow containing a pheromone gradient.
The working fluid is initially at rest, and at time t > 0, two inlets start to inject fluid into the chamber; the upper inlet
consists of a diluted mixture of working fluid and alpha-factor L, and the lower inlet injects working fluid in the system. (a)
Lower: magnified region around the cell, illustrating the particles and their initial velocities. (b) Contour plots of the
dimensionless velocity magnitude field, |v∗|, at t∗ = 2, obtained using the proposed hybrid method (upper) and FEM (lower).
(c) Comparison of the dimensionless concentration profiles of alpha-factor, C∗

L, between hybrid sSSA-SDPD, SDPD and finite
element method (FEM), measured across the y∗ centerline, at time t∗ = 2. Results shown in (b) were interpolated using a
Gaussian kernel, for clarity purposes.

The number of molecules per particle was taken as Nm = 1600. Note that because of the low level of
parallelism of the SSA algorithm, simulations of the hybrid method must run in serial, which restricts the390

maximum number of particles involved in the simulation, as well as the number of realizations. As an
example, we show only one SSA realization. The finite element problem was modeled using the software
Comsol Multiphysics (v5.2a), using second-order shape functions in a mesh of approximately 17000 elements.
Equations (49)-(50) were solved assuming incompressibility.

A qualitative comparison between the concentration of alpha-factor, CL, is depicted in Fig. 6b. At time395

t∗ = 2, results show qualitative agreement. A mixing layer is formed in the first half of the channel, with the
hybrid method showing a delay in the frontal concentration when compared with FEM solution, indicating
differences in the velocity field. As the flow contours around the cell, the mixing layer is interrupted, causing
a separation of the concentration field into two fronts.

Figure 6c provides a quantitative comparison between the algorithms. The y∗-centerline profiles of C∗RL400

shown in Fig. 6c demonstrate that despite its low resolution, the hybrid method still captured the physics
of the problem. Note that the curves are in phase with each other. Still in Fig. 6c, it is noticeable that
results are in far better agreement with FEM at regions away from the boundaries. A possible cause of
this discrepancy originates from the way non-slip boundary conditions are imposed. For simplicity, in this
example, the cell was modeled using stationary particles, which may introduce errors due to the boundary405

curvature [69]. In particular, the usage of more sophisticated boundary treatments have shown to be effective
in improving stability and accuracy of simulations [69, 70].

Finally, a comparison of the formation of species RL in the cell wall region for all three methods is shown
in Fig. 7. Results show that SSA results can significantly differ from SDPD and FEM, depending on the
species concentrations involved and number of realizations performed. The explanation for the differences410

between the hybrid sSSA-SDPD method and FEM results depend on how significant the stochastic effects
are, and how well the PDEs used in FEM and the SDEs of SDPD can describe the reaction-diffusion process.

The discrepancies observed in Fig. 7 illustrate a case where stochastic effects are relevant enough that
deterministic methods can no longer predict the physics of the problem accurately. Furthermore, this
typical biological problem shows that it is not always obvious when stochastic effects are important, as415

the continuum hypothesis might hold true for momentum transport, but not for reactive mass transfer.
The proposed hybrid method, however, allows for the correct representation of the physics of this class
of problems. In particular, the method bridges the gap between stochastic and deterministic advection-
diffusion-reaction systems in biological applications. Thus, the hybrid sSSA-SDPD method enables the
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simulation of systems spanning a large range of Knudsen numbers, without any ad hoc assumption about420

the Knudsen number or the relevance of stochastic transport.

Fig. 7. Top: dimensionless concentration of species RL at the cell wall, C∗
RL, at t∗ = 1 (equivalent to physical time

t = 0.4[s]), obtained by: (a) SDPD, (b) hybrid sSSA-SDPD method and (c) finite element method. Bottom: dimensionless
concentration of species RL at the cell wall, C∗

RL, at t∗ = 2 (equivalent to physical time t = 0.8[s]), obtained by: (d) SDPD,
(e) sSSA-SDPD method and (f) finite element method. Note that the deterministic SDPD simulations in (a) and (d) match
closely the finite element results in (c) and (f). However, the sSSA-SDPD simulations in (b) and (e) are able to capture the
discrete stochastic dynamics of this subcellular biological process.

5. Conclusion

We have developed a method to simulate both discrete stochastic and continuum deterministic chemical
reaction-diffusion systems within an unstructured moving fluid domain whose dynamics are simulated via
the smoothed dissipative particle dynamics method. This method has many applications where chemically425

or biochemically reactive systems are coupled to a moving fluid domain. For example, it will be especially
useful for modeling biological cells in which discrete stochastic chemical kinetics are required to accurately
describe cellular processes.

It is important to emphasize that because of the Lagrangian nature of SDPD, the coupling with advective
transport occurs naturally, with particle positions being updated via the equations of motion. This approach430

has been proven to work in different scales, ranging from relativistic spaces [71] to quantum systems [72].
Thus, our method preserves the natural advantages of a meshfree method while incorporating the flexibility
of resolving small scales only when necessary, making it a complete framework for the simulation of biological
multiscale systems.

We use operator splitting to couple the SDPD dynamics of fluid position and velocity, the continuum435

deterministic reaction-diffusion equations, and SSA discrete stochastic reaction-diffusion system over each
timestep. This allows us to solve a complex interdependent system efficiently and simply, with known error
bounds [73, 74].

We have implemented our method within the LAMMPS[49] simulation framework. LAMMPS is a
software package for simulation of classical molecular dynamics problems. The advantage of the LAMMPS440

infrastructure is that is extensible, and has been modified to include simulation capabilities of SPH, and DPD
(including tDPD in a recent release). We have implemented the SDPD, deterministic reaction-diffusion, and
the spatial SSA methods as a user module in LAMMPS, which should allow it to be integrated seamlessly
into many different configurations of LAMMPS. We have released the source for our enhancements under
the GPL v2.0 license, which is the same license as the LAMMPS software package. For ease of replication445

of our results, we have packaged the solver and our examples as a Docker container https://hub.docker.
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com/r/briandrawert/hybrid_ssa_sdpd/. Directions on how to use this container and the full source code
are found on Github: https://github.com/briandrawert/hybrid_SSA_SDPD

Our simulation methodology has many advantages, but there are still technical limitations. The first
is that the compressibility of the SDPD method leads to a performance limitation for applications where450

incompressibility is critical. In addition, there are issues in specifying boundary conditions when using the
SSA simulation method, as it is not as straightforward to specify them in the discrete context compared to
the continuous context. Finally, the current implementation of the SSA method requires that the simulations
be run in serial, rather than utilizing multi-core parallelism. This is due to the fully connected nature of
the SSA method. Our plans for future work include adapting the SSA method to the multi-core parallel455

context to increase performance.
We believe that this method will lead to advances in the understanding of complex systems. Specifically,

we envision its application in the modeling of single cell and multicellular systems possessing changing shapes
in dynamic environments subjected to various perturbations. Applications such as this require coupling
between physical and chemical systems, a simulation our method is designed to address. For example,460

sSSA-SDPD is able to simulate both the complex fluid dynamics and the stochastic biochemical reactions
of cells in a microfluidics chamber. Finally, we can use the algorithm to model the physical forces and blood
flow in tissues coupled to inter- and intra-cellular processes.
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