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Abstract

A top-down approach to mechanistic modeling of biological systems is pre-

sented and exemplified with the development of a mathematical model for

single-chain antibody fragment (scFv) folding in Saccharomyces cerevisiae

by mediators BiP and PDI. In this approach, model development starts with

construction of the most basic mathematical model–typically consisting of

predetermined or newly-elucidated biological behavior motifs–capable of re-

producing desired biological behaviors. From this point, mechanistic detail

is added incrementally and systematically, and the effects of these addi-

tions are evaluated with each increment. Use of this approach provides

the modeler with an unprecedented intimacy with the structural require-

ments and performance capabilities of the resulting detailed mechanistic

model, which complements and facilitates further analysis. The top-down

approach to mechanistic modeling identified three such requirements and

a branched dependency-degradation competition motif critical for the scFv

folding model to reproduce experimentally-observed scFv folding dependen-

cies on and synergy between BiP and PDI and promoted straightforward

prediction and evaluation of parameter dependencies.
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Introduction

In systems biology, mathematical models are used to describe biological sys-

tems in order to obtain understanding of system behavior and predict system

responses (1). The type of model used and its scale and scope vary with

the desired behaviors and responses it is intended to capture and predict,

the desired level of detail, and the size of the biological system of interest.

Model types range from the highest-level regulatory graphs, which show

how species interact, to Bayesian networks, which represent conditional in-

teractions and dependencies, to Boolean models, which describe switching

behavior, to nonlinear ODE models, which describe dynamic behavior, to

the most highly detailed stochastic models, which capture random behavior

caused by low molecule counts (2–4). Model scale may range from molecular

to organismal, and from low-level mechanistic detail to higher-level lumped

behavioral units. Model building on the mechanistic scale has been referred

to as “bottom-up,” as the model includes previously-known interactions and

regulatory feedbacks, which are pared down as analysis identifies the criti-

cal, behavior-defining ones. Building on the more abstract, lumped behav-

ioral scale has been referred to as “top-down,” where input-output relations

are used to identify and gradually fill in previously unknown interactions

(5). This work combines these two approaches by applying the top-down

methodology to biological model building on the mechanistic scale.

By and large, mechanistic modeling approaches have not been formalized

and are as varied as the models and biological systems under study them-

selves. Additionally, no formal evaluation of the approaches’ applicability
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to or advantages in modeling a particular biological system has been per-

formed. The body of circadian rhythm mathematical models demonstrates

the variety of approaches that have been employed to describe a system

largely conserved across mammals and fruit flies. In developing their math-

ematical model for the mammalian circadian rhythm, Forger and Peskin

(6) performed an exhaustive literature search to include many of the known

molecular interactions and mechanisms involved in the circadian clock, when

a basic negative feedback loop was all that was necessary to reproduce

experimentally-observed oscillations. This approach is clearly in the vein of

bottom-up model building, and it produced a mathematical model contain-

ing 73 states and 74 parameters. In stark contrast, Tyson et al. (7) sought to

capture and analyze circadian behavior in Drosophila melanogaster with

a higher-level model by reducing a three-state model consisting of mRNA

and two forms (monomer and dimer) of protein to two: mRNA and total

protein. Meantime, Leloup and Goldbeter developed 10-state Drosophila

(8) and 19-state mammalian (9) models of intermediate complexity to fulfill

their analytical purposes.

Still, one generalized approach to mechanistic modeling of biological sys-

tems has been proposed (10): start by identifying all of the reactions within

the scope of the biological system and perform mass balances around the

participating species. Then, simplify the resulting mathematical model con-

sisting of a set of nonlinear ODEs with further assumptions and approxima-

tions, which often leads to algebraic expressions, Michaelis-Menton kinetics,

and transfer functions such as the Hill function. Finally, employ analyti-

cal tools such as sensitivity analysis to identify components responsible for
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producing certain behaviors and stability and bifurcation analysis to assess

what behaviors the system is capable of producing. This process description

formalizes the bottom-up approach mechanistic model building.

This work describes a contrasting approach similar to that outlined by

Ideker and Lauffenburger (11), but on the scale of mechanistic modeling:

with the full desired mechanistic scope of the model defined, develop the

simplest imaginable representation of the biological system in an attempt

to isolate the “backbone” structure and identify motifs responsible for the

underlying behavior. Once this basic model has been established, gradually

expand it to include the desired mechanistic details, so the contributions–or

lack thereof–of these modifications to system behavior may be incrementally

evaluated using systems biology analytical tools. (In the cited work by Ideker

and Lauffenburger (11), a top-down approach to biological modeling across

many levels of complexity, starting from high-level regulatory graphs and

gradually appending them with more data to transition to lower-level model

types like ODE models, is described.) This approach may then be referred

to as a top-down approach to mechanistic modeling, and its methodology

is outlined in Figure 1. This approach’s strength lies in the fact that it

provides the modeler with an unprecedented intimacy with the behavioral

contributions of each mechanistic component of the model.

The top-down mechanistic modeling approach also benefits from the

growing catalog of known biological motifs and modules responsible for pro-

ducing certain biological behaviors. The Escherichia coli toggle switch (12)

and repressilator (13) are two well-known examples from synthetic biology.

Other examples include positive feedback loops that can store information
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from transient signals, inhibitory feedback loops that guard against noise,

and feed-forward loops that accelerate responses (14). Familiarity with these

motifs and modules can aid in construction of the basic backbone structure

by allowing one to identify more readily the components and interactions

that will be necessary to reproduce experimentally-observed behaviors.

To demonstrate the top-down approach to mechanistic modeling, this

work will develop a model for single-chain antibody fragment 4-4-20 (scFv)

translocation into and folding within the endoplasmic reticulum (ER) lumen

of Saccharomyces cerevisiae, or baker’s yeast, by the chaperone binding

protien (BiP) and foldase protein disulfide isomerase (PDI). The motiva-

tion for this study comes from the fact that single-chain antibodies have a

variety of applications in biotechnology and medicine (15, 16) and serve as

useful models for the expression of other disulfide bond-containing thera-

peutic proteins. Additionally, yeast is a frequently-used platform, because

it combines the ease of microbial genetics and growth characteristics with

post-translational, eukaryotic processing (17–19). The goal of using sys-

tems biology to study this system is to optimize production of scFv in the

S. cerevisiae platform.

It has been shown that overexpressing BiP or PDI individually increases

scFv yields in the microorganism but overexpressing both simultaneously

creates a synergistic effect that amplifies yields over the simple summation

of the individual increases alone (17, 20). Xu et al. (20) hypothesized these

experimentally-observed BiP and PDI dependencies and synergy originate

from BiP assisting in/accelerating unfolded scFv translocation into the ER

with no effect on protein folding rates and PDI actually facilitating protein
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folding. In this line of reasoning, increasing BiP increases the pool of scFv

to be folded, and increasing PDI increases the amount of that pool that is

exported from the cell. A mathematical model was developed using the top-

down approach to mechanistic modeling to test this hypothesis. Steady-state

analysis was employed as a primary analytical method for evaluating model

performance. As the top-down approach was applied, its strengths were

clearly highlighted as it identified a critical motif and three requirements for

successful reproduction of the experimental data.

Model Development Methodology

Establishing Desired Model Behaviors

In implementing the top-down approach, one first identifies the experimental

behavior(s) one wishes to capture with the mathematical model. To reit-

erate, in the case of scFv folding, the model must reproduce the following

principal behaviors: scFv expression must be both BiP- and PDI-dependent,

and overexpressing BiP and PDI must significantly increase scFv secretion

over overexpressing either BiP or PDI alone (i.e., BiP and PDI must dis-

play some degree of synergy). These behaviors are captured in a key set of

experimental data from Xu et al. (20), reproduced in Figure 2A.

Establishing Desired Model Details

Next, one mines the experimental literature for known and hypothesized

interactions and mechanistic details desired for inclusion in the final mecha-

nistic model. In doing so, one establishes the model’s scope. Since the scFv
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folding model was to be used for evaluating the validity of the Xu et al. (20)

hypothesis, it needed to represent the hypothesis’s core concepts: BiP as-

sists in unfolded scFv (UscFv) translocation into the ER, and PDI catalyzes

protein folding. Other details desired for inclusion in the model were those

associated with transcription, translation, and post-translational transloca-

tion of the scFv; UscFv, BiP, and PDI binding states; and relative UscFv

folding/misfolding rates in each of those binding states. Inclusion of these

details would also require three compartments: the nucleus, cytoplasm, and

ER.

Constructing a Backbone Model

With the scope of the detailed mechanistic model established, one then iden-

tifies the components necessary for construction of a backbone model, the

bare minimum that is required for capturing the desired experimental be-

haviors. This step may be facilitated by searching the catalog of elements

(modules, motifs, and interactions) known to be responsible for producing

certain biological behaviors for homologies to the system at hand. If one

or more plausible matches is/are found, the corresponding element(s) may

be applied to the backbone model structure. Experimental validation of the

utilization of such elements–notably, combinations thereof in gene regulatory

networks–in mathematical model construction to represent and predict bio-

logical behavior was performed by Guido et al. (21). If no known modules,

motifs, or interactions are appropriate for use in the backbone model, the

modeler will have to identify such underlying mechanisms independently.

In the scFv folding example, there was no precedent for the experimentally-
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observed scFv folding dependencies, so the latter approach was undertaken.

Guidance in constructing a backbone model structure for this system orig-

inated from the Xu et al. (20) hypothesis. It was possible to capture this

hypothesis most fundamentally in a two-state mathematical model, where

unfolded scFv (UscFv) entered the ER in a second-order, BiP-dependent

step, and the UscFv folded in preparation for secretion (SscFv) in a second-

order, PDI-dependent step. This reaction scheme is illustrated as Model 1

in Figure 3, and its parameters are described and assigned values in Table

2.

When developing a backbone model, enumerating all assumptions and

simplifications is an effective means of systematizing the process. If and

when a model fails to capture the experimental behaviors, assumptions and

simplifications may be altered or relaxed in a methodical fashion. When

all of these potential alterations and relaxations have been exhausted, in-

sight gained from the unsuccessful modeling attempt may be applied to the

formulation of a new one. The assumptions and simplifications used in con-

struction of the scFv folding backbone model are listed below and explained

in the following paragraph.

1. All reactions were modeled using lowest-order, deterministic kinetics.

2. No scFv protein of any form was initially present in the system.

3. Unfolded protein entry to the ER was assumed to have a first-order dependency

on BiP.

4. Folding/secretion was assumed to have a first-order dependency on PDI.

5. Pools of 1 × 103 scFv mRNAs, 3.37 × 105 free BiPs, and 5.24 × 105 free PDIs

participated in their respective reactions, as described in the reaction equations



Top-down mechanistic modeling 9

and illustrated in Figure 3, and were not consumed.

6. No scFv misfolding or degradation reactions were included.

7. All properly folded scFv was assumed to proceed to the Golgi and ultimately be

secreted.

Assumptions (1) and (7) will be common to all mathematical models

presented in this paper. The second assumption was meant to mimic the

experimental conditions under which the invalidation data were taken, where

transfer to galactose-containing medium at time = 0 initiated scFv produc-

tion. Assumptions (3) and (4) were meant to capture in basic form the

central concepts of the Xu et al. (20) hypothesis, and the first-order depen-

dencies arose from assumption (1). Assumption (5) arose from literature-

derived values for these concentrations (22–24), and embedded within it

was the further, critical assumption that all BiP and PDI was available

for reaction with scFv, and none was sequestered away by competing re-

actions/species. Assumption (6) was made for simplicity, even though it

is well documented proteins terminally misfold and are removed from the

ER via ER-Associated Degradation (ERAD) (25). Assumption (7) was for

pure model simplification reasons. The reaction equations follow. Rate con-

stant values are provided in Table 2, and derivations are provided in the

Appendix.

d[UscFv]

dt
= k1b[scFvmRNA][BiP]− k2b[UscFv][PDI] (1)

d[SscFv]

dt
= k2b[UscFv][PDI] (2)
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All mathematical model simulations in this work were performed using

Matlab Simulink using the ode15s solver. Figure 2B, which contains trajec-

tories from the fully-detailed model, exemplifies typical simulation trajecto-

ries for all mathematical models from in silico runs intended to replicate the

Xu et al. (20) experimental results in Figure 2A. All model trajectories dis-

played the observed linear behavior, so that a concisely effective method for

evaluating model performance in replicating the experimental trajectories

could be developed by comparing 50 h time point values, as demonstrated

in Figure 2C. These values were scaled by the experimental data points to

facilitate this simulation-experiment comparison. Error bars from the exper-

imental data point with the largest standard deviation (O.PDI at 50 hours)

were also included. Model numbers in this Figure correspond to their as-

signments in Figure 3 and the text, and asterisks indicate models that have

been modified with Modification A, which is also schematized in Figure 3.

One benefit of developing a backbone model is it generally facilitates

analysis by eliminating the clutter associated with more detailed models.

For example, with such a simple model for scFv folding, it was possible

to derive analytically the steady-state production of SscFv from the model

equations and evaluate its dependencies on BiP and PDI concentrations

directly. Steady-state was achieved within the first time step of the simu-

lations, 1× 103 s, which is consistent with experiments that show pro-scFv

(UscFv) reaching steady-state levels within 10 and 60 minutes of the initi-

ation of scFv production. Consequently, this steady-state analysis was ap-

propriate. For this most basic mathematical model, the steady-state SscFv

production rate (derived by expressing the SscFv production rate in terms
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of system parameters after having set the other states’ time dependencies

to zero) was:

d[SscFv]SS

dt
= k1b[BiP][mRNA]. (3)

This equation demonstrates that SscFv production was totally indepen-

dent of PDI levels in this mathematical model. scFv flux through the system

was constant and determined at the ER-entry step, modulated by BiP. In-

creasing/decreasing PDI levels would only decrease/increase, respectively,

UscFv levels, but the flux would remain the same. As a result, this model

was incapable of reproducing the experimentally-observed scFv folding de-

pendency data where increasing PDI, with or without BiP, increased scFv

secretion. Similarly, this first model was unable to demonstrate any kind of

synergy between BiP and PDI in SscFv production. These results indicated

a fault in the backbone model formulation.

As previously discussed, in a systematic approach to backbone model

construction, modifications to the model should be made by systematically

altering or relaxing assumptions and simplifications before discarding it com-

pletely. Assumption (6) was the first to be altered in the scFv folding model,

as it was arguably one of the weakest. This alteration was justified biolog-

ically: in vivo, if a protein is not successfully folded after some time, it

proceeds down the ERAD (ER-Associated Degradation) pathway, where

it is retrotranslocated from the ER to cytoplasm and degraded (reviewed

in (25)). Hence, protein folding may be viewed as a competition between

achieving a properly folded state or a terminally-misfolded state.
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To include this detail in the basic, two-state model, a generic degradation

pathway was added to the UscFv state, illustrated as the Model 2 in Figure

3. Thus, assumption (6) from the previous model was replaced with the

following:

6. UscFv misfolds/degrades in a first order reaction.

and all other assumptions remained the same. The corresponding model

equations and the steady-state SscFv production rate follow.

d[UscFv]

dt
= k1b[scFvmRNA][BiP]− k2b[UscFv][PDI]− km5[UscFv] (4)

d[SscFv]

dt
= k2b[UscFv][PDI] (5)

d[SscFv]SS

dt
=

k1b[BiP][mRNA][PDI]
km5
k2b

+ [PDI]
(6)

From the steady-state SscFv production rate, it may be seen that in-

cluding the degradation pathway also included a PDI dependency, the mag-

nitude of which varies depending on the ratio of the degradation to folding

rate constants. The model predicts that as the assisted folding rate constant

dominates over degradation, PDI dependence diminishes. For the literature-

derived parameter values used in the model (see Appendix for all parameter

derivations), there was sufficient PDI dependence to capture both of the

two key experimental invalidation behaviors: scFv secretion showed a sim-

ilar BiP- and PDI-dependency to the experimental measurements (Figure

2C), and BiP and PDI displayed synergy when overexpressing both BiP

and PDI increased SscFv levels at 50 h 1.4 times more than the summed
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increase in SscFv produced by overexpressing BiP and PDI independently.

Based on this significant improvement in model performance resulting from

the addition of a degradation pathway, the first in a series of three require-

ments for the ultimate detailed model to reproduce the experimental data

was formulated:

Requirement #1: Competition between degradation/misfolding and

accelerated folding by PDI is necessary for PDI dependence.

With the addition of UscFv degradation, a successful backbone model

was constructed, and the hypothesized folding process remained viable.

Upon formulation of a successful backbone model, the top-down approach

to mechanistic modeling proceeds with the gradual supplementation of the

model with mechanistic detail until the desired level of detail, defined when

the model’s scope was being elaborated, has been reached. The order in

which these details are added and the quantities added at a time will de-

pend upon the model and its intended use and will consequently require

the discretion of the modeler. One consideration to make when proceed-

ing, though, is that one purpose of incrementally appending the model is

to enable the modeler to observe and evaluate the discrete effects produced

by each alteration. Consequently, it would be desirable to design each in-

crement so as to maximize the insight gained from implementing it. This

process is demonstrated with the scFv folding model below.
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Further Model Development

For the scFv folding model, further translocation or folding details could not

be reasonably added without first including explicit BiP and PDI binding

and release of the UscFv. Previously, in Models 1 and 2, the binding and

release reactions had been lumped into the second-order reactions for UscFv

entry and folding that BiP and PDI, respectively, had catalyzed. Now, it

was desired to have BiP bind the UscFv at the translocon for entry to

the ER. Upon lumenal entry, BiP could theoretically release it, or PDI

could also bind the BiP·UscFv complex. It has been hypothesized that PDI

is largely incapable of binding unfolded protein on its own in its foldase

capacity, and BiP is responsible for making unfolded protein accessible for

PDI binding (26), thus increasing the extent to which BiP and PDI cooperate

in the protein folding process. The model was later used to assess this

hypothesis. UscFv could also transition between the BiP·PDI·UscFv and

PDI·UscFv states with the respective release or binding of BiP. True to the

top-down modeling approach, these binding states were added incrementally

to individually evaluate their effects on the ability of the model to reproduce

the experimentally-observed BiP and PDI scFv folding dependencies. The

resulting four model permutations are schematized as Models 3-6 in Figure

3. Parameter descriptions and values are provided in Table 2.

With the model constructs established, it was then necessary to assign

the folding and misfolding rates associated with each of the binding states.

Derivation and references for the actual rate values are presented in the

Appendix, but qualitative descriptions and logic are presented here. It is
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thought that chaperone proteins such as BiP do not actually promote faster

protein folding but rather protect the unfolded protein against misfolding

by binding hydrophobic regions (reviewed in (27)). Hence, a BiP-bound

unfolded protein would be expected to fold at approximately the same rate

as an unbound one, however its effective misfolding rate would be slower

than the unbound one. A PDI-bound unfolded protein would be expected

to have a faster folding rate but a similar misfolding rate (ignoring PDI’s

proposed chaperone behavior (28–30), reviewed in (31)) to an unbound one,

and a BiP- and PDI- bound unfolded protein would be expected to have

both a faster folding rate and a slower misfolding rate. Assumptions and

simplifications for the four model permutations follow:

1. All reactions were modeled using lowest-order, deterministic kinetics.

2. No scFv protein of any form was initially present in the system.

3. Unfolded protein entry to the ER was assumed to have a first-order dependency

on BiP.

4. Folding/secretion was assumed be first-order and faster for BiP-PDI-bound and

PDI-bound than BiP-bound and unbound UscFv.

5. A pool of 1 × 103 scFv mRNAs participated in the lumenal UscFv production

reaction but was not consumed.

6. 3.37× 105 free BiPs and 5.24× 105 free PDIs were available for UscFv binding and

were consumed in the binding reactions and regenerated upon release.

7. All properly folded scFv was assumed to proceed to the Golgi and ultimately be

secreted.

8. Misfolding/degradation was assumed be first-order and equivalent for both BiP-

PDI-bound BiP-bound UscFv but faster for both unbound and PDI-bound UscFv.

9. BiP binding was required for PDI binding to occur.
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10. Multiple binding by BiP and PDI was ignored for simplicity, and folding/misfolding

rates were based on overall folding/misfolding rates, as derived in the Appendix.

Due to the increasing size and number of models, their ODEs have been

relegated to the Appendix, though it must be noted that the initial step of

importing UscFv to the ER/BiP·UscFv production term was always rep-

resented by k1[BiP][scFv mRNA] in the BiP·UscFv equations. Analytical

solutions for the model permutations’ steady-state SscFv production rates

are presented below (Model 3: Equation 7; Model 4: Equation 8; Model

5: Equation 9; and Model 6: Equation 10). In deriving these solutions, a

further assumption was employed in order to make the algebra tenable: un-

bound BiP and PDI were sufficiently abundant over UscFv, so their concen-

trations were not altered by binding UscFv. This assumption held during

simulations, where BiP and PDI concentrations remained 3.37 × 105 and

5.24 × 105 molecules, respectively, while bound species never exceeded 100

molecules.
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d[SscFv]SS

dt
=

k1[BiP][scFv mRNA](k3(kr2 + k4 + km4) + k2[PDI]k4)

(k3 + km3)(kr2 + k4 + km4) + k2[PDI](k4 + km4)
(7)

d[SscFv]SS

dt
=

k1[BiP][scFv mRNA](k3 +
k4k2[PDI]

kr2+k4+km4
+ k7kr6

k6[BiP]+k7+km7
)

kr6

�
1− k6[BiP]

k6[BiP]+k7+km7

�
+k2[PDI]

�
1− kr2

kr2+k4+km4

�
+ k3 + km3

(8)

d[SscFv]SS

dt
=

k3k1[BiP][scFv mRNA]

k2[PDI] + k3 + km3
+

�
k3kr2

k2[PDI] + k3 + km3
+ k4 +

k5kr6

k6[BiP] + k5 + km5

�
·

8
<
:

k1[BiP][scFv mRNA]k2[PDI]

(k2[PDI] + k3 + km3)
�
kr6

�
1− k6[BiP]

k6[BiP]+k5+km5

�
+ kr2

�
1− k2[PDI]

k2[PDI]+k3+km3

��
9
=
; (9)

d[SscFv]SS

dt
=

8
<
:k3 +

k2[PDI]

kr2 + kr6

�
1− k6[BiP]

k6[BiP]+k5+km5

�
+ k4 + km4

·

�
k4 +

k5kr6

k6[BiP] + k5 + km5

�
+

k7kr6

k6[BiP] + k7 + km7

�
·

8
>>>><
>>>>:

k1[BiP][scFv mRNA]

kr6

�
1− k6[BiP]

k6[BiP]+k7+km7

�
+k2[PDI]

 
1− kr2

kr2+kr6

�
1− k6[BiP]

k6[BiP]+k5+km5

�
+k4+km4

!
+ k3 + km3

9
>>>>=
>>>>;

(10)

As may be observed in these equations, the aforementioned BiP·UscFv

production term, k1[BiP][scFv mRNA], appears in the numerator in each of

the model permutations’ expression for steady-state SscFv production, indi-

cating production in each permutation was largely linearly dependent on BiP

concentration. On the other hand, production dependence on PDI concen-

tration assumed a Michaelis-Menton-like form. The linear BiP dependence

overpowered PDI’s contribution for a range of BiP and PDI concentrations

(not shown), so in order to reproduce the experimental data, it was neces-

sary to overexpress PDI an order of magnitude times more than BiP (Figure

2C, Table 1). To modify this behavior, the assumptions and simplifications

that went into deriving the models were re-evaluated for alterations.
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The approach was to identify the mechanistic origins for the BiP and PDI

dependencies observed in the steady-state production terms. BiP’s role in

translocation of the UscFv into the ER dominated over any other contribu-

tion it made in the folding process, and since the translocation reaction was

a second-order, bimolecular reaction between BiP and mRNA, BiP depen-

dency was linear. From the backbone model development, it was observed

that including a degradation pathway to compete with a species-dependent

pathway instilled a Michaelis-Menton-like dependence on that species’ (i.e.,

PDI’s) concentration in the steady-state SscFv production rate expression.

This branched dependency-degradation competition motif could then po-

tentially be applied to BiP’s role in translocation, so steady-state SscFv

production would have a Michaelis-Menton-like dependence on both BiP

and PDI. Since BiP “catalyzing” translocation of UscFv into the ER was

the dependency step, it needed to compete with a degradation step, such as

cytoplasmic UscFv degradation, for the motif to be complete. A schematic

representation of this modification is presented in Figure 3 (Modification

A); it is shown implemented in Model 8; and Models 3-6 with this modifi-

cation will be denoted with an asterisk as Models 3∗-6∗. This theoretical

alteration translated into the alteration of assumption (5), whose revised

version appears below:

5. scFv transcription was modeled by a step input of cytoplasmic UscFv that could

be consumed by cytoplasmic degradation and translocation into the ER to yield

1× 103 scFv mRNA during steady-state SscFv production.

The fully modified differential equations for each model permutation

appear in the Appendix; however, it is instructive to analyze the differ-
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ential equation for cytoplasmic UscFv production–common to all model

permutations–which resulted from the revised assumption (5):

d[cytoplasmic UscFv]

dt
= VUscFv − k1[BiP][cytoplasmic UscFv]− kd[cytoplasmic UscFv]. (11)

When this equation is analyzed at the steady state,

[cytoplasmicUscFv] =
VUscFv

k1[BiP] + kd
, (12)

a steady-state BiP·UscFv production term (i.e., the BiP-dependent translo-

cation rate) for the altered models may be derived: VUscFvk1[BiP]
k1[BiP]+kd

. This

term, with its distinct Michaelis-Menton-like dependence on BiP, supplants

k1[BiP][scFv mRNA] in the previous models’ expressions for steady-state

SscFv production (Equations 7-8), so that both BiP and PDI have sim-

ilar concentration dependencies. The similar steady-state BiP and PDI

SscFv production value dependencies shown in Figure 4 and the compa-

rable BiP and PDI relative overexpression levels required to reproduce the

experimentally-observed BiP and PDI dependencies in Figure 2C provided

in Table 1 reinforce this result with simulation data. At this point, a second

requirement is claimed:

Requirement #2: Assuming post-translational translocation is BiP-

dependent, cytoplasmic degradation of unfolded scFv is required

to make BiP and PDI expression level dependencies comparable.
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Besides identifying a second requirement for a detailed scFv folding

model to reproduce experimentally-observed BiP and PDI dependencies, the

top-down approach to mechanistic modeling has also identified an impor-

tant biological structural motif. A degradative pathway competing with a

species-dependent pathway results in a Michaelis-Menton-like dependency

on that species by a downstream product. This branched dependency-

degradation competition motif may then be added to the catalog of known

biological motifs and modules responsible for producing certain biological

behaviors for future model building.

It may also be noted that another way to introduce a branched dependency-

degradation competition motif for BiP in the scFv folding model–alluded to

in the statement of Requirement #2–is by eliminating BiP’s participation in

post-translational translocation of the UscFv to the ER (Model 7 in Figure

3). In this case, UscFv enters the ER unbound, where it may “degrade”

by folding or misfolding (degradation branch of the motif) before being re-

versibly bound by BiP (dependency branch). The steady-state BiP·UscFv

production term in this case, k6[BiP](k1[scFv mRNA]+kr6[BiP·U])
k6[BiP]+k7+km7

, demonstrates

this Michaelis-Menton-like dependency, so that the expression for steady-

state SscFv production thus shows such a dependence on both BiP and

PDI:

d[SscFvSS ]

dt
=

k7k1[scFv mRNA]

k6[BiP] + k7 + km7
+

�
k7kr6

k6[BiP] + k7 + km7
+ k3 +

k4k2[PDI]

kr2 + k4 + km4

�
·

8
<
:

k6k1[BiP][scFv mRNA]

(k6[BiP] + k7 + km7)
�
kr6

�
1− k6[BiP]

k6[BiP]+k7+km7

�
+ k2[PDI]

�
1− kr2

kr2+k4+km4

�
+ k3 + km3

�
9
=
; . (13)
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From this result, one may conclude that the Xu et al. (20) hypothesis is

not exclusive in possessing the ability to reproduce experimentally-observed

BiP and PDI dependencies in scFv folding, though the BiP-independent

translocation model is inconsistent with experimental evidence of BiP-scFv

associations (32).

In returning to the hypothesis-based model development, there were

four permutations of the model iteration that included explicit BiP and

PDI binding details that were capable, to some extent, of capturing the

experimentally-observed BiP and PDI dependencies. Before developing a

means to distinguish between these models in another capacity, one final

permutation was established to evaluate the hypothesis that PDI requires

BiP-bound UscFv for binding as a foldase, as previously described. This fi-

nal permutation’s performance, which represents the alternative case where

PDI may bind UscFv directly (Model 8 in Figure 3; note that this model

already has Modification A implemented in it), would be evaluated in the

same capacity as the other permutations.

While the analytical solution for steady-state SscFv production in this

final model permutation is fairly complex (see Appendix), its does exhibit

Michaelis-Menton-like dependencies on both BiP and PDI. Additionally,

the BiP and PDI dependency plots demonstrated little deviation from the

other permutations in its ability to reproduce the experimental data (Fig-

ure 2C). Consequently, it may be concluded that the branched dependency-

degradation competition motifs for BiP and PDI, whose mechanistic bases

are described in Requirements #s 1 and 2, are solely responsible for instill-
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ing a mathematical model at this level of detail with the ability to capture

experimentally-observed BiP and PDI dependencies, and the hypothesized

passage of UscFv to PDI through BiP is not.

Up to now, focus has been placed on evaluating the model permutations’

ability to reproduce BiP and PDI dependencies. The other key experimen-

tal behavior desired for a successful mathematical model to exhibit was

synergy between BiP and PDI in producing SscFv. To evaluate the synergy

displayed by each of the five model permutations, the steady-state rate of

SscFv production when both BiP and PDI were overexpressed–normalized

by the production rate with nominal BiP and PDI levels–was divided by

the sum of the normalized SscFv production rates when BiP and PDI were

overexpressed individually, for multiple BiP and PDI overexpression levels

(Figure 5). The Figure plots the calculated synergies for BiP and PDI over-

expression levels of the same relative amounts (e.g., both BiP and PDI were

overexpressed 10-fold, 20-fold, etc.), though similar trends were observed for

all other calculated permutations in BiP and PDI levels in the 10- to 100-fold

overexpression range (e.g., BiP overexpressed 10-fold and PDI overexpressed

20-fold, BiP overexpressed 20-fold and PDI overexpressed 10-fold, etc.). All

of the models displayed a similar degree of synergy within this overexpres-

sion range, about half the same value calculated and averaged for all time

points in the Xu et al. (20) et al data (2.2±0.7; not on plot). Consequently,

between being able to reproduce experimentally-observed BiP and PDI over-

expression dependencies and synergy, all model permutations appeared to

be similarly valid, so that any protein folding model would not be unique in

its ability to represent the scFv folding system.
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At this stage of model development, there was one final issue to be

addressed pertaining to the biological validity of assumption 6.: 3.37× 105

free BiPs and 5.24×105 free PDIs were available for UscFv binding and were

consumed in the binding reactions and regenerated upon release. BiP has

many roles in the ER (most reviewed in (27); karyogomy function described

in (33)) and, consequently, interacts with many proteins there, and PDI

accelerates the folding of any disulfide bond-containing species. To better

represent this biological sequestration of BiP and PDI from UscFv, a pool

of total (non-scFv) unfolded protein was introduced to which BiP and PDI

could bind. This modification is schematized as Modification B in Figure 3.

Upon implementation of Modification B, one also introduces a useful means

of tuning SscFv production rates.

That is, as available BiP and PDI levels are altered through introduction

of this pool of generic unfolded protein, SscFv production dependencies are

also altered per the BiP and PDI dependency curves in Figure 4, as long

as free BiP and PDI are available in excess (the assumption under which

the dependency curves were generated). If either BiP or PDI concentrations

approach and fall below UscFv levels, SscFv production dependence will

be dominated by the limiting species–behavior that is not captured by the

curves. To conrol the amount of BiP and PDI sequestered away by generic

unfolded protein, the amount of generic unfolded protein present and/or

BiP and PDI’s affinities for unfolded protein may be altered. In this work,

the amount of generic unfolded protein was kept constant at 1.5×105, while

the affinities were altered, so that an excess of 1.87× 105 unbound BiP and

3.74× 105 unbound PDI remained at steady state.
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Completion of the Fully-Detailed Model

Even though all model permutations containing explicit BiP and PDI bind-

ing were similarly capable of capturing desired BiP and PDI dependencies

and synergistic behavior, Model 6∗ was selected for further development,

because its mechanistic structure most resembled the desired fully-detailed

model structure. In transforming Model 6∗ to the fully-detailed model, de-

tails pertaining to scFv transcription and translation and an extra step to

the post-translational translocation process were added (Figure 6) with no

effect on model performance with regards to capturing BiP and PDI depen-

dencies (Figure 2C) and synergy (not shown). The list of model assumptions

and simplifications for the fully-detailed model follows. System ODEs are

included in the Appendix. Parameters, some of which were renamed from

the simpler models, are listed in Table 2.

1. All reactions were modeled using lowest-order, deterministic kinetics.

2. No scFv transcript or protein of any form was initially present in the system.

3. BiP binds UscFv at the translocon in a second-order reaction, and UscFv enters in

a first-order reaction step.

4. Folding/secretion was assumed be first-order and faster for BiP-PDI-bound and

PDI-bound than BiP-bound and unbound UscFv.

5. scFv transcription was a step input.

6. 3.37× 105 total BiP and 5.24× 105 total PDI were available for UscFv and general

unfolded protein binding and were consumed in the binding reactions and regener-

ated upon release.

7. All properly folded scFv was assumed to proceed to the Golgi and ultimately be

secreted.
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8. Misfolding/degradation was assumed be first-order and equivalent for both BiP-

PDI-bound BiP-bound UscFv but faster for both unbound and PDI-bound UscFv.

9. BiP binding was required for PDI binding to occur.

10. Multiple binding by BiP and PDI was ignored for simplicity, and folding/misfolding

rates were based on overall folding/misfolding rates, as derived in the Appendix.

Results

Having developed a detailed mechanistic model using the top-down ap-

proach, analysis could proceed. The model development process does not

affect the applicability of available analytical methods, reviewed in (10), as

mentioned in the Introduction, though they may be applied more efficiently

and effectively when the top-down approach is used due to the insights one

has attained in incrementally constructing the model. In the case of the

scFv folding model, the insights gained in model development guided the

prediction and evaluation of parameter dependencies of SscFv production.

Development of the backbone model for scFv folding identified the core

processes required for reproduction of experimental behaviors. These were

translocation by BiP and branched folding by PDI that competed with

degradation. All subsequently-added supplemental details elaborated these

basic processes. Consequently, predictions could be made for large groups

of parameters within these processes as to how they would affect SscFv

production.

Starting with the PDI folding/degradation competition process, it would

follow that changes in parameters associated with folding would similarly

affect SscFv production, and changes in parameters associated with mis-
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folding would inversely affect production. Thus, increasing folding rates

and decreasing misfolding rates would be expected to increase SscFv pro-

duction. Additionally, adjusting BiP- and PDI-UscFv binding/dissociation

rates so as to increase the production of the fastest folding, slowest mis-

folding UscFv binding state (BiP·PDI·UscFv) over slower folding and faster

misfolding states would also increase SscFv production. Indeed, these pre-

dictions were verified when the parameter alterations were implemented in

the mathematical model (Figure 7, which shows the relative SscFv depen-

dencies to the various folding, misfolding, binding, and dissociation rates).

Relative overall misfolded scFv production dependencies were simply the

inverse of these results (not shown).

Similar predictions and verifications could be performed for parameter

dependencies in the BiP translocation process. In a logical fashion, it could

be anticipated that increases/decreases in parameters associated with tran-

scription and translation would result in increased/decreased SscFv pro-

duction (verification not shown). However, there was one parameter that

proved to be critical to model performance: the rate at which the translo-

cation complex formed, which included UscFv trafficking to the translocon

and BiP binding to it in a second-order reaction. Reasoning would predict

that low values of this parameter would limit the translocation process, so

SscFv production would be highly BiP dependent. High values of this pa-

rameter would flood the ER with UscFv, so SscFv production would become

folding–hence, PDI–limited. Consequently, this parameter could potentially

dictate relative SscFv dependencies to BiP and PDI levels.

To verify this prediction, SscFv levels at 50 h were plotted against the
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experimental measurements for a range of translocation complex formation

rates for various BiP and PDI overexpression levels, as shown in Figure 8. In

the plots, it may be observed that, indeed, there is a gradual transition from

total BiP dependence to total PDI dependence by SscFv production as the

translocation rate increases. It is only within an intermediate range, around

2.2×10−9 1
molecules·s , that BiP and PDI dependencies are comparable. (The

literature-derived value, 1.2×10−8 1
molecules·s , used in model development

falls within this range.) Since the value of this parameter is so critical for

reproducing experimentally-observed BiP and PDI dependencies, it becomes

one final model requirement:

Requirement #3: The rate constant associated with the second-

order BiP-dependent reaction step in translocation must not be

so low compared to PDI-dependent folding rates that it exces-

sively amplifies BiP over PDI expression level dependency. It

also should not be so high that it eliminates BiP dependency

altogether and makes the system PDI folding-dependent.

Conclusions

In this work, a top-down approach to mechanistic modeling was presented

and its implementation demonstrated through the development of a math-

ematical model for scFv folding in S. cerevisiae ER by BiP and PDI. This

approach, represented schematically in Figure 1, may be literally summa-

rized with the following steps:

1. Establish the training data, or experimental data the mathematical model is ex-
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pected to reproduce.

2. Establish the scope of the model, or the biological details the model will include.

3. Develop and analyze a backbone model, the most basic abstraction of the biological

system that can reproduce the desired biological behaviors, potentially from known

biological behavior motifs.

4. Incrementally append the backbone model with desired biological details and eval-

uate their effects on model performance until the desired level of mechanistic detail

has been achieved.

As part of the model development, the importance of annotating all as-

sumptions and simplifications was emphasized, as systematic alteration and

relaxation of these assumptions and simplifications could be used to conclu-

sively eliminate poorly performing model formulations.

When it was employed to develop a mechanistic mathematical model for

scFv folding based on the Xu et al. (20) hypothesis, the strength of the top-

down approach was demonstrated as it identified three requirements and

a biological behavior motif necessary to reproduce experimentally-observed

BiP and PDI dependencies and synergy in scFv folding, thus supporting the

hypothesis. Elucidation of these requirements and motif, which naturally

arose as part of the top-down process, would not have been so straightfor-

ward had a bottom-up–where all mechanistic details are included at once to

start–approach been implemented. The requirements are reiterated below:

Requirement #1: Competition between degradation/misfolding and

accelerated folding by PDI is necessary for PDI dependence.

Requirement #2: Assuming post-translational translocation is BiP-

dependent, cytoplasmic degradation of unfolded scFv is required
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to make BiP and PDI expression level dependencies comparable.

Requirement #3: The rate constant associated with the second-

order BiP-dependent reaction step in translocation must not be

so low compared to PDI-dependent folding rates that it exces-

sively amplifies BiP over PDI expression level dependency. It

also should not be so high that it eliminates BiP dependency

altogether and makes the system PDI folding-dependent.

The field of systems biology is only recently emerging as a viable means

for studying biological systems thanks to recent advances in experimental

data gathering and analysis techniques and tools (34). As the field con-

tinues to develop and become more standardized, a systematization of the

approaches to mathematical modeling of biological systems will assist in

this standardization. As these approaches are systematized, formal compar-

isons and evaluations of their appropriateness and performance for use in

modeling particular systems will most certainly arise.

It is even possible that, eventually, certain aspects of modeling approach

selection and implementation will be automated. Already, much effort is

being placed into developing literature and database mining algorithms and

software (35–39) to enumerate experimentally-observed species interactions

and define model scope. Upon the eventual creation of a formal biological

behavior motifs database, algorithms and software could also be developed

to mine it for motifs for use in backbone model construction in the top-down

approach to mechanistic modeling. Also specific to the top-down approach,

the process of appending the backbone model with further mechanistic de-
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tail and analyzing the effects could be automated to a certain extent, similar

to the manner in which model reduction continues to be with the bottom-up

approach (40–44). Indeed, this work takes only an initial step into system-

atized mechanistic biological modeling, with much work yet to be done.
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Figure Legends

Figure 1.

Overview of the top-down approach to mechanistic biological modeling method-

ology presented in this work. Inputs and outputs to the methodology are

indicated with dotted arrows; methodology flow is indicated by solid arrows.

Figure 2.

A. Experimental scFv secretion data reproduced from Xu et al. (20). “O.”

refers to “overexpressed.” Overexpression levels are provided in the refer-

ence. B. In silico reproduction of this data, using the fully-detailed math-

ematical model. C. 50 h time points for all model simulations normalized

to the respective 50 h experimental time points in Figure 2A (e.g., the 50 h

O.BiP model time points are divided by the experimental 50 h O.BiP data

point). The similarly-scaled experimental 50 h time points to which this

data is compared are represented by the horizontal dashed magenta line of

value one. Thus, models that have normalized 50 h time points close to one

for all BiP and PDI expression levels are most successful at reproducing the

experimental data. Scaled error bars for the experimental 50 h data point

with the highest standard deviation (0.2 relative units for O.PDI) are pro-

vided on the plot (O.BiP and O.BiP+PDI had standard deviations of 0.05

relative units). BiP and PDI overexpression levels used to produce this plot

are provided in Table 1.
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Table 1.

Table 1: BiP and PDI overexpression levels used in in silico experiments to
produce the data found in Figure 2.

Model 1 2 3 3∗ 4 4∗ 5 5∗ 6 6∗ 7 8 Detailed
BiP Overexpression 2× 1.5× 1.5× 40× 1.5× 40× 1.5× 20× 2× 40× 3× 100× 2×
PDI Overexpression 2× 2× 10× 40× 10× 40× 10× 80× 10× 40× 20× 15× 4×

Figure 3.

Schematics for all models, except for the fully-detailed model, and model

modifications. Models 1 and 2 were used in backbone model development.

Models 3-6 represent the original four permutations of models containing

explicit BiP and PDI binding and release. When Modification A was ap-

plied to these models, they were designated Models 3∗-6∗, which are not

schematized here. Model 7 represents a binding permutation model where

the branched dependency-degradation competition motif for BiP was intro-

duced by eliminating BiP’s role in post-translational translocation. Model 8

depicts a final permutation where UscFv may freely move between BiP and

PDI binding states and has Modification A implemented in it.
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Table 2.

Table 2: Parameters definitions, values, and references.
Developing Detailed

Models Model
Parameter Parameters Definition V alue Units Reference(s)

Effective second-order rate constant for scFv translation

k1 N/A and translocation into the ER by bound BiP 1.2× 10−8 1
molecules·s (23, 45, 46)

Effective second-order rate constant for scFv translation

k1b N/A and BiP-catalyzed translocation into the ER 1.2× 10−8 1
molecules·s (23, 45, 46)

Effective first-order rate constant for scFv translation

k1bit N/A and BiP-independent translocation into the ER 4.0× 10−3 1
s

(23, 45, 46)

k2 k61 PDI-UscFv binding rate 2.3× 10−7 1
molecules·s (47–49)

k2b N/A PDI-catalyzed UscFv folding rate 1.6× 10−7 1
molecules·s (26, 47–51)

kr2 kr61 PDI-UscFv release rate 6.0× 10−4 1
s

(47–49)

k3 k63 BiP·UscFv folding rate 7.0× 10−3 1
s

(26, 50, 51)

kd k3d Cytoplasmic scFv mRNA degradation rate 2.6× 10−3 1
s

(52)

km3 km63 BiP·UscFv misfolding rate 3.9× 10−2 1
s

(26, 50, 51)

k4 k65 BiP·PDI·UscFv folding rate 3.4 1
s

(26, 50, 51)

km4 km65 BiP·PDI·UscFv misfolding rate 3.9× 10−2 1
s

(26, 50, 51)

k5 k66 PDI·UscFv folding rate 8.5× 10−2 1
s

(26, 50, 51)

km5 km66 PDI·UscFv misfolding rate 3.4× 10−1 1
s

(26, 50, 51)

k6 k60 BiP-UscFv binding rate 1.2× 10−8 1
molecules·s (45)

kr6 kr60 BiP-UscFv release rate 1.0× 10−1 1
s

(45, 53)

k7 k64 UscFv folding rate 7.0× 10−3 1
s

(26, 50, 51)

km7 km64 UscFv misfolding rate 3.4× 10−1 1
s

(26, 50, 51)

N/A k55 scFv mRNA nuclear translocation rate 1.8 1
s

(54–60)

N/A k56 scFv translation rate 6.2× 10−2 1
s

(61, 62)

N/A k58 UscFv trafficking rate to the translocon 2.2× 10−9 1
molecules·s (63)

N/A k59 UscFv posttranslational translocation rate 9.0× 10−1 1
s

(46)

N/A k69 BiP-unfolded protein binding rate 8.8× 10−2 1
molecules·s (64)

N/A kr69 BiP-unfolded protein release rate 1.0× 10−1 1
s

(64)

N/A k70 PDI-unfolded protein binding rate 2.3× 10−7 1
molecules·s (47–49)

N/A kr70 PDI-unfolded protein release rate 6.0× 10−4 1
s

(47–49)

N/A k76 PDI-unfolded protein binding rate as a chaperone 2.3× 10−7 1
molecules·s (47–49)

N/A kr76 PDI-unfolded protein release rate as a chaperone 3.2× 10−1 1
s

(31, 47–49)

N/A k57 Cytoplasmic UscFv degradation rate 4.0× 10−4 1
s

(65)

Figure 4.

Curves depicting the Michaelis-Menton-like dependencies of steady-state Ss-

cFv production on BiP (A.) and PDI (B.) levels for Models 3∗-6∗ and 8.

Figure 5.

Curves depicting the relative rate of steady-state SscFv production when

BiP and PDI are overexpressed (“O.BiP+PDI”) compared to the sum of the

production when BiP and PDI are overexpressed independently (“O.BiP+O.PDI”)
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for a variety of BiP and PDI overexpression levels for Models 3∗-6∗ and 8.

In this plot, “Relative BiP and PDI” indicates the factor by which both BiP

and PDI were overexpressed for that particular value. Values for further

permutations in relative BiP and PDI overexpression were calculated, but

they displayed similar relative behavior and are not included on this plot

for simplicity. SscFv levels used in the calculations were normalized by the

nominal value obtained with no BiP nor PDI overexpression.

Figure 6.

Schematic for the fully-detailed scFv folding model. State numbers are

provided for comparison with equations in the code. Parameter values are

provided in Table 2.

Figure 7.

Relative SscFv production dependency on UscFv folding and misfolding

and BiP- and PDI-UscFv binding/release rate parameters, as defined in

Table 2 and depicted in Figure 6. Generally, parameter numbers with a

corresponding “r” are binding rates, and the “r” rates are dissociation rates;

parameter numbers with a corresponding “m” are folding rates, and the “m”

rates are misfolding rates. SscFv levels were measured at 50 h.

Figure 8.

Plots demonstrating SscFv production dependency on the rate at which

cytoplasmic UscFv was trafficked to the translocon (k58) for double BiP

and PDI (A.), triple BiP and PDI (B.), and quadruple BiP and PDI (C.)
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overexpression levels. SscFv levels were measured at 50 h and compared

to the experimental values (dashed lines). Error bars for the experimental

data are provided on one experimental data point for ease of interpretation

but apply to all: O.BiP+PDI and O.BiP error bars are found at k58 =

1.2× 10−9 1
molecules·s ; O.PDI, at 2.2× 10−9 1

molecules·s ; and nominal, at 3.2×
10−9 1

molecules·s .
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Figure 1:
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Appendix

Parameter Derivations

• k3/k63, km3/km63, k7/k64, km7/km64, k4/k65, km4/km65, k5/k66, and

km5/km66, UscFv folding and misfolding rates. For Fab antibody

fragments, Mayer et al. (26) measured 2% nominal folding, 15% folding

with BiP and ATP, 20% folding with PDI, and 40% folding with BiP,

PDI, and ATP. These folding percentages were assumed to be loosely

applicable to 4-4-20 scFv fragment folding, since Nieba et al. (50)

has reported 2% nominal folding when the fragment is expressed in

Escherichia coli. Freund et al. (51) measured a fast folding phase

rate of 0.324 1
min and slow phase rate of 0.048 1

min for another scFv

fragment. The overall folding rate

(
1

0.324 1
min

+
1

0.048 1
min

)−1
1min
60 s

= 7.0× 10−4 1
s

was assumed to be applicable to the 4-4-20 fragment, so this was the

nominal and BiP-assisted folding rate (k3/k63 and k7/k64) used in the

mathematical models. The remaining folding rates could be derived

from the collected information:
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2%

98%
=

7.0× 10−4 1
s

km7/km64, km5/km66
⇒ km7/km64, km4/km65, km5/km66 = 3.4× 10−2 1

s
(14)

15%

85%
=

7.0× 10−4 1
s

km3/km63, km4/km65
⇒ km3/km63 = 3.9× 10−3 1

s
(15)

20%

80%
=

k5/k66

3.4× 10−2 1
s

⇒ k5/k66 = 8.5× 10−3 1

s
(16)

50%

50%
=

k4/k65

3.4× 10−2 1
s

⇒ k4/k65 = 3.4× 10−2 1

s
(17)

(18)

To accelerate folding dynamics, all of these rate constant values were

multiplied by a factor of 10. Further, k4/k65 was multiplied by another

factor of 10 to emphasize the increase in folding rate caused by BiP

and PDI binding.

• k6/k60, kr6/kr60, k69, kr69, k2/k61, kr2/kr61, k70, kr70, k76, and kr76,

BiP- and PDI-UscFv and general unfolded protein binding

and dissociation rates. k6/k60 and kr6/kr60 are taken directly from

Robinson and Lauffenburger (65), with the original references provided

in Table 2. Units conversion was implemented using 4.35× 10−15 L
ER .

BiP-general unfolded protein binding and release rates were taken di-

rectly from Hildebrandt et al. (64), which used an optimized value for

binding, and the Robinson and Lauffenburger (65) value for release.

Darby and Creighton (47) measured a PDI binding rate of 600 1
M·s ,

which converts to k2/k61, k70 = 2.3 × 10−7 1
molecules·s . Primm and

Gilbert (48) and Puig et al. (49) measured the dissociation constant
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for various forms of PDI from various substrates to be about 1 µM,

which converts to 2.62×103 molecules. This value was used to calculate

the dissociation rate: kr2/kr61, kr70 = (2.62 × 103 molecules)(2.3 ×
10−7 1

molecules·s) = 6.0× 10−4 1
s .

For PDI chaperone binding/dissociation, Gilbert (31) reviewed disso-

ciation constants ranging from 50 to 1000 µM. The average of these

values was used: 1.31 × 106 molecules, after units conversion. The

chaperone binding rate was arbitrarily taken to be identical to the

foldase binding rate (k76 = 2.3 × 10−7 1
molecules·s). The consequent

chaperone release rate was then 3.2× 10−1 1
s .

• k55, k56, k58, and k59, scFv translation and transport rates.

Ribbeck and Görlich (54), Siebrasse and Peters (55), and Smith et al.

(56) place nuclear translocation at a rate of about 100 MDa
s·NPC molecule

in various vertebrates for various molecules. Ribbeck and Görlich (54)

measured 2,800 NPC molecules in the nuclear envelope of HeLa cells.

These values were combined to produce a general value for the nu-

clear translocation rate, 2.8×105 MDa
s , which was assumed to apply to

Saccharomyces cerevisiae.

Calapez et al. (57), Lukacs et al. (58), Shav-Tal et al. (59), and Politz

et al. (60) measured diffusion rates for a variety of species in the nu-

cleus, including DNA, mRNA, and nascent ribosomes, to be on the

order of 1 µM
s . Given an estimated Saccharomyces cerevisiae nuclear

volume of 1.74×10−15 L and an assumption of nuclear sphericity, the

characteristic area (〈r2〉) of the nucleus may be calculated:
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< r2> =

�
3

4π

�
1.74× 10−15 L

��1015 µm3

L

��2/3
= 0.56 µm2 (19)

The resulting effective diffusion rate was then

1

µM
s

0.56 µm2
= 1.8

1

s
. (20)

Combining the diffusion rate with the nuclear translocation rate and

the molecular weight of scFv mRNA (0.3200024 MDa) gave an overall

nuclear translocation rate of:

k55 =

0
BB@

1�
2.8×105 MDa

s
0.320024 MDa

� +
1

1.8 1
s

1
CCA

−1

= 1.8
1

s
. (21)

Although ribosome occupancy density does not necessarily scale lin-

early with mRNA length (62), this assumption was made for simplifi-

cation purposes. Using extrapolation points from (62), ribosome occu-

pancy density could be estimated from the 963 nt-long scFv fragment

mRNA:

1.2 ribosomes
100 nts

− 0.14 ribosomes
100 nts

400 nts− 3600 nts
=

1.2 ribosomes
100 nts

−X ribosomes
100 nts

400 nts− 963 nts
⇒ X = 1.01

ribosomes

100 nts
.

(22)

From this density, it could be estimated that there is an average of 10
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ribosomes on the scFv fragment mRNA. Freedman (61) estimated an

overall translation rate of 2 aa
s . The scFv fragment mRNA is 321 amino

acids long, so the overall scFv translation rate is k56 = 10 ribosomes×
2 aa

s
321 aa = 6.2× 10−2 1

s .

Goder et al. (63) estimated SRP binding and trafficking to the translo-

con to take place at a rate of 3.4 1
s . The parameter k58 also includes

BiP binding at the translocon, which occurs at a rate of k6/k60 =

1.2 × 10−8 1
molecules·s . Combining these two rates provides the overall

rate constant:

k58 =

0
@ 1

1
(3.4 s)(3.37×105 BiP molecules)

+
1

1.2× 10−8 1
molecules·s

1
A
−1

= 1.2×10−8 1

molecules · s .

(23)

The value in the table is optimized for desired secreted scFv depen-

dencies on BiP and PDI levels, as discussed in the text.

Theoretical analyses by Elston (46) place translocation at a rate of

about 100 nm
s . The average length of an amino acid is 0.35 nm, and

the scFv fragment protein length is 317 amino acids. Thus, k59 is

9.0× 10−1 1
s .

• kd/k3d, scFv mRNA degradation rate. As an approximation for

scFv mRNA degradation, Oliveira and McCarthy (52) gives half-lives

for a variety of mRNA’s ranging from 1.5 to 7.5 min. The average of

4.5 min gave a first-order rate constant of ln 2
4.5 min× 1 min

60 s = 2.6×10−3 1
s ,
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which was used to for k3d.

• k1b, k1bit, and k2b, developing models rates. k1b encompasses the

processes involved with k55, k56, k58, and k59. k58 largely remained the

rate-limiting step, so its derived value, 1.2× 10−8 1
molecules·s , was used

in these models. k1bit is the equivalent rate without BiP dependence,

so this dependence may be removed by the multiplication by 3.37 ×
105 BiP molecules. Thus, k1bit = 4.0× 10−3 1

s . k2b was taken to be k5

/k66, made PDI-dependent by dividing by 5.24× 105 PDI molecules.

Model Equations

Model 1.

d[UscFv]

dt
= k1b[scFv mRNA][BiP]− k2b[UscFv][PDI] (24)

d[SscFv]

dt
= k2b[UscFv][PDI] (25)

d[SscFv]SS

dt
= k1b[BiP][scFv mRNA] (26)

Model 2.

d[UscFv]

dt
= k1b[scFv mRNA][BiP]− k2b[UscFv][PDI]− km5[UscFv] (27)

d[SscFv]

dt
= k2b[UscFv][PDI] (28)

d[SscFv]SS

dt
=

k1b[BiP][scFv mRNA][PDI]
km5
k2b

+ [PDI]
(29)
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Model 3.

d[BiP ·UscFv]

dt
= k1[scFv mRNA][BiP] + kr2[BiP · PDI ·UscFv]− k2[PDI][BiP ·UscFv]

−(k3 + km3)[BiP ·UscFv] (30)

d[BiP · PDI ·UscFv]

dt
= k2[PDI][BiP ·UscFv]− kr2[BiP · PDI ·UscFv]

−(k4 + km4)[BiPPDI ·UscFv] (31)

d[BiP]

dt
= (k3 + km3)[BiP ·UscFv] + (k4 + km4)[BiP · PDI ·UscFv]− k1[scFv mRNA][BiP] (32)

d[PDI]

dt
= (k4 + km4)[BiP · PDI ·UscFv] + kr2[BiP · PDI ·UscFv]− k2[PDI][BiP ·UscFv] (33)

d[SscFv]

dt
= k3[BiP ·UscFv] + k4[BiP · PDI ·UscFv] (34)

d[SscFv]SS

dt
=

k1[BiP][scFv mRNA](k3(kr2 + k4 + km4) + k2[PDI]k4)

(k3 + km3)(kr2 + k4 + km4) + k2[PDI](k4 + km4)
(35)

Model 3∗.

d[Cyt. UscFv]

dt
= VUscFv − kd[Cyt. UscFv]− k1[Cyt. UscFv][BiP] (36)

d[BiP ·UscFv]

dt
= k1[Cyt. UscFv][BiP] + kr2[BiP · PDI ·UscFv]− k2[PDI][BiP ·UscFv]

−(k3 + km3)[BiP ·UscFv] (37)

d[BiP · PDI ·UscFv]

dt
= k2[PDI][BiP ·UscFv]− kr2[BiP · PDI ·UscFv]

−(k4 + km4)[BiP · PDI ·UscFv] (38)

d[BiP]

dt
= (k3 + km3)[BiP ·UscFv] + (k4 + km4)[BiP · PDI ·UscFv]− k1[Cyt. UscFv][BiP] (39)

d[PDI]

dt
= (k4 + km4)[BiP · PDI ·UscFv] + kr2[BiP · PDI ·UscFv]− k2[PDI][BiP ·UscFv] (40)

d[SscFv]

dt
= k3[BiP ·UscFv] + k4[BiP · PDI ·UscFv] (41)

d[SscFv]SS

dt
=

VUscFvk1[BiP](k3(kr2 + k4 + km4) + k2[PDI]k4)

(k1[BiP] + kd) ((k3 + km3)(kr2 + k4 + km4) + k2[PDI](k4 + km4))
(42)
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Model 4.

d[UscFv]

dt
= kr6[BiP ·UscFv]− k6[BiP][UscFv]− (k7 + km7)[UscFv] (43)

d[BiP ·UscFv]

dt
= k1[scFv mRNA][BiP] + kr2[BiP · PDI ·UscFv]− k2[PDI][BiP ·UscFv]

+k6[BiP][UscFv]− kr6[BiP ·UscFv]− (k3 + km3)[BiP ·UscFv] (44)

d[BiP · PDI ·UscFv]

dt
= k2[PDI][BiP ·UscFv]− kr2[BiP · PDI ·UscFv]

−(k4 + km4)[BiP · PDI ·UscFv] (45)

d[BiP]

dt
= (k3 + km3)[BiP ·UscFv] + (k4 + km4)[BiP · PDI ·UscFv] + kr6[BiP ·UscFv]

−k6[BiP][UscFv]− k1[scFv mRNA][BiP] (46)

d[PDI]

dt
= (k4 + km4)[BiP · PDI ·UscFv] + kr2[BiP · PDI ·UscFv]− k2[PDI][BiP ·UscFv] (47)

d[SscFv]

dt
= k7[UscFv] + k3[BiP ·UscFv] + k4[BiP · PDI ·UscFv] (48)

d[SscFv]SS

dt
=

k1[BiP][scFv mRNA]
�
k3 +

k4k2[PDI]
kr2+k4+km4

+ k7kr6
k6[BiP]+k7+km7

�

kr6

�
1− k6[BiP]

k6[BiP]+k7+km7

�
+k2[PDI]

�
1− kr2

kr2+k4+km4

�
+ k3 + km3

(49)
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Model 4∗.

d[Cyt. UscFv]

dt
= VUscFv − kd[Cyt. UscFv]− k1[Cyt. UscFv][BiP] (50)

d[UscFv]

dt
= kr6[BiP ·UscFv]− k6[BiP][UscFv]− (k7 + km7)[UscFv] (51)

d[BiP ·UscFv]

dt
= k1[Cyt. UscFv][BiP] + kr2[BiP · PDI ·UscFv]− k2[PDI][BiP ·UscFv]

+k6[BiP][UscFv]− kr6[BiP ·UscFv]− (k3 + km3)[BiP ·UscFv] (52)

d[BiP · PDI ·UscFv]

dt
= k2[PDI][BiP ·UscFv]− kr2[BiP · PDI ·UscFv]

−(k4 + km4)[BiP · PDI ·UscFv] (53)

d[BiP]

dt
= (k3 + km3)[BiP ·UscFv] + (k4 + km4)[BiP · PDI ·UscFv] + kr6[BiP ·UscFv]

−k6[BiP][UscFv]− k1[Cyt. UscFv][BiP] (54)

d[PDI]

dt
= (k4 + km4)[BiP · PDI ·UscFv] + kr2[BiP · PDI ·UscFv]− k2[PDI][BiP ·UscFv] (55)

d[SscFv]

dt
= k7[UscFv] + k3[BiP ·UscFv] + k4[BiP · PDI ·UscFv] (56)

d[SscFv]SS

dt
=

VUscFvk1[BiP]
�
k3 +

k4k2[PDI]
kr2+k4+km4

+ k7kr6
k6[BiP]+k7+km7

�

(k1[BiP] + kd)
�
kr6

�
1− k6[BiP]

k6[BiP]+k7+km7

�
+k2[PDI]

�
1− kr2

kr2+k4+km4

�
+ k3 + km3

� (57)
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Model 5.

d[BiP ·UscFv]

dt
= k1[scFv mRNA][BiP] + kr2[BiP · PDI ·UscFv]− k2[PDI][BiP ·UscFv]

−(k3 + km3)[BiP ·UscFv] (58)

d[PDI ·UscFv]

dt
= kr6[BiP · PDI ·UscFv]− k6[BiP][PDI ·UscFv]− (k5 + km5)[PDI ·UscFv] (59)

d[BiP · PDI ·UscFv]

dt
= k2[PDI][BiP ·UscFv]− kr2[BiP · PDI ·UscFv]

+k6[BiP][PDI ·UscFv]− kr6[BiP · PDI ·UscFv]− (k4 + km4)[BiP · PDI ·UscFv] (60)

d[BiP]

dt
= (k3 + km3)[BiP ·UscFv] + (k4 + km4)[BiP · PDI ·UscFv]

+kr6[BiP · PDI ·UscFv]− k6[BiP][PDI ·UscFv]− k1[scFv mRNA][BiP] (61)

d[PDI]

dt
= (k4 + km4)[BiP · PDI ·UscFv] + (k5 + km5)[PDI ·UscFv]

+kr2[BiP · PDI ·UscFv]− k2[PDI][BiP ·UscFv] (62)

d[SscFv]

dt
= k3[BiP ·UscFv] + k5[PDI ·UscFv] + k4[BiP · PDI ·UscFv] (63)

d[SscFv]SS

dt
=

k3k1[BiP][scFv mRNA]

k2[PDI] + k3 + km3
+

�
k3kr2

k2[PDI] + k3 + km3
+ k4 +

k5kr6

k6[BiP] + k5 + km5

�
·

8
<
:

k1[BiP][scFv mRNA]k2[PDI]

(k2[PDI] + k3 + km3)
�
kr6

�
1− k6[BiP]

k6[BiP]+k5+km5

�
+ kr2

�
1− k2[PDI]

k2[PDI]+k3+km3

��
9
=
; (64)
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Model 5∗.

d[Cyt. UscFv]

dt
= VUscFv − kd[Cyt. UscFv]− k1[Cyt. UscFv][BiP] (65)

d[BiP ·UscFv]

dt
= k1[Cyt. UscFv][BiP] + kr2[BiP · PDI ·UscFv]− k2[PDI][BiP ·UscFv]

−(k3 + km3)[BiP ·UscFv] (66)

d[PDI ·UscFv]

dt
= kr6[BiP · PDI ·UscFv]− k6[BiP][PDI ·UscFv]− (k5 + km5)[PDI ·UscFv] (67)

d[BiP · PDI ·UscFv]

dt
= k2[PDI][BiP ·UscFv]− kr2[BiP · PDI ·UscFv]

+k6[BiP][PDI ·UscFv]− kr6[BiP · PDI ·UscFv]− (k4 + km4)[BiP · PDI ·UscFv] (68)

d[BiP]

dt
= (k3 + km3)[BiP ·UscFv] + (k4 + km4)[BiP · PDI ·UscFv]

+kr6[BiP · PDI ·UscFv]− k6[BiP][PDI ·UscFv]− k1[Cyt. UscFv][BiP] (69)

d[PDI]

dt
= (k4 + km4)[BiP · PDI ·UscFv] + (k5 + km5)[PDI ·UscFv]

+kr2[BiP · PDI ·UscFv]− k2[PDI][BiP ·UscFv] (70)

d[SscFv]

dt
= k3[BiP ·UscFv] + k5[PDI ·UscFv] + k4[BiP · PDI ·UscFv] (71)

d[SscFv]SS

dt
=

k3VUscFvk1[BiP]

(k1[BiP] + kd) (k2[PDI] + k3 + km3)
+

�
k3kr2

k2[PDI] + k3 + km3
+ k4 +

k5kr6

k6[BiP] + k5 + km5

�
·

8
<
:

VUscFvk1[BiP]k2[PDI]

(k1[BiP] + kd) (k2[PDI] + k3 + km3)
�
kr6

�
1− k6[BiP]

k6[BiP]+k5+km5

�
+ kr2

�
1− k2[PDI]

k2[PDI]+k3+km3

��
9
=
; (72)
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Model 6.

d[UscFv]

dt
= kr6[BiP ·UscFv]− k6[BiP][UscFv]− (k7 + km7)[UscFv] (73)

d[BiP ·UscFv]

dt
= k1[scFv mRNA][BiP] + kr2[BiP · PDI ·UscFv]− k2[PDI][BiP ·UscFv]

+k6[BiP][UscFv]− kr6[BiP ·UscFv]− (k3 + km3)[BiP ·UscFv] (74)

d[PDI ·UscFv]

dt
= kr6[BiP · PDI ·UscFv]− k6[BiP][PDI ·UscFv]− (k5 + km5)[PDI ·UscFv] (75)

d[BiP · PDI ·UscFv]

dt
= k2[PDI][BiP ·UscFv]− kr2[BiP · PDI ·UscFv] + k6[BiP][PDI ·UscFv]

−kr6[BiP · PDI ·UscFv]− (k4 + km4)[BiP · PDI ·UscFv] (76)

d[BiP]

dt
= (k3 + km3)[BiP ·UscFv] + (k4 + km4)[BiP · PDI ·UscFv]

+kr6([BiP ·UscFv] + [BiP · PDI ·UscFv])− k6[BiP]([UscFv] + [PDI ·UscFv])− k1[scFv mRNA][BiP] (77)

d[PDI]

dt
= (k4 + km4)[BiP · PDI ·UscFv] + (k5 + km5)[PDI ·UscFv]

+kr2[BiP · PDI ·UscFv]− k2[PDI][BiP ·UscFv] (78)

d[SscFv]

dt
= k7[UscFv] + k3[BiP ·UscFv] + k5[PDI ·UscFv] + k4[BiP · PDI ·UscFv] (79)

d[SscFv]SS

dt
=

8
<
:k3 +

k2[PDI]

kr2 + kr6

�
1− k6[BiP]

k6[BiP]+k5+km5

�
+ k4 + km4

· (80)

�
k4 +

k5kr6

k6[BiP] + k5 + km5

�
+

k7kr6

k6[BiP] + k7 + km7

�
· (81)

8
>>>><
>>>>:

k1[BiP][scFv mRNA]

kr6

�
1− k6[BiP]

k6[BiP]+k7+km7

�
+k2[PDI]

 
1− kr2

kr2+kr6

�
1− k6[BiP]

k6[BiP]+k5+km5

�
+k4+km4

!
+ k3 + km3

9
>>>>=
>>>>;

(82)
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Model 6∗.

d[Cyt. UscFv]

dt
= VUscFv − kd[Cyt. UscFv]− k1[Cyt. UscFv][BiP] (83)

d[UscFv]

dt
= kr6[BiP ·UscFv]− k6[BiP][UscFv]− (k7 + km7)[UscFv] (84)

d[BiP ·UscFv]

dt
= k1[Cyt. UscFv][BiP] + kr2[BiP · PDI ·UscFv]− k2[PDI][BiP ·UscFv]

+k6[BiP][UscFv]− kr6[BiP ·UscFv]− (k3 + km3)[BiP ·UscFv] (85)

d[PDI ·UscFv]

dt
= kr6[BiP · PDI ·UscFv]− k6[BiP][PDI ·UscFv]− (k5 + km5)[PDI ·UscFv] (86)

d[BiP · PDI ·UscFv]

dt
= k2[PDI][BiP ·UscFv]− kr2[BiP · PDI ·UscFv] + k6[BiP][PDI ·UscFv]

−kr6[BiP · PDI ·UscFv]− (k4 + km4)[BiP · PDI ·UscFv] (87)

d[BiP]

dt
= (k3 + km3)[BiP ·UscFv] + (k4 + km4)[BiP · PDI ·UscFv]

+kr6([BiP ·UscFv] + [BiP · PDI ·UscFv])− k6[BiP]([UscFv] + [PDI ·UscFv])− k1[Cyt. UscFv][BiP] (88)

d[PDI]

dt
= (k4 + km4)[BiP · PDI ·UscFv] + (k5 + km5)[PDI ·UscFv]

+kr2[BiP · PDI ·UscFv]− k2[PDI][BiP ·UscFv] (89)

d[SscFv]

dt
= k7[UscFv] + k3[BiP ·UscFv] + k5[PDI ·UscFv] + k4[BiP · PDI ·UscFv] (90)

d[SscFv]SS

dt
=

8
<
:k3 +

k2[PDI]

kr2 + kr6

�
1− k6[BiP]

k6[BiP]+k5+km5

�
+ k4 + km4

· (91)

�
k4 +

k5kr6

k6[BiP] + k5 + km5

�
+

k7kr6

k6[BiP] + k7 + km7

�
· (92)

8
>>>><
>>>>:

VUscFvk1[BiP]/(k1[BiP] + kd)

kr6

�
1− k6[BiP]

k6[BiP]+k7+km7

�
+k2[PDI]

 
1− kr2

kr2+kr6

�
1− k6[BiP]

k6[BiP]+k5+km5

�
+k4+km4

!
+ k3 + km3

9
>>>>=
>>>>;

(93)
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Model 7.

d[UscFv]

dt
= k1bit[scFv mRNA] + kr6[BiP ·UscFv]− k6[BiP][UscFv]− (k7 + km7)[UscFv] (94)

d[BiP ·UscFv]

dt
= kr2[BiP · PDI ·UscFv]− k2[PDI][BiP ·UscFv] + k6[BiP][UscFv]− kr6[BiP ·UscFv]

−(k3 + km3)[BiP ·UscFv] (95)

d[BiP · PDI ·UscFv]

dt
= k2[PDI][BiP ·UscFv]− kr2[BiP · PDI ·UscFv]− (k4 + km4)[BiP · PDI ·UscFv] (96)

d[BiP]

dt
= (k3 + km3)[BiP ·UscFv] + (k4 + km4)[BiP · PDI ·UscFv] + kr6[BiP ·UscFv]− k6[BiP][UscFv] (97)

d[PDI]

dt
= (k4 + km4)[BiP · PDI ·UscFv] + kr2[BiP · PDI ·UscFv]− k2[PDI][BiP ·UscFv] (98)

d[SscFv]

dt
= k7[UscFv] + k3[BiP ·UscFv] + k4[BiP · PDI ·UscFv] (99)

d[SscFv]SS

dt
=

k7k1bit[scFv mRNA]

k6[BiP] + k7 + km7
+

�
k7kr6

k6[BiP] + k7 + km7
+ k3 +

k4k2[PDI]

kr2 + k4 + km4

�
(100)

0
@ k6k1bit[BiP][scFv mRNA]

(k6[BiP] + k7 + km7)
�
kr6

�
1− k6[BiP]

k6[BiP]+k7+km7

�
+ k2[PDI]

�
1− kr2

kr2+k4+km4

�
+ k3 + km3

�
1
A(101)
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Model 8.

d[Cyt. UscFv]

dt
= VUscFv − kd[Cyt. UscFv]− k1[Cyt. UscFv][BiP](102)

d[UscFv]

dt
= kr2[PDI ·UscFv]− k2[PDI][UscFv] + kr6[BiP ·UscFv]− k6[BiP][UscFv]− (k7 + km7)[UscFv](103)

d[BiP ·UscFv]

dt
= k1[Cyt. UscFv][BiP] + kr2[BiP · PDI ·UscFv]− k2[PDI][BiP ·UscFv]

+k6[BiP][UscFv]− kr6[BiP ·UscFv]− (k3 + km3)[BiP ·UscFv](104)

d[PDI ·UscFv]

dt
= k2[PDI][UscFv]− kr2[PDI ·UscFv] + kr6[BiP · PDI ·UscFv]

−k6[BiP][PDI ·UscFv]− (k5 + km5)[PDI ·UscFv](105)

d[BiP · PDI ·UscFv]

dt
= k2[PDI][BiP ·UscFv]− kr2[BiP · PDI ·UscFv] + k6[BiP][PDI ·UscFv]

−kr6[BiP · PDI ·UscFv]− (k4 + km4)[BiP · PDI ·UscFv](106)

d[BiP]

dt
= (k3 + km3)[BiP ·UscFv] + (k4 + km4)[BiP · PDI ·UscFv]

+kr6([BiP ·UscFv] + [BiP · PDI ·UscFv])− k6[BiP]([UscFv] + [PDI ·UscFv])− k1[Cyt. UscFv][BiP](107)

d[PDI]

dt
= (k4 + km4)[BiP · PDI ·UscFv] + (k5 + km5)[PDI ·UscFv]

+kr2([PDI ·UscFv] + [BiP · PDI ·UscFv])− k2[PDI]([UscFv] + [BiP ·UscFv])(108)

d[SscFv]

dt
= k7[UscFv] + k3[BiP ·UscFv] + k5[PDI ·UscFv] + k4[BiP · PDI ·UscFv](109)

L =
kr6

kr2 + k6[BiP] + k5 + km5
(110)

M =
k6[BiP]�

k6[BiP]− kr2k2[PDI]
kr2+k6[BiP]+k5+km5

+ k2[PDI] + k7 + km7

�
(kr2 + k6[BiP] + k5 + km5)

(111)

D = kr2 −Mkr2k2[PDI]L− k6[BiP]L + kr6 + k4 + km4 (112)

P =
M (kr2 + k6[BiP] + k5 + km5) ((1 + Mkr6) kr2k2[PDI]L) + kr2k2[PDI] + Mkr6kr2k2[PDI]

D
(113)

[BiP ·UscFv]SS =
k1[BiP]VUscFv

(k1[BiP] + kd) (kr6 + k2[PDI] + k3 + km3 −Mkr6 (kr2 + k6[BiP] + k5 + km5)− P )
(114)

[UscFv]SS =

�
kr6 +

�
(1 + Mkr6) kr2k2[PDI]L

D

���
(M (kr2 + k6[BiP] + k5 + km5)) [BiP ·UscFv]SS

k6[BiP]

�
(115)

[BiP · PDI ·UscFv]SS =
(k2[PDI] + Mkr6k2[PDI]) [BiP ·UscFv]SS

D
(116)

[PDI ·UscFv]SS =
k2[PDI][UscFv]SS + kr6[BiP · PDI ·UscFv]SS

kr2 + k6[BiP] + k5 + km5
(117)

d[SscFv]SS

dt
= k7[UscFv]SS + k3[BiP ·UscFv]SS + k5[PDI ·UscFv]SS + k4[BiP · PDI ·UscFv]SS (118)
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Detailed Model

d[BiP ·UP]

dt
= k69[BiP][UP]− kr69[BiP ·UP] + kr70[BiP · PDI ·UP]− k70[PDI][BiP ·UP](119)

d[BiP]

dt
= kr60 ([BiP ·UscFv] + [BiP · PDI ·UscFv]) + kr69 ([BiP ·UP] + [BiP · PDI ·UP])

− (k58[cytoplasmic UscFv] + k60 ([UscFv] + [PDI ·UscFv]) + k69 ([UP] + [PDI ·UP])) [BiP]

+ (k63 + km63) [BiP ·UscFv] + (k65 + km65) [BiP · PDI ·UscFv](120)

d[UP]

dt
= kr69[BiP ·UP]− k69[BiP][UP] + kr76[PDI ·UP]− k76[PDI][UP](121)

d[PDI]

dt
= kr61[BiP · PDI ·UscFv] + kr70[BiP · PDI ·UP] + kr76[PDI ·UP]

− (k61[BiP ·UscFv] + k70[BiP ·UP] + k76[UP]) [PDI]

+ (k65 + km65) [BiP · PDI ·UscFv] + (k66 + km66) [PDI ·UscFv](122)

d[nuclear scFv mRNA]

dt
= VscFv − k55[nuclear scFv mRNA](123)

d[cytoplasmic scFv mRNA]

dt
= k55[nuclear scFv mRNA]− k3d[cytoplasmic scFv mRNA](124)

d[cytoplasmic UscFv]

dt
= k56[cytoplasmic scFv mRNA]

−k58[BiP][cytoplasmic UscFv]− k57[cytoplasmic UscFv](125)

d[ptt′ing UscFv]

dt
= k58[BiP][cytoplasmic UscFv]− k59[ptt′ing UscFv](126)

d[BiP ·UscFv]

dt
= k59[ptt′ing UscFv] + kr61[BiP · PDI ·UscFv]− k61[PDI][BiP ·UscFv]

+k60[BiP][UscFv]− kr60[BiP ·UscFv]− (k63 + km63) [BiP ·UscFv](127)

d[UscFv]

dt
= kr60[BiP ·UscFv]− k60[BiP][UscFv]− (k64 + km64) [UscFv](128)

d[MscFv]

dt
= km64[UscFv] + km63[BiP ·UscFv] + km66[PDI ·UscFv] + km65[BiP · PDI ·UscFv](129)

d[SscFv]

dt
= k64[UscFv] + k63[BiP ·UscFv] + k66[PDI ·UscFv] + k65[BiP · PDI ·UscFv](130)

d[BiP · PDI ·UscFv]

dt
= k61[PDI][BiP ·UscFv]− kr61[BiP · PDI ·UscFv] + k60[BiP][PDI ·UscFv]

−kr60[BiP · PDI ·UscFv]− (k65 + km65) [BiP · PDI ·UscFv](131)

d[PDI ·UscFv]

dt
= kr60[BiP · PDI ·UscFv]− k60[BiP][PDI ·UscFv]− (k66 + km66) [PDI ·UscFv](132)

d[BiP · PDI ·UP]

dt
= k69[BiP][PDI ·UP]− kr69[BiP · PDI ·UP] + k70[PDI][BiP ·UP]− kr70[BiP · PDI ·UP](133)

d[PDI ·UP]

dt
= kr69[BiP · PDI ·UP]− k69[BiP][PDI ·UP]− kr76[PDI ·UP] + k76[PDI][UP](134)
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