Nucleic Acids Research, 2022 1
https:Ildoi.orgl10.1093/narlgkac331

BioSimulators: a central registry of simulation
engines and services for recommending specific tools

Bilal Shaikh “1, Lucian P. Smith “2, Dan Vasilescu®, Gnaneswara Marupilla3,

Michael Wilson “3, Eran Agmon “4, Henry Agnew “°, Steven S. Andrews 2, Azraf Anwar®,
Moritz E. Beber “7, Frank T. Bergmann “2, David Brooks “°, Lutz Brusch “1°,

Laurence Calzone “', Kiri Choi “'2, Joshua Cooper'3, John Detloff'4, Brian Drawert /13,
Michel Dumontier “'5, G. Bard Ermentrout “'¢, James R. Faeder "5,

Andrew P. Freiburger “17, Fabian Frohlich 18, Akira Funahashi “'°, Alan Garny “°,

John H. Gennari “2?°, Padraig Gleeson “2', Anne Goelzer “?2, Zachary Haiman “23,

Jan Hasenauer “?4, Joseph L. Hellerstein “2, Henning Hermjakob “2°, Stefan Hoops “'%¢,
Jon C. Ison “?7, Diego Jahn “1°, Henry V. Jakubowski “28, Ryann Jordan', Matus Kalas “2°,
Matthias Kénig “3°, Wolfram Liebermeister “?2, Rahuman S. Malik Sheriff “2°,

Synchon Mandal “3!, Robert McDougal “32, J. Kyle Medley?33, Pedro Mendes?,

Robert Miiller “1°, Chris J. Myers “34, Aurelien Naldi “3°, Tung V.N. Nguyen 23,

David P. Nickerson “°, Brett G. Olivier “3¢, Drashti Patoliya®’, Loic Paulevé “'38,

Linda R. Petzold “3°, Ankita Priya*’, Anand K. Rampadarath “°, Johann M. Rohwer “4,
Ali S. Saglam "5, Dilawar Singh 2, Ankur Sinha “43, Jacky Snoep 4!, Hugh Sorby “°,
Ryan Spangler 744, J6érn StarruB %, Payton J. Thomas ““°, David van Niekerk*!,

Daniel Weindl “4¢, Fengkai Zhang “4’, Anna Zhukova “%3, Arthur P. Goldberg ",

James C. Schaff 349, Michael L. Blinov “3, Herbert M. Sauro “2, lon I. Moraru “® and
Jonathan R. Karr “1~’

lcahn School of Medicine at Mount Sinai, New York, NY 10029, USA, ?University of Washington, Seattle, WA 98105,
USA, 3University of Connecticut School of Medicine, Farmington, CT 06030, USA, “Stanford University, Stanford, CA
94305, USA, SLibreTexts, USA, 6New York University, Brooklyn, NY 11201, USA, "Unseen Bio ApS, 2100 Kebenhavn
@, Denmark, 8Heidelberg University, 69120 Heidelberg, Germany, °University of Auckland, 1010 Auckland, New
Zealand, '°Technical University of Dresden, 01187 Dresden, Germany, 'Institut Curie, 75248 Paris, France, '?Korea
Institute for Advanced Study, 02455 Seoul, South Korea, '®University of North Carolina, Asheville, Ashville, NC
28804, USA, "“Independent, Madison, WI 53705, USA, ">Maastricht University, 6200 Maastricht, Netherlands,
6University of Pittsburgh, Pittsburgh, PA 15260, USA, '”University of Victoria, Victoria, BC V8P 5C2, Canada,
8Harvard Medical School, Boston, MA 02115, USA, '°Keio University, Yokohama 223-8522, Japan, 2°University of
Washington, Seattle WA 98019, USA, 2!University College London, London WC1E 6BT, UK, 22Université
Paris-Saclay, INRAE, MalAGE, 78350 Jouy-en-Josas, France, 22University of California, San Diego, La Jolla, CA
92093, USA, ?*Universitat Bonn, 53115 Bonn, Germany, 2°European Molecular Biology Laboratory - European
Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK, 26University of Virginia, Charlottesville, VA 22904, USA,
27CNRS, UMS 3601, Institut Frangais de Bioinformatique, IFB-core, 91000 Evry-Courcouronnes, France, 28College of
Saint Benedict and Saint John’s University, St. Joseph, MN 56374, USA, 2°University of Bergen, 5020 Bergen,
Norway, 3°®Humboldt University of Berlin, 10115 Berlin, Germany, 3! Technical University of Dresden, 01069 Dresden,
Germany, *?Yale University, New Haven, CT 06511, USA, 33Autodesk, Inc., San Rafael, CA 94903, USA, **University
of Colorado at Boulder, Boulder CO, 80309, USA, %*Inria Saclay - lle-de-France Research Centre, 91120 Palaiseau,
France, 3Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, Netherlands, ¥’ Sarvajanik College of Engineering &

*To whom correspondence should be addressed. Email: jonrkarr@gmail.com

© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

220z aunp gz uo Jesn eleqieg elues ‘eluiofiied 10 Ausiaaiun Aq §/1z859/1L ££oeyb/1eu/e601 "0 L /Iop/8|oiie-aoueApe/Jeu/woo dno olwapeose//:sdiy Woll papeojumo(]

https://orcid.org/0000-0001-5801-5510
https://orcid.org/0000-0001-7002-6386
https://orcid.org/0000-0001-5892-6074
https://orcid.org/0000-0003-1279-2474
https://orcid.org/0000-0003-1447-6045
https://orcid.org/0000-0002-4576-8107
https://orcid.org/0000-0003-2406-1978
https://orcid.org/0000-0001-5553-4702
https://orcid.org/0000-0002-6758-2186
https://orcid.org/0000-0003-0137-5106
https://orcid.org/0000-0002-7835-1148
https://orcid.org/0000-0002-0156-8410
https://orcid.org/0000-0002-0543-8189
https://orcid.org/0000-0003-4727-9435
https://orcid.org/0000-0002-5854-0654
https://orcid.org/0000-0001-8127-609X
https://orcid.org/0000-0002-7288-535X
https://orcid.org/0000-0002-5360-4292
https://orcid.org/0000-0003-0605-239X
https://orcid.org/0000-0001-7606-5888
https://orcid.org/0000-0001-8254-4957
https://orcid.org/0000-0001-5963-8576
https://orcid.org/0000-0003-2222-6142
https://orcid.org/0000-0001-6175-5050
https://orcid.org/0000-0002-4935-3312
https://orcid.org/0000-0003-0802-4069
https://orcid.org/0000-0001-8479-0262
https://orcid.org/0000-0001-8503-8371
https://orcid.org/0000-0001-6666-1520
https://orcid.org/0000-0001-6774-5507
https://orcid.org/0000-0002-9629-9339
https://orcid.org/0000-0002-1509-4981
https://orcid.org/0000-0003-1725-179X
https://orcid.org/0000-0002-2568-2381
https://orcid.org/0000-0003-0705-9809
https://orcid.org/0000-0002-1212-5279
https://orcid.org/0000-0001-6394-3127
https://orcid.org/0000-0001-6507-9168
https://orcid.org/0000-0002-8762-8444
https://orcid.org/0000-0002-6495-2655
https://orcid.org/0000-0002-2876-6046
https://orcid.org/0000-0003-4667-9779
https://orcid.org/0000-0002-5293-5321
https://orcid.org/0000-0002-7219-2027
https://orcid.org/0000-0001-6251-6078
https://orcid.org/0000-0001-8830-6212
https://orcid.org/0000-0001-6288-8904
https://orcid.org/0000-0002-6513-8401
https://orcid.org/0000-0002-4645-3211
https://orcid.org/0000-0001-7568-7167
https://orcid.org/0000-0002-0405-8854
https://orcid.org/0000-0001-8991-4703
https://orcid.org/0000-0002-6080-3142
https://orcid.org/0000-0003-3649-2433
https://orcid.org/0000-0002-5075-3911
https://orcid.org/0000-0001-9963-6057
https://orcid.org/0000-0001-7112-9328
https://orcid.org/0000-0003-2200-7935
https://orcid.org/0000-0003-2772-1484
https://orcid.org/0000-0003-3286-7736
https://orcid.org/0000-0002-9363-9705
https://orcid.org/0000-0002-3659-6817
https://orcid.org/0000-0002-3746-9676
https://orcid.org/0000-0002-2605-5080

2 Nucleic Acids Research, 2022

Technology, Surat, Gujarat 395001, India, 3Centre National de la Recherche Scientifique, 33400 Talence, France,
3University of California, Santa Barbara, Santa Barbara, CA 93106, USA, “°Birla Institute of Technology, Mesra,
Jharkhand 835215, India, !Stellenbosch University, Stellenbosch, 7600, South Africa, >?Subconscious Compute
Pvt. Ltd., Bangalore, India, “®University College London, London, WC1E 6BT, UK, “*Allen Institute for Cell Science,
Seattle, WA 98109, USA, “®*University of Utah, Salt Lake City, UT 84112, USA, “Helmholtz Zentrum Miinchen GmbH
and German Research Center for Environmental Health, 85764 Neuherberg, Germany, 4’National Institutes of
Health, Bethesda, MD 20892, USA, “®Institut Pasteur, 75015 Paris, France and “°Applied BioMath LLC, Concord, MA

01742, USA

Received March 13, 2022; Revised April 07, 2022; Editorial Decision April 16, 2022; Accepted April 20, 2022

ABSTRACT

Computational models have great potential to ac-
celerate bioscience, bioengineering, and medicine.
However, it remains challenging to reproduce and
reuse simulations, in part, because the numerous
formats and methods for simulating various sub-
systems and scales remain siloed by different soft-
ware tools. For example, each tool must be exe-
cuted through a distinct interface. To help investi-
gators find and use simulation tools, we developed
BioSimulators (https://biosimulators.org), a central
registry of the capabilities of simulation tools and
consistent Python, command-line and containerized
interfaces to each version of each tool. The founda-
tion of BioSimulators is standards, such as CellML,
SBML, SED-ML and the COMBINE archive format,
and validation tools for simulation projects and sim-
ulation tools that ensure these standards are used
consistently. To help modelers find tools for partic-
ular projects, we have also used the registry to de-
velop recommendation services. We anticipate that
BioSimulators will help modelers exchange, repro-
duce, and combine simulations.

GRAPHICAL ABSTRACT

o
@‘\a\“g
h o

Simulation project
COMBINE archive

Models Simulations > \\\“°Ls\ Reports Visualizations
g, SBML SED-ML e HDF5 PDF
—> pes —>

&
P
Simulation results

INTRODUCTION

Sophisticated computational models that can predict bio-
logical phenomena have great potential for bioscience, bio-
engineering, and medicine. For example, whole-cell models

could help scientists understand the origin of behavior, help
engineers design biofactories and help clinicians personal-
ize medicine (1,2). Due to the complexity of biology, such
models often need to integrate multiple subsystems across
multiple scales, requiring collaborations among teams and
the use of multiple tools (3,4).

Over the last 25 years, researchers have developed nu-
merous methods and tools for simulating various subsys-
tems and scales. For example, COBRApy (5) and COPASI
(6) can execute constraint-based and kinetic simulations of
metabolic and signaling networks, respectively.

Toward combining simulations, the community has de-
veloped several resources for sharing several types of mod-
els. For example, formats such as CellML (7) and SBML (8);
libraries for these formats such as libCellML and libSBML;
and repositories such as BioModels (9) and ModelDB (10)
help investigators share and reuse diverse types of models.

More recently, investigators have initiated similar efforts
to share several types of simulations. For example, the Simu-
lation Experiment Description Language (SED-ML; (11)),
the COMBINE archive format (12), the Kinetic Simulation
Algorithm Ontology (KiSAO; (13)) and the JWS Online
repository (14) can be used to share kinetic simulations.

Despite this progress, sharing, reusing, and combining
simulations remains difficult. One reason is that it is diffi-
cult to find, obtain, and use appropriate tools for particular
systems and scales. For example, many tools do not pro-
vide clear documentation about their simulation methods,
and each tool must be obtained from a different location,
installed via a different process, and executed via a different
UI or API using different model formats. Guides, such as
the retired SBML Software Guide, and container registries,
such as BioContainers, have only addressed some of these
issues.

To accelerate the reuse of simulations, as well as the devel-
opment of multiscale simulations, we developed BioSimula-
tors, a central registry for the capabilities of simulation tools
(e.g. supported model formats, modeling frameworks, and
simulation algorithms) and consistent Python, command-
line, and containerized interfaces to these tools. Currently,
BioSimulators encompasses 54 tools for 13 model formats,
14 modeling frameworks, and 91 simulation algorithms
(Supplementary Tables S1-S3), and consistent interfaces
to 21 of these tools (Supplementary Tables S4 and S5).
For example, this includes asynchronous logical simula-
tion with BoolNet, geometric flux balance analysis with
COBR Apy, discrete particle-based simulation with BioNet-

220z aunp gz uo Jesn eleqieg elues ‘eluiofiied 10 Ausiaaiun Aq §/1z859/1L ££oeyb/1eu/e601 "0 L /Iop/8|oiie-aoueApe/Jeu/woo dno olwapeose//:sdiy Woll papeojumo(]

Nucleic Acids Research, 2022 3

Models Simulations Algorithms Report specs Viz specs

Model formats Steady-state, CVODE, FBA, Tables Line charts,

(CellML, NeuroML, time course, ... pFBA, SSA, ... (SED-ML) flux maps, ...
SBML, ...) (SED-ML) (KiSAO) T (SED-ML, Vega)

0
1
1
11
1
1
I
1

@ Simulation projects

Reports E
HDF5

A

COMBINE archive

BioSimulators
Capabilities of tools;
consistent Python, CLI,
and OCl interfaces

BioNetGen OpenCOR
BoolNet RBApy
COBRApy Smoldyn
COPASI tellurium
MASSPy VCell
NEURON XPP

l Visualizations
PDF

Figure 1. BioSimulators simplifies simulation by abstracting simulation projects and simulation tools. BioSimulators abstracts projects as COMBINE
archives and tools as containerized command-line interfaces. These abstractions make it easier to execute a broad range of simulations.

Gen, and discrete spatial simulation with Smoldyn. To help
investigators find appropriate tools, we have also used this
registry to develop services for recommending specific algo-
rithms and tools for particular systems and scales.

To simplify the discovery, installation, and use of sim-
ulation tools, BioSimulators is based on an integrated set
of formats, ontologies, and quality controls (Figure 1).
BioSimulators uses Docker images to encapsulate simula-
tion tools and a new schema to capture their capabilities.
The input to each tool is a COMBINE archive which con-
tains SED-ML files that describe simulations of models in
formats such as SBML with algorithms described using
KiSAO. The outputs of each tool are HDFS5 and PDF files
that capture data sets and visualizations of simulation re-
sults. To ensure these resources are used consistently, we
also developed tools for integrated validation of simulation
projects and tools (Figure 2A). On top of BioSimulators,
we have also developed runBioSimulations and BioSimula-
tions, user-friendly web applications for using BioSimula-
tors to execute and share simulations and visualizations of
their results (15) (Figure 2C).

Below, we summarize the key features of BioSimula-
tors, describe its architecture, delineate several use cases for
BioSimulators, and outline the future directions of BioSim-
ulators. Tutorials and additional documentation are avail-
able at https://docs.biosimulations.org.

KEY FEATURES

The central features of BioSimulators are streamlined abil-
ities to find, obtain, and use simulation tools for a broad
range of modeling frameworks, formats, and algorithms.

Streamlined discovery of appropriate tools for projects

To help investigators find appropriate tools, BioSimulators
provides a central database of the capabilities of simulation
tools. This includes the model formats, modeling frame-
works, simulation algorithms, and observables that each
tool supports; the parameters of each algorithm; and the
data type of each parameter, as well as metadata, such as the
license of each tool. Where possible, this information is cap-
tured using ontologies such as EDAM, KiSAO, SBO and
SIO. This ensures that simulation tools are described con-
sistently.

To further help investigators find tools, we have also used
the capabilities of each tool and relationships among algo-
rithms captured by KiSAO to develop recommendation ser-
vices. For example, we have developed a web form that can
recommend simulators for executing particular projects.

Streamlined acquisition and installation of simulators

To make it easier to obtain and install simulation tools,
BioSimulators saves a Docker image for each version of
each containerized tool. This ensures that investigators can
use a single program, such as Docker Desktop, to easily ob-
tain and install any version of any tool. To ensure that inves-
tigators can use these images in high-performance comput-
ing (HPC) environments, which generally disallow the use
of Docker due to security limitations, BioSimulators tests
that these images are compatible with the Singularity Im-
age Format (SIF), which can be run in HPC environments.
Similarly, the Python APIs and command-line programs for
simulation tools can be installed consistently from the PyPI
repository.

220z aunp gz uo Jesn eleqieg elues ‘eluiofiied 10 Ausiaaiun Aq §/1z859/1L ££oeyb/1eu/e601 "0 L /Iop/8|oiie-aoueApe/Jeu/woo dno olwapeose//:sdiy Woll papeojumo(]

https://docs.biosimulations.org

4 Nucleic Acids Research, 2022

A Conventions: Formats, ontologies, and API specifications
Formats (e.g., SBML, EDAM), frameworks (SBO), algorithms (KiSAO), | o
simulations (SED-ML), metadata (OMEX Metadata, RDF-XML), E

projects (COMBINE), outputs (HDF5, PDF), logs (YAML),

capabilities (JSON), interfaces (Python, CLI, OCI)

Validator for simulation projects

consistent with these conventions

Test suite for simulation tools
Test that simulation tools are consistent | v=—
with these conventions -

™~

Test that projects (COMBINE archives) are v== —>

/

Capabilities: formats, frameworks, algorithms, observables
Consistent interfaces: Python, CLI, OCI

B C

(L]) .
- - Recommendation services

/ '1_3 Algorithms, simulation tools
=

_}Q Simulation service

runBioSimulations

A bme? Simulation repository

BioSimulators S BioSimulations
| —

Metadata: version, license, authors

Figure 2. Overview of the BioSimulators ecosystem. The foundation of BioSimulators (B) is an integrated set of formats, ontologies, and specifications
for simulation projects and simulation tools, and tools for checking that these conventions are used consistently (A). These conventions make it easier
to work with multiple types of simulations. To further help investigators find and run simulation tools, we have also developed user-friendly services for
recommending tools, executing simulations, and visualizing the results of simulations. In addition, we are developing a repository for sharing projects, their

results, and visualizations of these results (C).

Streamlined execution of simulation tools

To simplify simulation, each containerized tool provides
the same command-line interface. These interfaces capture
the project to be executed and the location where its out-
puts (reports and visualizations) should be saved. This en-
ables modelers to use multiple simulators simply by switch-
ing their image ids. We anticipate this will help investi-
gators work with a broader range of simulations, espe-
cially trainees, experimentalists, and peer reviewers. Most
of the simulators with containerized interfaces also provide
Python APIs. These APIs provide consistent, flexible low-
level simulation capabilities. Currently, we are helping sev-
eral groups use these APIs to develop interactive tools for
research and education.

Accurate and up-to-date information about simulators

To ensure that the interfaces to simulators are consistent
and that their specifications are accurate, we extensively re-
view each version of each tool. The first version of each tool
submitted to BioSimulators is both automatically validated
by a test suite that we developed and manually reviewed by
our team. Each subsequent version of each tool is also val-
idated by this test suite. This test suite uses the simulator to
execute a set of example COMBINE archives and checks
that the tool produces the expected results. The test suite
uses the specifications for the tool to select appropriate ex-
ample archives. To enable developers to keep BioSimulators
up to date, we provide an API that developers can use to au-
tomatically submit each version of their tools. We anticipate
that this approach will enable us to keep BioSimulators up-
to-date and accurate with minimal effort.

METHODS
Consistent representation of simulation projects and tools

The foundation of BioSimulators is a set of formats, on-
tologies, and specifications for consistent representation of
simulation projects (one or more simulations of one or
more models using one or more algorithms), the inputs
(e.g. experimental data for validating simulations) and out-
puts (data sets and visualizations of simulation results) of

simulation projects, simulation tools and the capabilities
of simulation tools (supported formats, frameworks and
algorithms) (Supplementary Figures S1 and S2). Where
possible, these conventions embrace existing resources. Us-
ing these resources required filling numerous gaps within
and between them. This included creating new schemas
for simulation results, logs of the execution of simulations,
and the capabilities of simulation tools; formalizing nu-
merous aspects of SED-ML; adding many new ontology
concepts for formats and algorithms; and correcting hun-
dreds of bugs in various simulation projects and software
tools.

BioSimulators uses the COMBINE archive format to en-
capsulate all of the files that constitute a simulation project.
Within COMBINE archives, BioSimulators uses formats
such as BNGL, CellIML, GINML, NeuroML/LEMS, RBA
XML, SBML, Smoldyn, VCML and the XPP ODE for-
mat to describe models and SED-ML to describe analy-
ses of these models, such as simulations of time courses
and steady-states. Within SED-ML, BioSimulators uses the
KiSAO ontology to describe the algorithms and algorithm
parameters for these analyses. To enable investigators to
describe a broad range of simulations, we significantly ex-
panded the KiSAO ontology and filled several gaps in SED-
ML (11).

To consistently capture the outputs of simulation
projects, we developed schemas for encoding the results of
simulations into HDFS5 files and encoding logs of the exe-
cution of simulation projects into YAML. We use the PDF
format to capture visualizations of simulation results.

To enable modelers to execute simulators consistently, we
developed specifications for Python APIs and containerized
command-line programs for simulators. To help investiga-
tors find specific tools for particular projects, we developed
a schema for capturing the capabilities of simulation tools.
This schema uses the EDAM, SBO, KiSAO, SIO, and other
ontologies to capture the model formats, modeling frame-
works, simulation algorithms, and simulation observables
that each tool supports. We similarly helped expand these
ontologies to better capture the capabilities of a broader
range of tools.

More information about these conventions is available in
Section S2 and at https://docs.biosimulations.org.

220z aunp gz uo Jesn eleqieg elues ‘eluiofiied 10 Ausiaaiun Aq §/1z859/1L ££oeyb/1eu/e601 "0 L /Iop/8|oiie-aoueApe/Jeu/woo dno olwapeose//:sdiy Woll papeojumo(]

https://docs.biosimulations.org

Standardized interfaces to simulation tools

We developed most of the Python, command-line, and
containerized interfaces to simulation tools by wrapping
simulation tools, such as COBRApy and COPASI, with
BioSimulators-utils, a library that we developed for or-
chestrating the execution of COMBINE archives. Briefly,
BioSimulators-utils executes each simulation task in each
SED-ML file in a COMBINE archive by (i) resolving the
model for the task, (i) modifying the model according to
the changes specified in SED-ML, (iii) using KiSAO to de-
termine the most similar simulation algorithm that the sim-
ulation tool implements to the algorithm specified for the
task, (iv) translating this algorithm and its specified pa-
rameters into the corresponding method of the simulation
tool and its arguments, (v) executing this method with these
arguments, (vi) collecting the results of this method and
(vii) using these results to generate the reports and plots
specified in the SED-ML files. This modular design mini-
mizes the effort needed to create standardized interfaces to
simulation tools. The use of KiSAO to automatically iden-
tify suitable alternative algorithms enables investigators to
both use SED-ML to precisely record the algorithms they
used to execute simulations with one tool and execute the
SED-ML files with additional tools that implement simi-
lar algorithms. Section S4 contains more information about
BioSimulators-utils.

Recommendations of algorithms and simulation tools

To help investigators navigate the sea of simulation formats,
methods, and tools, we developed several interfaces for rec-
ommending resources, including (a) an interactive table for
searching our registry of tools; (b) a web form for obtain-
ing a list of tools which implement algorithms similar to a
given algorithm, sorted by the maximal similarity of their
algorithms to the given algorithm and (c) a web form for
identifying simulators which can execute a given project us-
ing the specified or similar algorithms. Briefly, we imple-
mented these services by (a) determining the formats and
algorithms specified for a given project, (b) using our reg-
istry to determine the capabilities of each tool, (c) using
parent-child and other relationships to encode similarities
among algorithms into KiSAOQ, (d) using these relationships
to query KiSAO for sets of similar algorithms, (e) manually
assigning each set a degree of similarity, (f) combining the
formats and algorithms required for a given project, the ca-
pabilities of each tool, and the similarity among algorithms
to determine the maximal degree of similarity at which each
tool can execute a given project and (g) sorting the tools
by this maximal similarity. More information is available in
Section S4.

Validation of simulation projects and tools

To ensure that BioSimulators’ conventions are used con-
sistently and to quickly alert users to issues, we developed
a tool for integrated validation of COMBINE archives
(model, SED-ML, and metadata files) and tools for vali-
dating simulation results, logs of the execution of simula-
tions, and the capabilities of simulators described with the
new schemas outlined above. This included developing the

Nucleic Acids Research, 2022 5

first validation rules for SED-ML. For example, our tool
for validating simulation projects checks that each SED-
ML file is consistent with the SED-ML schema and that
each observable of each simulation references a valid model
variable. To make these validation tools easy to use, we de-
veloped several interfaces, including web forms, a REST
API, a command-line program, and a Python API. Four
model repositories are already using these tools to debug
their models and simulations.

Similarly, we also developed a test suite for checking
whether simulation tools execute projects consistently with
BioSimulators’ conventions. Briefly, the test suite executes
simulation tools with a set of test COMBINE archives and
checks that they produced the expected outputs. These test
archives enable the test suite to probe support for all of
BioSimulator’s conventions, including all of the features of
the COMBINE archive format and SED-ML. To enable us
to test tools involving a broad range of formats and algo-
rithms, the test suite uses the specifications of tools to se-
lect appropriate archives for their validation from a cor-
pus of curated archives and then uses these curated archives
to computationally generate additional archives for test-
ing specific aspects of BioSimulators’ conventions. This de-
sign enables us to pinpoint issues with simulation tools,
and it makes it easy to expand the test suite to additional
model formats and methods. The test suite can be executed
through a command-line interface or the GitHub issues de-
ployment described below. More information about these
validation tools is available in Section S3.

Submission of simulation tools to the registry

Developers can submit tools to the registry by submitting is-
sues to the BioSimulators GitHub repository. Once an issue
is created, GitHub actions is then used to execute the test
suite described above, and any test failures are reported as
messages to the issue. The first time a simulation tool passes
the test suite, our team also manually reviews the capabili-
ties of the tool and uses the issue to discuss any suggested re-
visions with the submitter. This manual review enables us to
check aspects of tools that are challenging to test program-
matically, such as the completeness of their specifications.
This combination of machine and human review enables us
to rigorously review each version of each tool with minimal
effort.

We chose to use GitHub issues to manage the submis-
sion of simulation tools for two reasons. First, this enables
the community to see how each tool was validated. Second,
this provides developers an API for programmatically sub-
mitting tools. Importantly, this API makes it easy for devel-
opers to keep their tools up-to-date in BioSimulators. For
example, developers can use this API within GitHub ac-
tions. Currently, half of the containerized tools registered
with BioSimulators automatically release each version to
BioSimulators. Third, GitHub issues enables our team to
monitor problems that developers are encountering and
help them.

DESIGN, IMPLEMENTATION AND DEPLOYMENT

BioSimulators is composed of a set of conventions for
consistently representing simulation projects and simula-

220z aunp gz uo Jesn eleqieg elues ‘eluiofiied 10 Ausiaaiun Aq §/1z859/1L ££oeyb/1eu/e601 "0 L /Iop/8|oiie-aoueApe/Jeu/woo dno olwapeose//:sdiy Woll papeojumo(]

6 Nucleic Acids Research, 2022

tion tools; a set of tools for validating whether simulation
projects and tools are consistent with these conventions; a
collection of standardized Python APIs, command-line in-
terfaces, and Docker images for simulation tools; a Docker
image repository for these tools; a database for their spec-
ifications; a REST API for updating and querying this im-
age repository and database; and a graphical user interface
for browsing the database, validating projects, and getting
recommendations for algorithms and tools (Supplementary
Figure S3).

The interfaces for simulators and the tools for vali-
dating simulation projects and simulators were primar-
ily implemented with Python using libraries such as jlib-
SEDML, libCellML, libCOMBINE, libOmexMeta, libS-
BML, libSEDML, pyBioNetGen, pyNeuroML, RBApy,
Smoldyn and XPP. The containerized interfaces for simula-
tors were developed using Docker. The tools for validating
logs of the execution of simulation projects and the spec-
ifications of simulation tools, the database of simulation
tools, the REST API to the database, and the web applica-
tion were implemented in TypeScript using NestJS, Mon-
goDB and Angular.

The database, API, web application, and test suite for
simulation tools are deployed using Mongo Atlas, Google
Cloud, Netlify and GitHub, respectively. The containerized
simulation tools are stored using GitHub Container Reg-
istry.

More information about the architecture, implementa-
tion and deployment of BioSimulators is available in Sec-
tion S6.

USE CASES
Sharing, reproducing, and reusing simulations

We believe that BioSimulators makes it easier to share, re-
produce, and reuse simulations by simplifying the installa-
tion and execution of simulators. Once an investigator has
learned BioSimulators’ conventions, they can run a broad
range of simulations involving a variety of tools. In par-
ticular, we believe that simple web applications for using
BioSimulators, such as runBioSimulations (15), will em-
power peer reviewers to review simulations more deeply,
leading to better evaluation of modeling studies.

Quality-controlling simulations

We believe that BioSimulators’ tool for integrated valida-
tion of simulation projects is excellent for identifying prob-
lems and other potential issues with simulations. For ex-
ample, we are working with multiple model repositories to
identify and correct issues in published simulation projects.
More information is available in Section S7.

Comparing simulation tools

BioSimulators’ registry of simulation tools is ideal for com-
paring and testing tools. In particular, by comparing the
outputs of multiple tools, BioSimulators could help iden-
tify potential errors in tools. For example, BioSimulators
has helped the BioNetGen, pyNeuroML, VCell and other
teams find and fix bugs in their tools.

Multiscale simulation with multiple algorithms and tools

By providing consistent Python APIs for simulation tools,
we believe that BioSimulators makes it easier to combine
multiple simulations of various subsystems and scales into
multiscale simulations. In particular, BioSimulators makes
it easier to combine simulations that require multiple model
formats, simulation algorithms, and simulation tools. For
example, the Vivarium Collective (16) has begun to develop
capabilities for co-simulating multiple BioSimulators tools.

DISCUSSION

In summary, BioSimulators simplifies simulation by making
it easier to find, obtain, and run appropriate tools for partic-
ular projects. Importantly, BioSimulators supports a broad
range of simulation projects by using several formats and
ontologies to encapsulate and abstract individual formats
and tools, including model formats such as BNGL, SED-
ML, KiSAO, the COMBINE archive format, HDFS5 and
Docker. We anticipate that BioSimulators will enhance sev-
eral stages of the modeling life cycle. For example, we an-
ticipate BioSimulators will encourage more reuse of pub-
lished simulations by simplifying their execution, spur mul-
tiscale simulation by making it easier to combine multiple
simulations of various subsystems, promote more predictive
simulations by empowering peer reviewers to deeply review
simulations, and stimulate higher quality simulation repos-
itories by enabling more holistic validation of simulations.
Below, we summarize how we plan to continue to enhance
BioSimulators.

Systemizing additional simulation domains

Going forward, we aim to work with the community to ex-
pand the BioSimulators ecosystem to additional domains,
including adding additional formats, frameworks, and al-
gorithms to EDAM, SBO and KiSAO; developing conven-
tions for using SED-ML with additional model formats; in-
corporating additional model formats into our simulation
project validation suite; curating additional example COM-
BINE archives for our simulation tool test suite; and devel-
oping interfaces to additional simulation tools. Currently,
we are working with the CoLoMoTo community to ex-
pand BioSimulators’ capabilities for logical modeling, such
as calculations of state transition graphs and trap spaces.

Accelerating more holistic simulation workflows

By building on SED-ML, BioSimulators is currently limited
to simple simulation workflows that consist of models, mod-
ification of models, the simulation of models, basic calcula-
tions of simulation results, exporting simulation results, and
2D line and 3D surface plots. In contrast, real-world stud-
ies often involve additional tasks, such as aggregating, nor-
malizing, and integrating data from multiple sources; using
this data to build and calibrate models; performing com-
plex data reductions on simulation results; and generating
a variety of visualizations of simulation results. Going for-
ward, we aim to work with the community to develop a new
version of SED-ML, which can capture a broader range of

220z aunp gz uo Jesn eleqieg elues ‘eluiofiied 10 Ausiaaiun Aq §/1z859/1L ££oeyb/1eu/e601 "0 L /Iop/8|oiie-aoueApe/Jeu/woo dno olwapeose//:sdiy Woll papeojumo(]

tasks, and develop a workflow engine that can use multi-
ple containerized tools to modularly execute the individual
tasks of these workflows. This design would also make it
easier for software developers to participate in BioSimula-
tors by lowering the responsibilities of tools from executing
entire workflows to executing individual tasks.

Enhanced recommendations of simulation methods

Finally, we also aim to develop an additional wizard that
helps novices identify appropriate formats, frameworks, al-
gorithms, and tools for their work. This wizard will ask
users questions about the systems and scales they would
like to model and recommend appropriate formats, frame-
works, algorithms, and tools. We anticipate that this would
help more investigators model biology.

DATA AVAILABILITY

BioSimulators is freely available without registration at
https://biosimulators.org. This website contains links to the
simulation tools, REST API, examples and documentation.
The source code for BioSimulators is openly available un-
der the MIT license. More information is available in Sec-
tion S9.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.

FUNDING

National Institutes of Health [P41EB023912, R24GM1
37787, R35GM119771]. Funding for open access charge:
NIBIB [P41EB023912].

Conflict of interest statement. None declared.

REFERENCES

1. Carrera,J. and Covert, M.W. (2015) Why build whole-cell
models?Trends Cell Biol., 25, 719-722.

2. Marucci, L., Barberis,M., Karr,J., Ray,O., Race,PR., de Souza
Andrade,M., Grierson,C., Hoffmann,S.A., Landon,S., Rech,E. ef al.
(2020) Computer-aided whole-cell design: taking a holistic approach
by integrating synthetic with systems biology. Front. Bioeng.
Biotechnol., 8, 942.

10.

11.

12.

13.

14.

15.

16.

Nucleic Acids Research, 2022 7

. Szigeti,B., Roth,Y.D., Sekar,J.A.P., Goldberg,A.P., Pochiraju,S.C. and

Karr,JR. (2018) A blueprint for human whole-cell modeling. Curr.
Opin. Syst. Biol., 7, 8-15.

. Waltemath,D., Karr,J.R., Bergmann,F.T., Chelliah,V., Hucka,M.,

Krantz,M., Liebermeister,W., Mendes,P., Myers,C.J., Pir,P. et al.
(2016) Toward community standards and software for whole-cell
modeling. IEEE Trans. Biomed. Eng., 63, 2007-2014.

. Ebrahim,A., Lerman,J.A., Palsson,B.O. and Hyduke,D.R. (2013)

COBRAUpy: constraints-based reconstruction and analysis for
Python. BMC Syst. Biol., 7, 74.

. Bergmann,F.T., Hoops,S., Klahn,B., Kummer,U., Mendes,P., Pahle,J.

and Sahle,S. (2017) COPASI and its applications in biotechnology. J.
Biotechnol., 261, 215-220.

. Clerx,M., Cooling, M.T., Cooper,J., Garny,A., Moyle.K.,

Nickerson,D.P,, Nielsen,P.M. and Sorby,H. (2020) CellML 2.0. J.
Integr. Bioinform., 17, 20200021.

. Keating,S.M., Waltemath,D., Konig,M., Zhang,F., Driger,A.,

Chaouiya,C., Bergmann,E.T., Finney,A., Gillespie,C.S., Helikar,T.
et al. (2020) SBML Level 3: an extensible format for the exchange and
reuse of biological models. Mol. Syst. Biol., 16, ¢9110.

. Malik-Sheriff,R.S., Glont,M., Nguyen,T.V., Tiwari,K.,

Roberts,M.G., Xavier,A., Vu,M.T., Men,J., Maire,M., Kananathan,S.
et al. (2020) BioModels—15 years of sharing computational models
in life science. Nucleic Acids Res., 48, D407-D415.

McDougal,R.A., Morse, T.M., Carnevale,T., Marenco,L., Wang,R.,
Migliore,M., Miller,P.L., Shepherd,G.M. and Hines,M.L. (2017)
Twenty years of ModelDB and beyond: building essential modeling
tools for the future of neuroscience. J. Comput. Neurosci., 42, 1-10.
Smith,L.P., Bergmann,FE.T., Garny,A., Helikar,T., Karr,J.,
Nickerson,D., Sauro,H., Waltemath,D. and Konig,M. (2021) The
Simulation Experiment Description Markup Language (SED-ML):
language specification for Level 1 Version 4. J. Integr. Bioinform., 18,
20210021.

Bergmann,F.T., Adams,R., Moodie,S., Cooper,J., Glont,M.,
Golebiewski,M., Hucka,M., Laibe,C., Miller,A.K., Nickerson,D.P.
et al. (2014) COMBINE archive and OMEX format: one file to share
all information to reproduce a modeling project. BMC
Bioinformatics, 15, 369.

Courtot,M., Juty,N., Kniipfer,C., Waltemath,D., Zhukova,A.,
Driger,A., Dumontier,M., Finney,A., Golebiewski,M., Hastings,J.
et al. (2011) Controlled vocabularies and semantics in systems
biology. Mol. Syst. Biol., 7, 543.

Peters,M., Eicher,J.J., van Niekerk,D.D., Waltemath,D. and
Snoep.J.L. (2017) The JWS Online simulation database.
Bioinformatics, 33, 1589-1590.

Shaikh,B., Marupilla,G., Wilson,M., Blinov,M.L., Moraru,L.I. and
Karr,J.R. (2021) RunBioSimulations: an extensible web application
that simulates a wide range of computational modeling frameworks,
algorithms, and formats. Nucleic Acids Res., 49, W597-W602.
Agmon,E., Spangler,R.K., Skalnik,C.J., Poole,W., Peirce,S.M.,
Morrison,J.H. and Covert,M.W. (2022) Vivarium: an interface and
engine for integrative multiscale modeling in computational biology.
Bioinformatics, 38, 1972-1979.

220z aunp gz uo Jesn eleqieg elues ‘eluiofiied 10 Ausiaaiun Aq §/1z859/1L ££oeyb/1eu/e601 "0 L /Iop/8|oiie-aoueApe/Jeu/woo dno olwapeose//:sdiy Woll papeojumo(]

https://biosimulators.org
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkac331#supplementary-data

