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Abstract

A fully explicit, stabilized domain decomposition method for solving moderately stiff parabolic partial differential equa-
tions (PDEs) is presented. Writing the semi-discretized equations as a differential-algebraic equation (DAE) system where
the interface continuity constraints between subdomains are enforced by Lagrange multipliers, the method uses the Run-
ge–Kutta–Chebyshev projection scheme to integrate the DAE explicitly and to enforce the constraints by a projection.
With mass lumping techniques and node-to-node matching grids, the method is fully explicit without solving any linear
system. A stability analysis is presented to show the extended stability property of the method. The method is straightfor-
ward to implement and to parallelize. Numerical results demonstrate that it has excellent performance.
� 2008 Elsevier Inc. All rights reserved.

Keywords: Non-overlapping domain decomposition; Lagrange multiplier; Runge–Kutta–Chebyshev; Stability; Parallelization; Parabolic
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1. Introduction

Domain decomposition methods (DDM) for the solution of partial differential equations (PDEs) have
attracted a great deal of research interest, due to their flexibility for both multiphysics and parallel computing.
For complex multiphysics problems, domain decomposition methods help simplify the problem and reduce
the complexity. Then different strategies can be applied to different subdomains for best performance. The
DDM can be cast into two categories: overlapping domain decomposition methods, including the classical
Schwarz alternating method [1] and the two-level overlapping methods – the additive/multiplicative Schwarz
methods [2–8]; and non-overlapping domain decomposition methods, including the Dirichlet–Neumann algo-
rithm [9–12], the Neumann–Neumann algorithm [12–16] and the Lagrange multiplier based finite element
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tearing and interconnecting (FETI) method [17–21]. In the Lagrange multiplier based methods, the problem
domain is decomposed into non-overlapping subdomains where the interface continuity condition between
subdomains is enforced via Lagrange multipliers.

Most of the above methods are designed for elliptic PDEs. Parabolic problems can be solved by implicit
semi-discretization in time, yielding an elliptic problem at each time step [22,23]. Parabolic problems can also
be solved by fractional step methods [24–27]. A class of methods for solving parabolic problems with a finite
difference discretization is the hybrid explicit–implicit scheme, including Dawson’s method [28,29], the explicit
prediction and implicit correction (EPIC) method [30] and the implicit prediction and implicit correction
(IPIC) method [31]. In the above explicit–implicit schemes, the unknowns at the interior of each subdomain
are solved implicitly, while the unknowns at the interface are treated differently. Dawson et al. [28,29] calcu-
lated the interface values with a half implicit, half explicit scheme. However Dawson’s algorithm is only con-
ditionally stable [31]. Zhu and Qian [30] proposed the EPIC method, in which an explicit predictor is first used
to obtain the interface values. Then the interior subdomains are solved for new interior values, and finally the
interface values are corrected with new interior values by an implicit scheme. The EPIC method has better
stability than Dawson’s method. To achieve even better stability, Jun and Mai [31] proposed the IPIC method
which replaces the explicit predictor in the EPIC method with an implicit scheme.

In this paper we develop a fully explicit but stabilized domain decomposition method for solving parabolic
problems. A major concern for explicit methods is stability. Stabilized explicit methods, e.g. the Runge–
Kutta–Chebyshev (RKC) method [32–34] for solving moderately stiff ordinary differential equations (ODEs)
and the Runge–Kutta–Chebyshev projection (RKCP) method [35] for solving differential-algebraic equations
(DAEs) have been proposed. In the class of Runge–Kutta–Chebyshev methods only two stages are used to
obtain second-order accuracy and all other stages are exploited to extend the real stability boundary along
the negative real axis. Thus the RKC method is best for diffusion-dominated problems, but a small convection
(or other non-diffusion) term is allowed by introducing a damping factor [36]. For reaction–diffusion prob-
lems, an implicit–explicit (IMEX) extension of the explicit RKC method has been proposed [37,36], where
the diffusion terms are treated explicitly by the RKC algorithm and the highly stiff reaction terms implicitly.
When the system is convection-dominated, a semi-Lagrangian formulation can be used with the RKC method
to form a finite element semi-Lagrangian explicit RKC method [38] for solving convection-dominated reac-
tion–diffusion problems. A variable step-size selection strategy is also presented in the RKC method [34],
which can be easily extended to the RKCP method.

In the explicit domain decomposition method of this paper, we decompose the problem domain into non-
overlapping subdomains, discretize the parabolic equation with the finite element method (FEM) and enforce
the interface continuity condition via Lagrange multipliers. Hence we formulate the problem into a DAE sys-
tem which is to be solved by the RKCP method. By applying the mass lumping technique [39], it is possible
and very promising to develop a stabilized explicit domain decomposition finite element method. In fact the
explicit domain decomposition method also works for finite difference discretization.

The rest of this paper is organized as follows. In Section 2 the domain decomposition problem is defined
with an example of two subdomains for a time-dependent heat equation. The problem is then formulated into
a DAE through weak form and finite element discretization. In Section 3 we present the explicit integration
scheme for the DAE and the stability analysis of this method, as well as a discussion of parallelization issues.
Numerical results are presented in Section 4, followed by conclusions in Section 5.

2. Background

2.1. Model problem

In this section we briefly review the domain decomposition method for a parabolic problem. The parabolic
problems we consider in this paper are diffusion-dominated, thus the stiffness comes mainly from the diffusion
term. For simplicity we use the heat equation with a 2-subdomain decomposition as an example in the follow-
ing. Consider the domain X � Rd where d is the dimension and the heat equation

ut ¼ Duþ f ðu; tÞ ð1Þ
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for the unknown heat distribution uðx; tÞ in the domain X. For simplicity of presentation and without loss of
generality, we neglect the dependence of f on u whenever it is appropriate. We assume zero Dirichlet boundary
conditions u ¼ 0 on oX and initial values uðx; 0Þ ¼ u0ðxÞ.

A standard approach to solve Eq. (1) is the method of lines, e.g. in combination with finite elements in
space. Eq. (1) is replaced by its weak form and the solution is projected onto a finite dimensional subspace
of H 1ðXÞ. Thus we set uðx; tÞ ¼: NðxÞyðtÞ with basis functions written in matrix notation as NðxÞ and unknown
coefficient vector yðtÞ (the nodal variables in the FEM), to arrive at an ODE system

Myt ¼ �Ayþ b ð2Þ
with mass matrix M, stiffness matrix A, vector b corresponding to the discretization of f ðu; tÞ, and initial con-
ditions yð0Þ ¼ y0. If mass lumping is used, the mass matrix M is diagonal, hence explicit time integration be-
comes attractive.

In the next step, we assume that the domain X is decomposed into several non-overlapping subdomains, for
example two subdomains X1 and X2,

X ¼ X1 [ X2

with common interface CI , shown in Fig. 1. Formulating a non-overlapping domain decomposition, we seek
the solution u1ðx; tÞ on X1 and u2ðx; tÞ on X2 such that the heat equation holds on both subdomains along with
boundary and interface conditions [12]

u1;t ¼ Du1 þ f1 in X1; ð3aÞ
u2;t ¼ Du2 þ f2 in X2; ð3bÞ
u1 ¼ 0 on C1; ð3cÞ
u2 ¼ 0 on C2; ð3dÞ
u1 ¼ u2 on CI ; ð3eÞ
ou1

om1

¼ � ou2

om2

on CI ; ð3fÞ

where m1 and m2 (m1 ¼ �m2) are the outward normal vectors on the interface CI towards X1 and X2, respectively.
We denote the external boundaries of the subdomains by oX ¼ C1 [ C2. Formally, under suitable assumptions
on the domain, we have ujX1

¼ u1 and ujX2
¼ u2. In other words, the solutions of the original problem (1) and

of the domain-decomposed problem (3) are equivalent.

2.2. Weak form and finite element discretization

In this section we transform the problem (3) to weak form and apply the method of lines. Test functions vi

defined in Xi are elements of H 1ðXiÞ and vanish on the boundary Ci, i ¼ 1; 2. The same holds for u1ð�; tÞ and

Ω Ω
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Fig. 1. Decomposed domain with interface CI .
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u2ð�; tÞ at each instance of time t. On the interface CI , however, test functions and subdomain solutions do not
vanish.

Application of Green’s theorem givesZ
Xi

hrui;rviidx�
Z

CI

vihrui; miids ¼ �
Z

Xi

viDuidx; ð4Þ

and the weak form of the domain decomposition problem readsZ
X1

v1u1;tdxþ
Z

X1

hrv1;ru1idxþ
Z

CI

v1kds ¼
Z

X1

v1f1dx for all v1; ð5aÞ
Z

X2

v2u2;tdxþ
Z

X2

hrv2;ru2idx�
Z

CI

v2kds ¼
Z

X1

v2f2dx for all v2; ð5bÞ
Z

CI

sðu1 � u2Þds ¼ 0 for all s; ð5cÞ

where v1, v2 and s are the test functions and

k ¼ �hru1; m1i ¼ hru2; m2i;
defined on CI , is the Lagrange multiplier. We can thus view the Lagrange multiplier as a negative flux (or con-
tact pressure) through the interface. By construction, the Neumann boundary condition (3f) is automatically
satisfied. While the Dirichlet boundary conditions (3c) and (3d) have already been included in this formulation
by the choice of v1 and v2, the interface condition u1 � u2 ¼ 0 is still present in the form of the weak constraint
Eq. (5c). The correct function space for the test function sðxÞ as well as for the Lagrange multiplier kðx; tÞ (with
time t frozen) would be the dual of the trace space H 1=2ðCIÞ.

Eq. (5) form a time-dependent saddle point problem or a partial differential-algebraic equation (PDAE).
We can write the system in the abstract form as

ut þ Auþ BT k ¼ l;

Bu ¼ 0;

with u ¼ ðu1; u2Þ and corresponding operators A;B.
As above in the unconstrained problem, finite dimensional subspaces are chosen to project the solution.

While the subdomain variables can be treated as before by a finite element ansatz, i.e., u1ðx; tÞ ¼
: N 1ðxÞy1ðtÞ

and u2ðx; tÞ ¼
: N 2ðxÞy2ðtÞ, the Lagrange multiplier k on the boundary requires special attention. Several possi-

bilities exist.

� Matching grids

If the grids for X1 and X2 match on the interface CI , the simplest choice is node-to-node constraints. This
means that the integral

R
CI

sðu1 � u2Þds is replaced by the discrete sum
P

ifsðu1 � u2Þgjxi
, with the index i

running over all nodes on CI . In turn, we get the pointwise condition u1ðxi; tÞ ¼ u2ðxi; tÞ at all interface
nodes, and the Lagrange multiplier kðx; tÞ is discretized to a vector kðtÞ defined on the interface. One could
also speak of a quadrature rule for the boundary integral.
� Non-matching grids

Unlike the matching grids method, the non-matching grids method does not share nodes points between
subdomains on the interface. The continuity between subdomains can be enforced by the Lagrange multi-
plier method. However a special finite element space for the Lagrange multiplier must be chosen to stabilize
the domain decomposition problem.
� Mortar element

The mortar method [40] is related to the above approach. It adds extra flexibility, in particular for non-
matching grids.

We skip the details here and proceed with the resulting DAE system. All the above three methods reach the
following form:
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M1y1;t ¼ �A1y1 þ b1 � BT
1 k; ð6aÞ

M2y2;t ¼ �A2y2 þ b2 þ BT
2 k; ð6bÞ

0 ¼ B1y1 � B2y2; ð6cÞ
or

Myt ¼ �Ayþ b� BT k; ð7aÞ
0 ¼ By; ð7bÞ

where

M ¼
M1 0

0 M2

� �
; A ¼

A1 0

0 A2

� �
; B ¼ ½B1 �B2 �; y ¼

y1

y2

� �
; b ¼

b1

b2

� �
:

Here, Mi and Ai are the mass and stiffness matrices for the subdomains, and the interface discretization leads
to constraint matrices B1 and B2. If the matrix B has full rank, Eq. (6) or Eq. (7) is a DAE of index 2 with
block-diagonal structure in the differential equations. Moreover, in the case of mass lumping, the mass matri-
ces are diagonal. Hence explicit time integration becomes an option.

3. Explicit integration method

3.1. RKCP

In this section we introduce an explicit method for integrating Eq. (7). The RKC method [32–34], an explicit
method designed for solving moderately stiff ODEs, has good stability properties while maintaining second-
order accuracy. The real stability boundary of the RKC method increases quadratically with the number of
stages used. Hence it can use a much larger time step-size than traditional explicit Runge–Kutta methods.
Combining the RKC method with the projection method [41,42], the RKCP method [35] was developed as
an explicit method for solving DAEs, and it was shown that it preserves the zero-stability and absolute sta-
bility properties of the RKC method. Thus we use the RKCP method to integrate the DAE (6). The RKCP
algorithm for integrating from fyn; kng at tn to fynþ1; knþ1g at tnþ1 can be formulated as follows:

Y0 ¼ yn;

F0 ¼ �M�1AY0 þM�1b�M�1BT kn;

Y1 ¼ Y0 þ ~l1DtF0;

Fj�1 ¼ �M�1AYj�1 þM�1b�M�1BT kn;

Yj ¼ ð1� lj � mjÞY0 þ ljY
j�1 þ mjY

j�2 þ ~ljDtFj�1 þ ~cjDtF0; ðj ¼ 2; 3; . . . ; sÞ:
Solve ðBM�1BT Þ/ ¼ BYs for /:

Update ynþ1 ¼ Ys �M�1BT /:

Update knþ1 ¼ kn þ 2/
Dt
:

ð8Þ

Here s is the number of Runge–Kutta stages and lj; ~lj; mj;~cj are the coefficients, determined for accuracy and
stability of the method. What the above algorithm does is to use the RKC method to integrate Eq. (7a) from tn

to tnþ1 without regard to the constraint (7b) with a ‘‘frozen” k value at tn, i.e., kn. At the last stage of the RKC
method, a projection procedure is performed to update y so that it satisfies the constraint (7b) and to update kn

to knþ1.
Choosing the matching grids method, the continuity constraint (6c) reads

ðy1ÞCI
� ðy2ÞCI

¼ 0; ð9Þ

where ðy1ÞCI
and ðy2ÞCI

denote the interface nodes on CI of y1 and y2, respectively, and Eqs. (6a) and (6b) can
be elaborated as
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M1y1;t ¼
0 Zero Dirichlet boundary condition on C1

�A1y1 þ b1 Interior nodes in X1

�A1y1 þ b1 � k Interface nodes on CI

8><
>: ; ð10Þ

and

M2y2;t ¼
0 Zero Dirichlet boundary condition on C2

�A2y2 þ b2 Interior nodes in X2

�A2y2 þ b2 � k Interface nodes on CI

8><
>: : ð11Þ

If additionally mass lumping techniques [39,43] are used in the finite element discretization, the mass matri-
ces M1 and M2 can be replaced by diagonal matrices eM 1 and eM 2. Approximating a consistent mass matrix
(M1, M2) with a lumped mass matrix ( eM 1, eM 2) will reduce the accuracy of the finite element method, however
it is shown in [39] that the lumped mass matrix method converges with the order Oðh2Þ where h is the size of
the finite elements. Thus the loss of spatial accuracy can be recovered by a refined grid. With a diagonal mass
matrix, this method yields a fully explicit domain decomposition finite element method. For linear elements,
~M1 (or eM 2) can be obtained simply by a row (or column) summation of M1 (or M2) and assigning the results
onto the corresponding diagonal positions.

With the above simplifications, the projection step in scheme (8) is rewritten as

½ð eM�1
1 ÞCI

þ ð eM�1
2 ÞCI

�/ ¼ ðYs
1ÞCI
� ðYs

2ÞCI
; ð12Þ

where ð�ÞCI
denotes the part of vectors or matrices defined on CI . Since both eM 1 and eM 2 are diagonal,

½ð eM�1
1 ÞCI

þ ð eM�1
2 ÞCI

� is also diagonal. It is trivial to solve Eq. (12). Hence the RKCP method applied to the
domain decomposition problem (6) is fully explicit. After solving the above equation for /, only the variables
on the interface CI need to be updated,

ðynþ1
1 ÞCI

¼ ðYs
1ÞCI
� ð eM�1

1 ÞCI
/; ð13Þ

ðynþ1
2 ÞCI

¼ ðYs
2ÞCI
� ð eM�1

2 ÞCI
/; ð14Þ

knþ1 ¼ kn þ 2/
Dt
: ð15Þ

Overall, the RKCP method applied to the domain decomposition method is a fully explicit integrator, requir-
ing no Newton iteration or linear system solver. At each time step, it consists of s explicit stages plus a final
projection step which ‘‘synchronizes” the subdomains. It thus can be viewed as a fractional-step method which
includes an explicit integration step and a final synchronization step.

The algorithm has an excellent potential for parallelization. In the integration step, the computation in each
subdomain is totally independent, hence no communication between processors (subdomains) is needed. In
the synchronization step, a continuity constraint must be satisfied on each interface which requires informa-
tion exchange between the subdomains bordering on the same interface. In other words, the communication is
local, only across the interface between the two subdomains. Therefore the parallelization should be highly
scalable. Because the computation in each subdomain is totally independent, the method is also highly suitable
for multiphysics problems, where the model and/or the discretization may be different in different subdomains.

3.2. Stability analysis

In this section we analyze the zero-stability and the absolute stability properties of the RKCP method
applied to the domain decomposition problem. We show that the method is zero-stable, and that, for stiff
problems, its stability region is at least as large as that of the corresponding RKC method.

Without loss of generality, we neglect the forcing term b in Eq. (7) and point out that the following analysis
holds both for consistent and lumped mass matrices. One step integration of the ODE (7a) (with k frozen to
kn) by the RKC method from tn to tnþ1 yields the intermediate solution [35]
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ynþ1
� ¼ P sð�DtM�1AÞyn þ ½I � P sð�DtM�1AÞ�ð�M�1AÞ�1M�1BT kn; ð16Þ

where P s is the stability polynomial of the RKC method, in the form of [33]

P sðzÞ ¼ 1þ zþ z2

2
þ
Xs

k¼3

Ckzk; ð17Þ

with Ck being the coefficients. Note here that M must be nonsingular for M�1 to exist, however A can be sin-
gular, because ½I � P sð�DtM�1AÞ�ð�M�1AÞ�1 is a polynomial of A with non-negative exponents. The solution
ynþ1 is obtained by a projection of ynþ1

� , written as

ynþ1 ¼ ðI � QÞynþ1
� ; ð18Þ

where Q ¼ M�1BT ðBM�1BT Þ�1B. Denoting P sð�DtM�1AÞ as R, it is derived from Eq. (16) that

ynþ1
� � yn

� ¼ Rðyn � yn�1Þ þ ðI � RÞð�M�1AÞ�1M�1BT ðkn � kn�1Þ: ð19Þ
Since kn � kn�1 ¼ 2/

Dt, where / ¼ ðBM�1BT Þ�1Byn
�, Eq. (19) is rewritten as

ynþ1
� � yn

� ¼ RðI � QÞðyn
� � yn�1

� Þ þ ðI � RÞ 2

Dt
ð�M�1AÞ�1Qy�n: ð20Þ

Let yn
� ¼ vn þ wn, where vn ¼ ðI � QÞyn

� and wn ¼ Qyn
�. We rewrite Eq. (20) as

vnþ1 þ wnþ1 � vn � wn ¼ Rðvn � vn�1Þ þ ðI � RÞ 2

Dt
ð�M�1AÞ�1

wn: ð21Þ

Consider the following two recurrences:

vnþ1 � vn ¼ Rðvn � vn�1Þ; ð22Þ

wnþ1 ¼ I þ ðI � RÞ 2

Dt
ð�M�1AÞ�1

� �
wn: ð23Þ

The propagation matrices for the recurrences (22) and (23) are R and I þ ðI � RÞ 2
Dt ð�M�1AÞ�1, respectively.

Expanding R ¼ P sð�DtM�1AÞ in the form of Eq. (17) and considering Dt small, we have

R ¼ I � DtM�1Aþ Dt2

2
ðM�1AÞ2 þOðDt3Þ; ð24Þ

and thus

I þ ðI � RÞ 2

Dt
ð�M�1AÞ�1 ¼ �I þ DtM�1AþOðDt2Þ: ð25Þ

Zero-stability for recurrences (22) and (23), and hence for the RKCP method, is easily established, following
the standard theory for numerical ODEs (e.g. [44]).

For absolute stability, let z ¼ Dtks, where ks denotes an eigenvalue of �M�1A. It can be shown that for z in
the stability region of the RKC method, i.e., kP sðzÞk 6 1, we always have �1 6 1�P sðzÞ

z 6 0. It follows that

�1 6 1þ 2 1�P sðzÞ
z 6 1. So we see that both recurrence (22) and recurrence (23) are stable. The sum of these

two recurrences, Eq. (21), is therefore stable.
Stability analysis for a general projection method (implicit or explicit) can be found in [45]. It is mentioned

in [46] that mass lumping may affect the dissipation and dispersion properties of the classical time integration
methods. It is correct that mass lumping affects the eigenvalues and thus leads to a somewhat different stability
of the semi-discretized equations. In second-order problems (e.g. elasto-dynamics) where we have mostly
imaginary eigenvalues, this shift of the eigenvalues can be a severe difficulty, in particular if resonance frequen-
cies for vibrational analysis play a role. However, in our first-order problem (parabolic case), we have mostly
negative real eigenvalues, and the mass lumping results in perturbations of decaying exponential functions. As
the problem is stable anyway, the perturbations have no strong influence on the solution behavior. Yet they do
influence the behavior of explicit integrators as the stability regions change somewhat. Thus the stability anal-
ysis in this section can be extended to the lumped mass matrix case for the parabolic problems we consider.
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4. Numerical examples

4.1. 1D Brusselator problem

We first applied our method to the following 1D Brusselator problem on X ¼ ½0; 1�, using a finite difference
discretization:

ou
ot
¼ D1

o
2u

ox2
þ a� ðbþ 1Þuþ u2v; ð26aÞ

ov
ot
¼ D2

o2v
ox2
þ bu� u2v; ð26bÞ

with boundary conditions

uð0; tÞ ¼ uð1; tÞ ¼ a;

vð0; tÞ ¼ vð1; tÞ ¼ b=a;

and initial conditions

uðx; 0Þ ¼ aþ xð1� xÞ;
vðx; 0Þ ¼ b=aþ x2ð1� xÞ:

The problem domain X was decomposed into two non-overlapping subdomains X1 ¼ ½0; 0:5� and X2 ¼ ½0:5; 1�
which in general may have different physics, namely different diffusion coefficients. The parameters were set as
D1 ¼ D2 ¼ 1

40
in X1, D1 ¼ D2 ¼ 1

800
in X2, and a ¼ 0:6, b ¼ 2 in both X1 and X2. The problem domain was dis-

cretized in space with a second-order central difference for the diffusion term with spacing Dx ¼ 0:01. The time
span for the simulation is T ¼ ½0; 32�.

We implemented the adaptive Runge–Kutta–Chebyshev projection method (see [34] for the adaptive strat-
egy) in Matlab scripts, called ARKCP and compared the results with the Matlab ODE solvers ODE15S,
ODE45 and ODE23. In the case of the Matlab ODE solvers, the problem (26) was solved as an ODE by
semi-discretization in space. This can be viewed as an overlapping domain decomposition method where
the interface continuity constraint is implemented as a boundary condition for each subdomain. We supplied
a sparse Jacobian matrix for the implicit ODE solver ODE15S. In the tests shown in Table 1, the error is a
vector of u error and v error, computed as ku�urefk2

kurefk2
, where u is the numerical solution and uref is the reference

solution which is computed by ODE15S with a very small error tolerance (RTOL=ATOL=1.0E�13). Under
the condition that each method yielded the same level of accuracy, we compared the computation times. We
see that from Table 1 ARKCP is much faster than the explicit solvers ODE45 and ODE23, and is also faster
than the implicit stiff solver ODE15S with the sparse Jacobian matrix. We note that such a PDE in one spatial
dimension yields a tightly banded Jacobian matrix which can be factored and solved very efficiently in
ODE15S. That will no longer be the case in more than one spatial dimension.

Figs. 2 and 3 are plots of number of stages and step-size, respectively, chosen by the adaptive Runge–
Kutta–Chebyshev projection (ARKCP) code. It is seen that within the error tolerance the code adjusts the
time step-size and thus the number of stages in response to the stiffness of the problem. Note that the solution
of the problem (26) is oscillatory with an approximate period of 12.

Table 1
Numerical results for 1D Brusselator problem

Method RTOL ATOL Error CPU time (s)

ARKCP 1.0E�2 1.0E�2 [1.1E�3 1.2E�3] 1.8
ODE15S 1.0E�3 1.0E�3 [2.2E�3 1.8E�3] 2.8
ODE45 1.0E�2 1.0E�2 [7.6E�4 6.3E�4] 104.6
ODE23 1.0E�2 1.0E�2 [1.4E�3 1.9E�3] 17.8
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4.2. 2D Brusselator problem

We then applied our method to the 2D Brusselator problem (27) with a finite elment discretization,

ou
ot
¼ D1

o2u
ox2
þ o2u

oy2

� �
þ a� ðbþ 1Þuþ u2v; ð27aÞ

ov
ot
¼ D2

o2v
ox2
þ o2v

oy2

� �
þ bu� u2v; ð27bÞ

with boundary conditions

ou
on
¼ ov

on
¼ 0;

at C1 and C2, and initial conditions

uðt ¼ 0Þ ¼ 0:5þ y;

vðt ¼ 0Þ ¼ 1þ 5x:
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Fig. 2. Number of stages vs time for 1D Brusselator problem.
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Fig. 3. Time step-size vs time for 1D Brusselator problem.
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Decomposed into two subdomains as shown in Fig. 4 and implementing the continuity constraint by Lagrange
multipliers, the problem (27) is formulated into a DAE in the form of Eq. (7). The parameters were set as
D1 ¼ D2 ¼ 0:02, and a ¼ 1, b ¼ 3:4 in both subdomains. The time span for the simulation is T ¼ ½0; 8�.

We used COMSOL Multiphysics to implement the finite element model. After building the model in COM-
SOL Multiphysics, we used the commands femlin and assemble to extract the mass matrix M, the stiffness
matrix A and the constraint matrix B. We then applied the RKCP method to obtain the solution of the result-
ing DAE. In the case of the Matlab ODE solvers, we first found the underlying ODE (this is basically the ODE
which results from using the constraints of the DAE to eliminate the corresponding degrees of freedom [47]) of
the DAE and solved that. We note that this may not be the most efficient way to solve the DAE, but it is the
best we can do if we want to use the Matlab ODE solvers. Linear Lagrange elements were used in the COM-
SOL model.

The decomposed grids are shown in Fig. 4, in which the problem domain is discretized to 2014 elements and
1048 nodes, decomposed into two subdomains.

The numerical results with a consistent mass matrix and with a lumped mass matrix are shown in Tables 2
and 3, respectively. The error in the tables was again computed as ku�urefk2

kurefk2
, where u is the numerical solution

and uref is the reference solution which is the solution computed by COMSOL Multiphysics with a tight error
tolerance. It is observed that with the same error tolerance, all the methods yield about the same level of accu-
racy, but the ARKCP code is the most efficient.

The CPU time comparison with the Matlab solvers may not be the best proof of the performance of the
RKCP method, since the problems used for our numerical tests are simple. However the numerical results

Fig. 4. Finite element grids for 2D Brusselator problem.

Table 2
Numerical results for 2D Brusselator problem with consistent mass matrix

Method RTOL ATOL Error CPU time (s)

ARKCP 1.0E�2 1.0E�2 2.9E�2 113
ODE15S 1.0E�2 1.0E�2 2.5E�2 276
ODE45 1.0E�2 1.0E�2 1.4E�2 1005
ODE23 1.0E�2 1.0E�2 1.4E�2 541
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clearly show that the efficiency of the RKCP method is at least comparable to that of the implicit method. We
would expect the relative advantages of the RKCP to increase, for larger more complex problems.

We also plotted the number of stages and the time step-size as a function of time for both the consistent
mass matrix method (without lumping) and the lumped mass matrix method [39] in Figs. 5–8.

Table 3
Numerical results for 2D Brusselator problem with lumped mass matrix

Method RTOL ATOL Error CPU time (s)

ARKCP 1.0E�2 1.0E�2 4.6E�2 102
ODE15S 1.0E�2 1.0E�2 6.1E�2 291
ODE45 1.0E�2 1.0E�2 4.8E�2 329
ODE23 1.0E�2 1.0E�2 4.8E�2 198
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Fig. 5. Number of stages vs time with consistent mass matrix for 2D Brusselator problem.
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Fig. 6. Time step-size vs time with consistent mass matrix for 2D Brusselator problem.
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Our numerical experiments verify that the lumped mass matrix method converges to the second-order accu-
racy, order Oðh2Þ where h is the finite element size.

5. Conclusions

In this paper a fully explicit, stabilized domain decomposition method for parabolic PDEs is presented.
Through semi-discretization in space, the parabolic problem is formulated into a differential-algebraic equa-
tion (DAE) system where the interface continuity constraints between subdomains are enforced by Lagrange
multipliers. The Runge–Kutta–Chebyshev projection (RKCP) method is used to integrate the DAE explicitly
and includes one projection per step to enforce the constraints. With mass lumping techniques and node-to-
node matching grids, this method is fully explicit without solving any linear system. A stability analysis is pre-
sented to show the extended stability property of the method. The method is straightforward to implement
and to parallelize, with high scalability and low communication. Numerical results demonstrate that the
method has excellent performance.
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Fig. 7. Number of stages vs time with lumped mass matrix for 2D Brusselator problem.
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Fig. 8. Time step-size vs time with lumped mass matrix for 2D Brusselator problem.
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