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Abstract. We describe a new iterative method, dynamic iteration using reduced order models
(DIRM), for simulation of large scale modular systems using reduced order models that preserve the
interconnection structure. This method may be compared to the waveform relaxation technique;
however, unlike DIRM, waveform relaxation does not take advantage of model reduction techniques.
The DIRM method involves simulating in turn each subsystem connected to model reduced versions
of the other subsystems. The data from this simulation is then used to update the reduced model for
that particular subsystem. We provide analytical results on convergence and accuracy of the DIRM
method as well as numerical examples that demonstrate the success of DIRM and verify the analysis.
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1. Introduction. Very large scale systems of differential and differential alge-
braic equations such as the U.S. power grid, very large scale integrated (VLSI) circuits,
chemical reactors, and weather systems present challenges in computing. Usually
such large scale systems consist of many interacting subsystems, which may in some
problems be governed by very different physical laws. On such systems conventional
methods of direct numerical integration of the full system may not be feasible without
massive computing resources.

An iterative approach known as waveform relaxation (WR), where smaller subsys-
tems are simulated separately and then the couplings are accounted for through itera-
tion, was developed by researchers for the simulation of VLSI circuits. See Lelarasmee,
Ruehli, and Sangiovanni-Vincentelli [7], Miekkala and Nevanlinna [9], and Miekkala
[8] for details. The WR method is a form of dynamic iteration in the sense that the
variable being iterated is a function (the entire solution waveform for a given time
interval) and not a vector. This method has subsequently been applied by researchers
to PDEs of parabolic and hyperbolic types [2]. Such a modular approach in principle
has the advantage that it facilitates parallel computation, exploits the multirate na-
ture of some problems, and offers the potential of using different numerical techniques
for different subsystems. However, the WR technique has not become the mainstay
in application areas. This is primarily due to the poor convergence properties of WR.

Another way to deal with models that are too complex is via model reduction.
Several model reduction techniques have been studied by researchers in various fields.
Balanced truncation has been studied by the control community (see Zhou and Doyle
[15] and Lall, Marsden, and Glavaski [6], for instance), proper orthogonal decompo-
sition (POD) has been applied in the study of turbulence (see Holmes, Lumley, and
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Berkooz [5]), cascading failures in power grids (Parrilo et al. [11]), and control of
compressors (Glavaski, Marsden, and Murray [3]), etc., and selective modal analysis
has been developed by researchers in the electrical power field (Perèz-Arriaga et al.
[12]), to name a few.

In this paper we present a method that combines the idea of dynamic iteration
with the use of reduced order models. Our method also seeks to remedy some of the
shortcomings of WR. Our approach, termed dynamic iteration using reduced order
models (DIRM), involves simulation of each subsystem in turn while it is connected
to reduced order models of the rest of the subsystems. The simulation results are then
used to update the reduced order model for that particular subsystem. If the reduced
order models are small enough, then the combination of an unreduced subsystem
with the rest of the reduced subsystems results in a system small enough not to
pose insurmountable computational difficulties. In principle any model reduction
method that uses data from trajectories could be used in this iteration. In this
paper we use POD (also known as Karhunen–Loève decomposition) for the model
reduction.

Even though theoretically the WR method has good asymptotic convergence, in
practice there may be large initial overheads. For example, consider a one-dimensional
(1D) PDE with the spatial domain divided into 10 subsystems of adjacent regions.
It will take nine iterations before the first subsystem “sees” the last subsystem. In
the DIRM method, by contrast, every subsystem is connected to all other (reduced
versions of) subsystems, and one may not expect such overheads. This is possible
only because of the fact that DIRM incorporates reduced order models.

This paper is organized as follows. In section 2 we review the POD method
of model reduction and comment on its application to modular systems. In section
3 we describe DIRM in detail and also provide a brief account of the WR tech-
nique. In section 4 we provide an analysis of the DIRM method as applied to a
linear time invariant system consisting of two subsystems and present results on the
accuracy and convergence behavior of DIRM. Section 5 describes several numerical
examples. These include a nonlinear power grid simulation and some reaction dif-
fusion problems described by PDEs, with comparison to WR. We also give some
examples highlighting certain special cases, which include situations where DIRM has
difficulty converging as predicted by the analysis, and show how to modify DIRM
to fix this problem. Finally, in section 6 we present conclusions and discuss future
research.

2. Model reduction using POD. The POD technique for model reduction
consists of first finding a subspace in the full phase space of a given dynamical system
and then constructing an approximating dynamical system in that subspace. The
original dynamical system may be nonlinear, and in that case the resulting lower
dimensional model will also typically be nonlinear.

2.1. POD. POD, also known as Karhunen–Loève decomposition or principal
component analysis, provides a method for finding the best approximating subspace to
a given set of data. Originally POD was used as a data representation technique. For
model reduction of dynamical systems POD may be used on data points obtained from
system trajectories obtained via experiments, numerical simulations, or analytical
derivations. For more information see Rathinam and Petzold [13], Holmes, Lumley,
and Berkooz [5], Moore [10], Lall, Marsden, and Glavaski [6], Glavaski, Marsden, and
Murray [3], and references therein.
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Given a set of data points x(α) ∈ R
n, POD seeks a subspace S ⊂ R

n so that the
total square distance

D =

N∑
α=1

∥∥∥x(α) − ρSx
(α)

∥∥∥2

,

where ρS is the orthogonal projection onto the subspace S, is minimized. The norm
considered is the 2-norm. (Thus we assume that the phase space comes equipped with
a notion of inner product.) The solution to this problem may be stated in terms of
the correlation matrix defined by

R =

N∑
α=1

x(α)
(
x(α)

)T

.

Note that R is n× n and symmetric positive semidefinite. Let λ1 ≥ λ2 · · · ≥ λn ≥ 0
be the ordered eigenvalues of R. Then the minimum value of D over all k(≤ n)
dimensional subspaces S is given by

∑n
j=k+1 λj [5]. In addition, the S that minimizes

D is the invariant subspace corresponding to the eigenvalues λ1, . . . , λk. In practice
one need not compute R. Instead, it is efficient to use the n × N matrix X whose
columns are x(α). Then

√
λ1, . . . ,

√
λn are the singular values of X (assuming n ≤ N),

and S is the span of the left singular vectors of X corresponding to k the largest
singular values. Note that R = XXT .

Often it may be best to find an affine subspace as opposed to a linear subspace.
This requires first to find the mean value of the data points

x̄ =
1

N

N∑
α=1

x(α)

and then construct the covariance matrix R̄ given by

R̄ =

N∑
α=1

(
x(α) − x̄

)(
x(α) − x̄

)T

.

Let S0 be the invariant subspace of the k largest eigenvalues of R̄. Then the best
approximating affine subspace S passes through x̄ and is obtained by shifting S0 by
x̄. Algebraically the projection onto the subspace S is given by

z = ρ(x− x̄),(2.1)

where z ∈ R
k are coordinates in the subspace S, x ∈ R

n are coordinates in the original
coordinate system in R

n, and the matrix ρ of the projection consists of row vectors
φTi (i = 1, . . . , k), where φi are the unit eigenvectors corresponding to the largest
k eigenvalues of R̄. Note that given any point p ∈ S with coordinates z ∈ R

k the
coordinates x ∈ R

n of the same point in the original coordinate system are given by

x = ρT z + x̄.
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2.2. Galerkin projection. Having found the approximating subspace for our
system data, our next task is to construct a vector-field on this subspace that repre-
sents the reduced order model. This procedure is known as Galerkin projection and
has been widely used in reducing PDEs to ODEs by projecting onto appropriate basis
functions that describe the spatial variations in the solution. The procedure is ap-
plicable to any subspace; the subspace need not be obtained from the POD method.
See [5] for more details.

Suppose the original dynamical system in R
n is given by a vector-field f ,

ẋ = f(x, t).

Let S ⊂ R
n be the best k dimensional approximating affine subspace with projection

given by (2.1). A vector-field fa in the subspace S is constructed by the following rule:
for any point p ∈ S compute the vector-field f(p, t) and take the projection ρf(p, t)
onto the subspace S to be the value of fa(p, t). If z are the subspace coordinates of
p, then fa(z, t) = ρf(ρT z + x̄, t). Thus we obtain the following reduced model:

ż = fa(z, t) = ρf(ρT z + x̄, t).(2.2)

If we are solving an initial value problem with x(0) = x0, then in the reduced model
one has the initial condition z(0) = z0, where

z0 = ρ(x0 − x̄).

Hence the approximating solution x̂(t) in the original coordinates in R
n is given by

x̂(t) = ρT z(t) + x̄.

From the above it is easy to see that the approximating solution x̂(t) is the solution
to the following initial value problem:

˙̂x = Pf(x̂, t), x̂(0) = x̂0 = P (x0 − x̄) + x̄,(2.3)

where P = ρT ρ ∈ R
n×n is the matrix of the projection expressed in the original

coordinate system in R
n. Also note that x̂0 is just the projection of x0 onto the affine

subspace S.

2.3. Modular model reduction. In this paper modular system shall mean any
system expressed in the form

ẋi = fi(x1, . . . , xm, t), i = 1, . . . ,m.(2.4)

Note that any system ẋ = f(x, t) can be written in this form. All that is involved
is a partitioning of the states x = (x1, . . . , xm), where xi ∈ R

ni are vectors. This
partitioning may arise naturally from the physical interpretation of the system, as in
the power grid example presented later, or may be introduced according to some opti-
mal criteria for the simulation problem at hand. In this paper we consider situations
where the overall system is very large; hence we modularize the system by breaking
it into manageable smaller parts. The POD method can be made to “respect” the
partitioning by forming separate covariance matrices for each of the subsystem states
xi ∈ R

ni ,

R̄i =

N∑
α=1

(
x

(α)
i − x̄i

)(
x

(α)
i − x̄i

)T

,
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and computing separate projections ρi ∈ R
ki×ni that operate within the state space

of a subsystem. Thus the reduced model will be

żi = ρifi(ρ
T
1 z1 + x̄1, . . . , ρ

T
mzm + x̄m, t), i = 1, . . . ,m.

3. DIRM. In this section we describe the DIRM method of simulating a large
scale modular system of the form (2.4). We first describe the WR method in order to
put our method in context.

The basic idea behind WR as applied to system (2.4) may be explained as follows.
Start with an initial approximation for solutions of each of the subsystem trajectories:

x
(0)
1 (t), . . . , x

(0)
m (t). At the kth iteration, simulate each subsystem separately:

ẋ
(k)
i = fi(x

(k−1)
1 (t), . . . , x

(k−1)
i−1 (t), x

(k)
i , x

(k−1)
i+1 (t), . . . , x(k−1)

m (t), t), i = 1, . . . ,m.

This is a simplified explanation of the method. For a detailed exposition and analysis
we refer to [7], [9], and [8]. It has been shown that this iteration converges for ODE
systems in finite interval simulations under some mild conditions. However, WR may
suffer from slow convergence. Overlapping techniques are often used to speed up the
convergence [8].

The DIRM method also simulates each subsystem in turn, but not in isolation.
Instead, the unreduced model of the subsystem is connected to reduced order models
of the other subsystems. If the reduced order models are small enough, then the overall
size of the resulting system is still of manageable dimensions. Consider the modular
system (2.4) with initial conditions xi(0) = xi,0 and suppose we are interested in a
simulation interval [0, T ]. The DIRM method is described as follows.

Start with some initial reduced model for each subsystem. In the POD approach
a reduced model for subsystem i is characterized by the projection matrix ρi and

the mean data value x̄i. Let the initial reduced models be (ρ
(0)
i , x̄

(0)
i ). One way to

generate these is to simulate each subsystem in isolation (in the given interval), setting
the states of the other subsystems to some constant values, for instance, the initial
conditions. In other words, simulate the following equations:

ẋi = fi(x1,0, x2,0, . . . , xi−1,0, xi, xi+1,0, . . . , xm,0, t), i = 1, . . . ,m,

with initial conditions xi = xi,0. The resulting solutions xi(t) may be used to compute
the covariance matrices R̄i:

x̄i =
1

T

∫ T

0

xi(t)dt,

R̄i =

∫ T

0

(xi(t) − x̄i)(xi(t) − x̄i)
T dt.

(3.1)

At the jth step in the iteration we have the reduced models from the previous

step (ρ
(j−1)
i , x̄

(j−1)
i ). We also have the trajectories x

(j−1)
i (t), t ∈ [0, T ], which were

used in constructing these reduced models. Now for i = 1, . . . ,m connect the unre-
duced subsystem i with the reduced versions of all other subsystems and simulate the
resulting system

ẋi = fi(X, t),

żl = ρ
(j−1)
l fl(X, t), l = 1, . . . , i− 1, i+ 1, . . . ,m,

(3.2)
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where X is the following list of vector arguments:

X =
(
ρ
(j−1)
1

)T

z1 + x̄
(j−1)
1 , . . . ,

(
ρ
(j−1)
i−1

)T

zi−1 + x̄
(j−1)
i−1 ,

xi,
(
ρ
(j−1)
i+1

)T

zi+1 + x̄
(j−1)
i+1 , . . . ,

(
ρ(j−1)
m

)T

zm + x̄(j−1)
m .

Use the resulting trajectory for the ith subsystem x
(j)
i (t) to compute an updated

reduced order model for the ith subsystem (ρ
(j)
i , x̄

(j)
i ). The iteration is terminated

when

sup
t∈[0,T ]

{
‖x(j)

i (t) − x
(j−1)
i (t)‖

}
≤ tol , i = 1, . . . ,m,(3.3)

where tol is some specified tolerance.

Remark 3.1. In (3.2) the trajectories z
(j)
l (t) correspond to reduced models, while

the trajectory x
(j)
i (t) corresponds to the full model. In situations when the coupling

between subsystems is “weak,” x
(j)
i (t) will be more accurate than z

(j)
l (t). Since the

reduced models are computed directly from x
(j)
i (t), the simulation for the next itera-

tion j+1 is directly affected by x
(j)
i (t) and only indirectly by z

(j)
l (t). This helps keep

the effect of errors due to model reduction small. Also note that the final solution
comes directly from x

(j)
i (t), and the z

(j)
l (t) enter only indirectly.

For any technique involving reduced order models, accuracy is an important is-
sue. Since reduced order models are computed from the trajectories obtained from
the given initial value problem, when the coupling dynamics is not very strong the
situation for DIRM is reasonably close to the circumstances under which the accuracy
of the POD method could be expected to be as good as possible as indicated by the
error analysis of POD in [13].

We have observed from various examples, linear and nonlinear, that the DIRM
method generally converges. We have also found examples where it fails to converge,
but on those occasions breaking up the time interval [0, T ] into smaller ones [ti, ti+1],
i = 0, . . .M − 1, where t0 = 0 and tM = T and running the algorithm successively in
each interval achieves convergence. It is known that WR also converges better when
the interval length is smaller. However, of course there is an optimal length beyond
which making the intervals smaller results in higher computational effort.

Remark 3.2. The method of model reduction we use in this paper is POD,
but in the overall iteration of DIRM one could in principle replace POD with any
model reduction scheme that depends on simulation data. (Methods such as balanced
truncation in their original form cannot be used, since they depend only on the model
and not on a given set of system trajectories.)

4. Analysis for linear time invariant systems with two subsystems. The
iteration operator associated with DIRM is nonlinear even if the system of ODEs
is linear. This significantly complicates the convergence analysis of DIRM. In this
section we provide an analysis of the DIRM method for linear time invariant systems
consisting of two subsystems. We also assume that in the model reduction via POD
we fit the best approximating linear subspace instead of the more general method
of fitting the best approximating affine subspace. Although these assumptions are
somewhat restrictive, the purpose of the analysis is to provide qualitative results
rather than sharp estimates of convergence rates.
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4.1. Description of Jacobi DIRM iteration operator for two subsys-
tems. Throughout the rest of section 4 we will be concerned with the case of two
subsystems each of dimension n unless stated otherwise. Suppose that the system con-
sists of states x = (x1, x2) with xi ∈ R

n for i = 1, 2, and that the system equations
are given by

ẋ1 = A1x1 +A12x2,

ẋ2 = A21x1 +A2x2,

x1(0) = x10, x2(0) = x20,

(4.1)

and that we are interested in the finite simulation interval [0, T ]. We shall also use the
compact notation ẋ = Ax, x(0) = x0 to denote the same system. We start with some
approximate solution x(0)(t) of the system as the initial (zeroth) iterate. For instance

we may use the solution of the decoupled systems given by x(0) = (x
(0)
1 , x

(0)
2 ) which

satisfies ẋ
(0)
1 = A1x

(0)
1 , x

(0)
1 (0) = x10 and ẋ

(0)
2 = A2x

(0)
2 , x

(0)
2 (0) = x20. Another

approach may be to use some reduced order model solution as x(0). Our analysis does
not depend on this initial choice.

Suppose we have trajectory x(α) at the αth iteration. Then we find best approxi-
mating k(≤ n) dimensional subspaces in R

n (k is fixed throughout the iterations) and

the corresponding orthogonal projections P
(α)
1 and P

(α)
2 (both are n × n matrices)

for the trajectories x
(α)
1 and x

(α)
2 , respectively. The next iterate x(α+1) is obtained

by forming partially reduced models. We combine unreduced system 1 with reduced

system 2 to obtain x
(α+1)
1 and similarly for x

(α+1)
2 . Then we find the projections

P
(α+1)
1 and P

(α+1)
2 corresponding to x

(α+1)
1 and x

(α+1)
2 . Thus if

P (α) =

[
P

(α)
1 0n×n

0n×n P
(α)
2

]

is the combined projection at the α th iteration, then x(α+1) is given by

ẋ
(α+1)
1 = A1x

(α+1)
1 +A12x̂

(α+1)
2 ,

˙̂x
(α+1)

2 = P
(α)
2 A21x

(α+1)
1 + P

(α)
2 A2x̂

(α+1)
2 ,

x
(α+1)
1 (0) = x10, x̂

(α+1)
2 (0) = P

(α)
2 x20

(4.2)

and

˙̂x
(α+1)

1 = P
(α)
1 A1x̂

(α+1)
1 + P

(α)
1 A12x

(α+1)
2 ,

ẋ
(α+1)
2 = A21x̂

(α+1)
1 +A2x

(α+1)
2 ,

x̂
(α+1)
1 (0) = P

(α)
1 x10, x

(α+1)
2 (0) = x20.

(4.3)

We can rewrite the above equations more compactly as

ẋ(α+1) = Adx
(α+1) +Aox̂

(α+1),

˙̂x
(α+1)

= P (α)Aox
(α+1) + P (α)Adx̂

(α+1),

x(α+1)(0) = x0, x̂(α+1)(0) = P (α)x0,

(4.4)
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where

P (α) =

[
P

(α)
1 0n×n

0n×n P
(α)
2

]
,(4.5)

Ad =

[
A1 0n×n

0n×n A2

]
,(4.6)

and

Ao =

[
0n×n A12

A21 0n×n

]
.(4.7)

Thus A = Ad +Ao.
Define the iteration operator I : L2([0, T ],R2n) → L2([0, T ],R2n) as the one that

maps x(α) to x(α+1). We are interested in the fixed points of this operator and their
stability. It must be noted that I is essentially nonlinear and is the composition of two
operators I = S ◦ R. Here R : L2([0, T ],R2n) → P2 is the operator that maps x(α)

to P (α) ∈ P2, where P ⊂ R
n×n is the manifold of rank k ≤ n orthogonal projections,

and S : P2 → L2([0, T ],R2n) maps P (α) to x(α+1) by (4.4). Let X ∈ L2([0, T ],R2n)
be the true solution of the original system of equations,

Ẋ = AX, X(0) = x0.

Let x∗ ∈ L2([0, T ],R2n) be any fixed point of I, i.e., Ix∗ = x∗. We would like x∗

to be a good approximation for X. Our analysis will provide an upper bound on
‖x∗ −X‖. (All function norms are assumed to be 2-norms unless stated otherwise.)
We shall show that the error depends on the norm of Ao (the off-diagonal part), the
POD projection error ‖x∗ − P ∗x∗‖, and the growth/decay properties of eAt in the
time interval T .

Since I is nonlinear it is in general difficult to know if and how many fixed points
exist. It is also difficult to determine whether I is globally contractive. In fact I
is ill-defined for some trajectories x; this occurs when there are many k dimensional
subspaces that best fit x in the least-square sense. However, it is clear that when Ao

is the zero matrix, i.e., when the systems are decoupled, the iterations will converge
after one step, and in addition there is only one fixed point. Under mild regularity
conditions it can be shown that this fixed point will persist for nontrivial Ao, with
‖Ao‖ small enough, and that this fixed point will be stable. We will provide an
analysis that estimates the rate of convergence based on the linearization of I at a
fixed point x∗. We will show that the convergence rate depends on ‖Ao‖, norms of
the exponentials of A and some related matrices, the interval length T , the error
‖x∗−P ∗x∗‖, as well as on the sensitivity of P to perturbations in x at the fixed point
(x∗, P ∗) which can be related to the eigenvalues of the correlation matrix of the fixed
point trajectory x∗.

The rest of the subsections are organized as follows. In section 4.2 we summarize
all the important results of our analysis up front. In section 4.3 we derive an estimate
for the norm of the trajectory of a subsystem in a given finite time interval for a linear
time invariant system with time varying inputs. In section 4.4 we show that under
mild regularity conditions for sufficiently small values of ‖Ao‖ a fixed point exists.
In section 4.5 we derive an estimate for the error ‖x∗ − X‖, and in section 4.6 we
provide an estimate for convergence rate of I and a discussion of the various factors
that affect the convergence. Finally, in section 4.7 we study the behavior of DIRM
for arbitrarily small time intervals.
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4.2. Summary of the results of the analysis. Here we shall provide a sum-
mary of the results of the analysis from the rest of the subsections. The reader who is
not interested in mathematical details and proofs may read this subsection and then
skip to section 5 for numerical examples.

Result 1. For systems that are sufficiently diagonally dominant (‖Ao‖ small
enough), under further mild regularity conditions a fixed point x∗ of I exists. We do
not provide a quantitative bound on ‖Ao‖. This result is proven in section 4.4. See
Proposition 4.5. This result holds for an arbitrary (finite) number of subsystems with
possibly different dimensions.

Result 2. Assuming that a fixed point x∗ of I exists we obtain an upper bound
(4.21) for the error between the fixed point trajectory x∗ and the true solution tra-
jectory X of the system. This is shown in section 4.5. See Proposition 4.8.

Result 3. Assuming that a fixed point x∗ of I exists we obtain an upper bound
for ‖DI(x∗)‖ (the norm of the linearization of the iteration operator at the fixed
point). If ‖DI(x∗)‖ < 1, then DIRM will converge for all initial iterates x(0) that are
sufficiently close to x∗. See section 4.6 and Proposition 4.9.

Result 4. We show that in the case of systems for which a fixed point x∗ of DIRM
exists for all small enough T , that DIRM converges to x∗ for all sufficiently small T if
our initial iterate x(0) is sufficiently close to x∗. See section 4.7 and Proposition 4.11.

Remark 4.1. The proof of Results 2 and 3 (and hence that of 4) use the equation
(4.4) which holds for two subsystems. We expect “qualitatively” similar results to
hold for arbitrary number of subsystems but cannot make any rigorous claims without
further analysis. We have limited the analysis to two subsystems because an equation
equivalent to (4.4) is combinatorially very cumbersome for the case of more than two
subsystems.

The above results do not constitute a comprehensive convergence analysis. For
instance we cannot make conclusions about global convergence of DIRM. But these
results suggest that DIRM is likely to perform well if certain desirable conditions are
met. This has been verified by numerical experiments.

4.3. Finite horizon response of a subsystem. In our analysis of errors and
convergence rate we need to estimate the 2-norm of the trajectory of a subsystem
in a given finite time interval in response to a forcing term (input) and nontrivial
initial conditions for a linear time invariant system. In this section we introduce some
relevant notation as well as estimates that will be employed in our later analysis.

Consider the system

ẋ = Ax+ u

with input u(t) and initial condition x(0) = x0 in the interval [0, T ]. We are only
interested in u ∈ L2([0, T ],Rn). The solution is

x(t) =

∫ t

0

eA(t−τ)u(τ)dτ + eAtx0.

This may be written in the form

x = F (T ;A)u+G(T ;A)x0,(4.8)

where F (T ;A) : L2([0, T ],Rn) → L2([0, T ],Rn) and G(T ;A) : R
n → L2([0, T ],Rn)

are linear operators. It is in general very difficult to obtain sharp estimates for the
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norms of F (T ;A) and G(T ;A), and in fact this basically reduces to the problem of
estimating the norm of the matrix exponential. As such we shall not provide an
estimate, but we will remark that these norms grow exponentially with T at a rate
that is determined by the largest real part of any eigenvalue of A and in addition
depend on the nonnormality of A. See [4] for an estimate of the matrix exponential.
In our analysis we estimate ‖x‖ as

‖x‖ ≤ ‖F (T ;A)‖‖u‖ + ‖G(T ;A)‖‖x0‖,(4.9)

expressing the results in terms of ‖F (T ;A)‖ and ‖G(T ;A)‖.
Remark 4.2. Note that the norms on F (T ;A) and G(T ;A) are the appropriate

induced 2-norms.
We shall state and prove a simple lemma on F (T ;A) which will be used later.
Lemma 4.3. limT→0 ‖F (T ;A)‖ = 0.
Proof.

‖F (T ;A)u‖2 =

∫ T

0

∥∥∥∥
∫ t

0

eA(t−τ)u(τ)dτ

∥∥∥∥
2

dt

≤
∫ T

0

∫ t

0

‖eA(t−τ)‖2‖u(τ)‖2dτdt

≤ e2‖A‖T
∫ T

0

∫ T

0

‖u(τ)‖2dτdt

= Te2‖A‖T ‖u‖2.

So in fact, as T → 0, ‖F (T ;A)‖ = O(
√
T ).

Now we will focus on a system that consists of two subsystems and obtain an
estimate for one of the subsystems that relates the results with the norms of the
coupling terms (the off-diagonal blocks) as well as the subsystem properties (diagonal
blocks). Consider the coupled systems

ẋ1 = A1x1 + κA12x2 + u1,

ẋ2 = κA21x1 +A2x2 + u2,

x1(0) = x10, x2(0) = x20

(4.10)

in the interval [0, T ]. Here κ is a “coupling parameter” introduced to aid our analysis.
The final results are all evaluated at κ = 1. We will obtain an estimate for ‖x1‖.
Since xi(t) (for i = 1, 2) is a (vector-valued) entire function of κ we may write it as

xi(t;κ) =

∞∑
α=0

κα
∂αxi(t; 0)

α!
, i = 1, 2,

where ∂ = ∂
∂κ , and the series converges for all t and all κ. For α ≥ 1, ∂αxi(t; 0) are

given by the decoupled equations

∂αẋ1(t; 0) = A1∂
αx1(t; 0) + αA12∂

α−1x2(t; 0),

∂αẋ2(t; 0) = A2∂
αx2(t; 0) + αA21∂

α−1x1(t; 0),
∂αx1(0; 0) = 0, ∂αx2(0; 0) = 0.
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For the α = 0 case we have

ẋ1(t; 0) = A1x1(t; 0) + u1(t),
ẋ2(t; 0) = A2x2(t; 0) + u2(t),
x1(0; 0) = x10, x2(0; 0) = x20.

Let x1(. ;κ) denote the function, i.e., x1(. ;κ) ∈ L2([0, T ],Rn). Setting κ = 1, from
the above equations we can write x1(. ; 1) as

x1(. ; 1) =

∞∑
α=0

Fαx1(. ; 0) +

∞∑
α=0

FαF1A12x2(. ; 0),

where the operators F1, F2, F : L2([0, T ],Rn) → L2([0, T ],Rn) are defined by Fi =
F (T ;Ai), for i = 1, 2, and

F = F1A12F2A21.

Assuming ‖F‖ < 1 (which is true for sufficiently small T by Lemma 4.3) we obtain
an upper bound for ‖x1‖:

‖x1‖ ≤
∞∑

α=0

‖F‖α‖xd1‖ +

∞∑
α=0

‖F‖α‖F1‖‖A12‖‖xd2‖,

where we have dropped the parameter κ altogether and xdi for i = 1, 2 denote the
solutions of the decoupled systems: ẋdi = Aixdi + ui, xdi(0) = xi0. Finally, after
simplifying the above bound, we obtain the result that, for sufficiently small T ,

‖x1‖ ≤ (‖F1‖‖u1‖ + ‖G1‖‖x10‖)
1 − ‖F‖ +

‖F1‖‖A12‖(‖F2‖‖u2‖ + ‖G2‖‖x20‖)
1 − ‖F‖ ,(4.11)

where we have used the estimates (4.9) for ‖xd1‖ and ‖xd2‖, and Gi = G(T ;Ai) for
i = 1, 2.

It is clear that the effect of subsystem 2 on subsystem 1 diminishes as the norm
of A12 diminishes.

Remark 4.4. It is interesting to note that the κ series expansion mentioned here
is intimately related to the Jacobi WR method. In fact the sequence of partial sums
of the series for κ = 1 is the same as the sequence of iterates obtained by applying the
Jacobi WR, i.e., WR with the splitting A = Ad + Ao, where Ad and Ao are defined
by (4.6) and (4.7), respectively, starting with isolated subsystem (couplings assumed
zero) solutions as the initial iterate.

4.4. Existence of fixed points of DIRM. In general it is hard to prove the
existence of fixed points of the operator I. However, under mild regularity conditions
we can show that a fixed point exists for sufficiently small ‖Ao‖. For this purpose
we shall consider the iteration operator J : P2 → P2 that maps P (α) to P (α+1).
Recalling that I = S ◦ R from section 4.1 we see that J = R ◦ S. It is easy to see
that x∗ is a fixed point of I if and only if P ∗ = Rx∗ is a fixed point of J (provided
Rx∗ is well defined) and similarly P ∗ is a fixed point of J if and only if x∗ = SP ∗ is
a fixed point of I.

Proposition 4.5. Consider a system with a given diagonal part Ad as defined
by (4.6). Let xd = (xd1, xd2) be the solution of the decoupled systems; ẋd = Adxd,
xd(0) = x0. Let ν

i
1 ≥ νi2 ≥ · · · ≥ νin ≥ 0 be the eigenvalues of the correlation matrices
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of xdi for i = 1, 2, respectively. If νik > νik+1, for both i = 1, 2, then the operator J
(and hence I) has a fixed point for all off-diagonal parts Ao (as defined by (4.7)) in
an open neighborhood of the origin in O ⊂ R

2n×2n. Here O is the 2n2 dimensional
subspace of all possible off-diagonal parts.

Proof. Write the system ẋ = Ax as

ẋ = Adx+Aox,

where Ad and Ao are defined according to (4.6) and (4.7), respectively. (Note that
A = Ad +Ao.) We shall treat Ad as fixed and consider Ao as variable.

A fixed point

P ∗ =

[
P ∗

1 0n×n

0n×n P ∗
2

]

of J must be such that P1 = P ∗
1 is a minimizer of e1(P1, x1) while holding x1 fixed,

and P2 = P ∗
2 is a minimizer of e2(P2, x2) while holding x2 fixed, where ei(Pi, xi) are

defined by

ei(Pi, xi) =

∫ T

0

(Pixi(t) − xi(t))
T (Pixi(t) − xi(t))dt, i = 1, 2.

Hence by applying the first order optimality conditions we see that P = P ∗ must be
a root of the following system of equations:

∂e1
∂P1

(P1, S1(P2;Ao)) = 0,

∂e2
∂P2

(P2, S2(P1;Ao)) = 0,

(4.12)

where we have used the fact that x1 = x∗1 at the fixed point depends on P ∗
2 and

similarly x2 = x∗2 depends on P ∗
1 . Here the “solution operator” S1 maps P

(α)
2 to

x
(α+1)
1 according to the equations (4.2). The operator S2 is defined similarly. Note

that the operators S1 and S2 in general both depend on Ao.
Because of the coupling, it is hard to decide if the system (4.12) has a root in

general. However, when Ao = 0 ∈ O, the original system of ODEs are decoupled and
as such S1 and S2 are independent of P2 and P1, respectively. Hence the equations in
(4.12) are decoupled. Furthermore, our assumption that νik > νik+1 for both i = 1, 2
implies that the two errors e1 and e2 can be minimized uniquely and independently
according to the POD procedure. This proves the existence of a unique fixed point
P = P ∗(Ao = 0) of the operator J for Ao = 0. The second order optimality conditions

for unique minima imply that both ∂2e1
∂P 2

1
and ∂2e2

∂P 2
2

when evaluated at Ao = 0 and

P = P ∗(Ao = 0) have full rank.
Therefore it also follows that the Jacobian[

∂2e1
∂P 2

1

∂2e1
∂P1∂P2

∂2e2
∂P1∂P2

∂2e2
∂P 2

2

]

is full rank for Ao = 0 and P = P ∗(Ao = 0). Hence, by the implicit function
theorem, we conclude that a root P = P ∗(Ao) of (4.12) exists for all Ao in an open

neighborhood of 0 ∈ O. Furthermore, by continuity it follows that ∂2e1
∂P 2

1
and ∂2e2

∂P 2
2

have



1458 MURUHAN RATHINAM AND LINDA R. PETZOLD

full rank for (Ao, P = P ∗(Ao)) for all Ao in some open neighborhood of 0 ∈ O. This
establishes P = P ∗(Ao) as a fixed point of J for all Ao in an open neighborhood of
0 ∈ O.

Corollary 4.6. Under similar assumptions Proposition 4.5 holds for an arbi-
trary number m of subsystems of possibly different dimensions.

Proof. Follow the same line of reasoning with (4.12) replaced by

∂ei
∂Pi

(Pi, Si(P1, . . . , Pi−1, Pi+1, . . . , Pm;Ao)) = 0, i = 1, . . . ,m.(4.13)

The key point is that the operator Si does not depend on Pi.
Remark 4.7. Ideally we would like to show that for any value of ‖Ao‖ a fixed

point exists for sufficiently small T . The intuition is that when T gets arbitrarily
small, the trajectories are increasingly well approximated by straight lines. However,
we do not have a proof yet.

4.5. Accuracy of DIRM. We will introduce a few new variables to facilitate
our analysis. Given P (α), x(α), x̂(α), and X as defined in section 4.1, define v(α), w(α),
and ξ(α) as follows:

v(α) = P (α−1)x(α) − x(α),(4.14)

w(α) = x̂(α) − P (α−1)x(α),(4.15)

and

ξ(α) = x(α) −X.(4.16)

We may think of v(α) as a “difference” trajectory that measures the gap between
x(α) and its projection P (α−1)x(α) and w(α) as a difference trajectory that measures
the gap between the reduced trajectory x̂(α) and P (α−1)x(α). The trajectory ξ(α) is
the error between the true solution and the DIRM iterate at step α.

Suppose x∗ is a fixed point of I. Assume P ∗ = Rx∗ is well defined. Let x̂∗, v∗, w∗,
and ξ∗ be the corresponding fixed point trajectories. Note that the error in using
DIRM is ξ∗. We will provide an estimate of ‖ξ∗‖. Substituting v(α) = v∗, P (α−1) =
P ∗, and x(α) = x∗ in (4.14), we obtain

v∗ = P ∗x∗ − x∗.

Similarly we obtain w∗ = x̂∗ −P ∗x∗ from (4.15). Note that these two relations imply
that x̂∗ − x∗ = v∗ + w∗. Differentiating w∗ = x̂∗ − P ∗x∗ with respect to time, and
using (4.4), we obtain

ẇ∗ = P ∗Adx̂
∗ + P ∗Aox

∗ − P ∗Adx
∗ − P ∗Aox̂

∗

= P ∗(Ad −Ao)(x̂
∗ − x∗).

Hence we obtain the following differential equation for w∗:

ẇ∗ = P ∗(Ad −Ao)w
∗ + P ∗(Ad −Ao)v

∗, w∗(0) = 0.(4.17)
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Similarly (4.16) implies ξ∗ = x∗ − X. Differentiating and using (4.4), and Ẋ =
AX = (Ad +Ao)X, we obtain

ξ̇∗ = Adx
∗ +Aox̂

∗ −AX
= A(x∗ −X) +Ao(x̂

∗ − x∗).

Using x̂∗ − x∗ = v∗ + w∗ we write the equation for ξ∗ as

ξ̇∗ = Aξ∗ +Ao(v
∗ + w∗), ξ∗(0) = 0.(4.18)

From the application of the estimate (4.9) to (4.17) we obtain that

‖w∗‖ ≤ ‖F (T ;P ∗(Ad −Ao))‖‖Ad −Ao‖‖v∗‖.(4.19)

Applying the estimate (4.9) to (4.18) and using the above equation we obtain

‖ξ∗‖ ≤ ‖F (T ;A)‖‖Ao‖ {1 + F (T ;P ∗(Ad −Ao))‖Ad −Ao‖} ‖v∗‖.(4.20)

The quantity ‖v∗‖ is the sum of the POD projection errors ‖P ∗
i xi − xi‖ of both

the subsystems. This quantity is the same as the square root of the sum of the
eigenvalues of the neglected modes summed over both the subsystems. Note that if
the POD projection error of the fixed point trajectory is zero, then the error of the
converged DIRM solution is zero. It is also clear that the error depends on the norm
of the off-diagonal blocks Ao, on the norm of the exponentials of A and P ∗(Ad −Ao),
as well as on the time interval T .

We have thus proved the following proposition.
Proposition 4.8. Let x∗ be a fixed point of I and suppose that P ∗ = Rx∗ is well

defined. Let X be the true solution: Ẋ = AX; X(0) = x0. Then the error ‖x∗ −X‖
(2-norm) satisfies

‖x∗ −X‖ ≤ ‖F (T ;A)‖‖Ao‖ {1 + F (T ;P ∗(Ad −Ao))‖Ad −Ao‖} ‖v∗‖,(4.21)

where ‖v∗‖ = ‖P ∗x∗ − x∗‖ is the projection error of the fixed point trajectory.
4.6. Rate of convergence. In this section, we will compute an upper bound

for ‖DI(x∗)‖, the norm of the linearization of the iteration I at a fixed point x∗.
First, we will compute δx(α+1) = DI(x(α))(δx(α)), which is the variation in x(α+1)

due to a variation δx(α) in x(α). The notation DI(x)(δx) denotes the directional
derivative of the operator I evaluated at x ∈ L2([0, T ],R2n) in the direction δx ∈
L2([0, T ],R2n). The variations of all quantities will be denoted by the prefix δ, except
that the variation of P (α) will be denoted by E(α). In our analysis the norm used for
the variations of trajectories will also be the 2-norm, and the norms of matrices will
be the induced 2-norm.

Again we shall make use of the difference trajectories v(α) and w(α) as defined by
(4.14) and (4.15). Taking variations of (4.14) (with α replaced by α + 1) it follows
that

δv(α+1) = E(α)x(α+1) +
(
P (α) − 1

)
δx(α+1).(4.22)

Following a procedure similar to the one that was used to obtain (4.18), we obtain
from (4.16) the following equation for ξ(α+1):

ξ̇(α+1) = Aξ(α+1) +Ao

(
v(α+1) + w(α+1)

)
, ξ(α+1)(0) = 0.
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From (4.16) we also see that δx(α) = δξ(α). Therefore, taking variations of the above
equation, we get

δẋ(α+1) = Aδx(α+1) +Aoδv
(α+1) +Aoδw

(α+1), δx(α+1)(0) = 0.(4.23)

Following a procedure similar to the one that was used to obtain (4.17), we obtain
from (4.15) the following equation for w(α+1):

ẇ(α+1) = P (α)(Ad −Ao)w
(α+1) + P (α)(Ad −Ao)v

(α+1),

w(α+1)(0) = 0.
(4.24)

Hence the variation δw(α+1) is given by

δẇ(α+1) = P (α)(Ad −Ao)δw
(α+1) + P (α)(Ad −Ao)δv

(α+1)

+ E(α)(Ad −Ao)
(
w(α+1) + v(α+1)

)
, δw(α+1)(0) = 0.

(4.25)

Substituting for δv(α+1) from (4.22) into (4.23) and (4.25) we get a coupled system
of equations for δx(α+1) and δw(α+1):

δẋ(α+1) = (A+Ao(P
(α) − 1))δx(α+1) +Aoδw

(α+1) +AoE
(α)x(α+1),

δẇ(α+1) = P (α)(Ad −Ao)
(
P (α) − 1

)
δx(α+1) + P (α)(Ad −Ao)δw

(α+1)

+ P (α)(Ad −Ao)E
(α)x(α+1) + E(α)(Ad −Ao)

(
w(α+1) + v(α+1)

)
,

δx(α+1)(0) = 0, δw(α+1)(0) = 0.

(4.26)

Note that the above system is driven by terms containing x(α+1), v(α+1), and w(α+1).
Since we are interested in perturbations about the fixed point x∗, we set

x(α+1) = x(α) = x∗,
v(α+1) = v(α) = v∗,
w(α+1) = w(α) = w∗.

Also we shall denote δx(α) = δx and write E(α) and δx(α+1) as

E(α) =
dP

dx
(x∗)(δx),

δx(α+1) = DI(x∗)(δx).

Note that dP
dx (x∗)(δx), which may also be written as DR(x∗)(δx), is the directional

derivative of P = R(x) at x = x∗ in the direction δx. For sufficiently small T we
apply the estimate (4.11) to (4.26) at a fixed point and obtain

‖DI(x∗)(δx)‖ ≤ ‖F1‖
(1 − ‖F‖)

∥∥∥∥AoP
∗ dP
dx

(x∗)(δx)x∗
∥∥∥∥

+
‖F1‖‖F2‖‖Ao‖

(1 − ‖F‖)
∥∥∥∥P ∗(Ad −Ao)

dP

dx
(x∗)(δx)x∗ +

dP

dx
(x∗)(δx)(Ad −Ao)(w

∗ + v∗)
∥∥∥∥,

where

F1 = F (T ;A+Ao(P
∗ − 1)),

F2 = F (T ;P ∗(Ad −Ao)),

F = F1AoF2P
∗(Ad −Ao)(P

∗ − 1).

(4.27)
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We simplify further and write

‖DI(x∗)(δx)‖ ≤ ‖F1‖‖Ao‖
(1 − ‖F‖)H,

where the term H is given by

H =

∥∥∥∥dPdx (x∗)(δx)x∗
∥∥∥∥ + ‖F2‖‖Ad −Ao‖

(∥∥∥∥dPdx (x∗)(δx)x∗
∥∥∥∥ +

∥∥∥∥dPdx (x∗)(δx)
∥∥∥∥‖v∗ + w∗‖

)
.

Using the estimate (4.19) one can obtain an upper bound forH which does not contain
w∗. After rearranging some terms we obtain the upper bound

‖DI(x∗)(δx)‖ ≤ ‖F1‖‖Ao‖(1 + ‖F2‖‖Ad −Ao‖)
(1 − ‖F‖)

×
(∥∥∥∥dPdx (x∗)(δx)x∗

∥∥∥∥ +

∥∥∥∥dPdx (x∗)(δx)
∥∥∥∥‖F2‖‖Ad −Ao‖‖v∗‖

)
.

Taking the supremum over all unit norm variations δx, we obtain the bound

‖DI(x∗)‖ ≤ ‖F1‖‖Ao‖(1 + ‖F2‖‖Ad −Ao‖)
(1 − ‖F‖)

×
(

sup
‖δx‖=1

{∥∥∥∥dPdx (x∗)(δx)x∗
∥∥∥∥
}

+

∥∥∥∥dPdx (x∗)
∥∥∥∥‖F2‖‖Ad −Ao‖‖v∗‖

)
.

The sensitivity of the POD projection matrix P (x) to perturbations in the trajectory
x has been studied and quantified in [13]. It follows directly from the results in [13]
that

∥∥∥∥dPdx (x∗)
∥∥∥∥

F

= max
i≤k, j≤n−k

√
2

√
λ1
i + λ1

j+k

λ1
i − λ1

j+k

+ max
i≤k, j≤n−k

√
2

√
λ2
i + λ2

j+k

λ2
i − λ2

j+k

,(4.28)

sup
‖δx‖=1

{∥∥∥∥dPdx (x∗)(δx)x∗
∥∥∥∥
}

=

(
λ1
k + λ1

k+1

λ1
k − λ1

k+1

)
+

(
λ2
k + λ2

k+1

λ2
k − λ2

k+1

)
,

where λi1 ≥ λi2 ≥ · · · ≥ λin are the ordered eigenvalues of the correlation matrix of the
fixed point trajectories x∗i , for i = 1, 2, and the subscript “F” denotes the Frobenius
norm. Note that we have assumed that λik > λik+1, for i = 1, 2, in order for P ∗ to be
well defined. Also note that ‖v∗‖ is given by

‖v∗‖ =
√
λ1
k+1 + · · · + λ1

n + λ2
k+1 + · · · + λ2

n.

Since ‖dP
dx (x∗)‖2 ≤ ‖dP

dx (x∗)‖F, using the expression for ‖v∗‖ we may obtain an upper
bound for ‖DI(x∗)‖ which we shall state as a proposition.

Proposition 4.9. Suppose x∗ = (x∗1, x
∗
2) is a fixed point of I and assume that

P ∗ = Rx∗ is well defined. Then, for sufficiently small T , ‖DI(x∗)‖ satisfies

‖DI(x∗)‖ ≤ ‖F1‖‖Ao‖
(1 − ‖F‖) (1 + ‖F2‖‖Ad −Ao‖){C1(λ) + C2(λ)‖F2‖‖Ad −Ao‖},(4.29)
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where C1 and C2 are functions of the eigenvalues λ of the correlation matrices of the
fixed point trajectories x∗1 and x

∗
2 given by

C1 =

(
λ1
k + λ1

k+1

λ1
k − λ1

k+1

)
+

(
λ2
k + λ2

k+1

λ2
k − λ2

k+1

)
,

C2 =


 max

i≤k, j≤n−k

√
2

√
λ1
i + λ1

j+k

λ1
i − λ1

j+k

+ max
i≤k, j≤n−k

√
2

√
λ2
i + λ2

j+k

λ2
i − λ2

j+k




×
√
λ1
k+1 + · · · + λ1

n + λ2
k+1 + · · · + λ2

n,

(4.30)

and F1, F2, and F are as defined in (4.27).
It can be seen from the above results that the convergence rate becomes arbitrarily

fast as ‖Ao‖ becomes arbitrarily small, which agrees with intuition. We also see that
the convergence is faster when the POD error is small. However, when the POD error
is zero (λ1

k+1 + · · ·+ λ1
n + λ2

k+1 + · · ·+ λ2
n = 0), the above expression does not predict

arbitrarily fast convergence. This may seem counterintuitive. However, one needs to
consider this more carefully. The quantity ‖v∗‖ = λ1

k+1 + · · · + λ1
n + λ2

k+1 + · · · + λ2
n

is the POD projection error of the fixed point trajectory. Even if this is zero, ‖v‖
corresponding to a nearby trajectory x need not be. Convergence depends on the
behavior of nearby trajectories as well. This is evident from the numerical example in
section 5.4. If, however, all subsystem trajectories always lie in some k dimensional
subspace, then it is clear that DIRM will converge after one iteration. In terms of the
above analysis this corresponds to P (α) being constant and v(α+1) = 0 for all α. Hence
E(α) = 0 and δv(α+1) = 0. Then from (4.24) we see that w(α+1) = 0 as well. All these
together and (4.26) imply that δx(α+1) = 0, indicating immediate convergence.

The analysis also suggests that when the eigenvalues λ1
k and λ1

k+1 (or λ2
k and

λ2
k+1) are very close to each other we may expect difficulties in convergence, since

both C1 and C2 become very large. This is numerically evident from the example of
section 5.3.

4.7. Small time interval case. In this section we consider the convergence
behavior of DIRM as T → 0. First let us state and prove the following lemma.

Lemma 4.10. Let z : [0, T0] → R
n be a Cn-smooth trajectory. Let 0 < T < T0 and

let λ1 ≥ λ2 · · · ≥ λn ≥ 0 be the eigenvalues of the correlation matrix of z : [0, T ] → R
n.

Hence λi are functions of T . Furthermore, suppose the values of z and its first n− 1
derivatives at t = 0 form a linearly independent set. Note that this assumption is
generically true in the sense that it holds for an open and dense subset (in R

n(n−1))
of possible values of z(t) and its first n − 1 derivatives at t = 0. Then, as T → 0,
λj+1/λj → 0 for any 1 ≤ j ≤ n− 1.

Proof. In order to keep the proof concise, we shall prove for the case when z(t) is
analytic. The proof for Cn is similar. By assumption the set

{z(0), z(1)(0), . . . , z(n−1)(0)}
is linearly independent, where z(j)(t) denotes the jth derivative of z(t). Since the

correlation matrix R =
∫ T

0
z(t)zT (t)dt is analytic in T , using Taylor expansion we

may write it as

R =
∞∑
j=1

rjT
j ,



DYNAMIC ITERATION USING REDUCED ORDER MODELS 1463

where after simplification

rj =
1

j

j∑
l=1

z(l−1)(0)

(l − 1)!

(z(j−l)(0))T

(j − l)!
, j = 1, 2, . . . .

Note that when z(t) is Cn, R is Cn+1 smooth in T , and we should use Taylor’s
theorem with the remainder term which is O(Tn+1).

It is clear that Image(rj) = span{z(0), z(1)(0), . . . , z(j−1)(0)} and that Null(rj) =
Image(rj)

⊥. Hence by our assumption it follows that rank (rj) = j for j = 1, . . . , n.

Let µj
1 ≥ µj

2 ≥ · · · ≥ µj
n ≥ 0 be the eigenvalues of rj for all j. Note that µj

j > 0 and

µj
l = 0 for l = j + 1, . . . , n, and j = 1, . . . , n.

Define partial sums

Rj =

j∑
l=1

rlT
l

for j = 1, . . . , n. Let νj1 ≥ νj2 ≥ · · · ≥ νjn ≥ 0 be the eigenvalues of Rj . Since
Image(rj−1) ⊂ Image(rj), for j = 1, . . . , n, it follows that rank(Rj) = rank(rj) = j

for j = 1, . . . , n. Hence νjj > 0 and νjl = 0 for l = j + 1, . . . , n and j = 1, . . . , n.

Since Rj = Rj−1 + T jrj , for j = 1, . . . , n, using Theorem 8.1.5 of [4] on symmetric

eigenvalue perturbations, we see that νjj ≤ νj−1
j +T jµj

1. The same theorem also yields

νj−1
n + T jµj

j ≤ νjj . Since νj−1
n = νj−1

j = 0, we get

0 < T jµj
j ≤ νjj ≤ T jµj

1, j = 1, . . . , n.(4.31)

For j = 1, . . . , n we may write R as

R = Rj + T j+1Nj+1,

where Nj+1 =
∑∞

l=1 rj+lT
l−1. Let ν̃j1 ≥ ν̃j2 ≥ · · · ≥ ν̃jn ≥ 0 be the eigenvalues of Nj

for j = 2, . . . , n+1. Application of Theorem 8.1.5 of [4] to R = Rj +T j+1Nj+1 yields

νjj + T j+1ν̃j+1
n ≤ λj ≤ νjj + T j+1ν̃j+1

1 , j = 1, . . . , n.

This together with (4.31) implies

0 < T jµj
j ≤ λj ≤ T jµj

1 + T j+1ν̃j+1
1 , j = 1, . . . , n.(4.32)

This yields

λj+1

λj
≤ T

(
µj+1

1

µj
j

+ T ν̃j+2
1

)
, j = 1, . . . , n− 1.

Since limT→0Nj+2 = rj+2, by continuity limT→0 ν̃
j+2
1 = µj+2

1 which is finite. Hence

limT→0
λj+1

λj
= 0 for j = 1, . . . , n− 1.

Now we state the following proposition about convergence of DIRM in the limit
T → 0.

Proposition 4.11. Suppose there exists a T1 such that for all T < T1 a fixed
point x∗ of I exists and that P ∗ = Rx∗ is well defined. Further suppose x∗ satisfies the
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conditions of Lemma 4.10. Let X be the true solution. Then there exists a T0 < T1

such that DIRM converges to x∗, for all T < T0, for initial guesses x
(0) that are

sufficiently close to x∗.
Proof. Application of Lemma 4.10 immediately yields that

lim
T→0

C1 = 2

and

lim
T→0

C2 = 0.

Also, as T → 0, both ‖F1‖ and ‖F2‖ → 0 (Lemma 4.3), and hence ‖F‖ → 0 as well.
So ‖DI(x∗)‖ → 0 as T → 0, and in particular ‖DI(x∗)‖ < 1 for all small enough
T . Hence DIRM will converge for all initial guesses x(0) that are sufficiently close
to x∗.

5. Examples.

5.1. Example: Nonlinear power grid. In this section we present a power
grid model and apply the DIRM method to simulate the transient behavior. The
model has been taken from the paper [11]. The model equations we use represent the
coupling between power flows and frequency variations across power networks and are
known as the swing equations. Swing dynamics potentially interact with protection
mechanisms and may lead to cascading failures. See [11] for more details.

We used a power grid consisting of 36 nodes arranged in a 6 × 6 square grid.
Each node is either a generator or a load. For general types of load situations we
would need DAEs to represent the system. Here we assume that the loads are all
synchronous motors. In that case the swing equations involve the variables δi, where
indices i = 1, . . . , N denote the nodes (N = 36 in our example). Physically at node
i, δi stands for the generator or motor rotor angle with respect to a synchronously
rotating reference frame. The equations are then given by

Miδ̈i +Diδ̇i = Pmi − Pgi, i = 1, . . . , N,(5.1)

where Mi and Di are inertia and damping terms for the generator or motor at the
ith node and Pmi is the mechanical power input to the generator or the mechanical
power output (negative) of the motor at the ith node, and Pgi is the electrical power
output from the ith node. It is assumed that the voltage magnitudes at the nodes are
maintained fixed by regulators. The electrical power Pgi is given by

Pgi = Re(V ∗
i Ii) = Re


V ∗

i

N∑
j=1

YijVj




= −
N∑
j=1

|Vi||Vj |bij sin(δi(t) − δj(t)), i = 1, . . . , N,

(5.2)

where Vi = |Vi|eiδi , and Y = G + iB is the admittance matrix for the network
connections (with some of the i denoting

√−1). We assume that the lines are lossless
(G = 0). The bij are the terms of the susceptance matrix B. The diagonal entrees bii
are all zero. If a line is not present between nodes i and j, then bij = 0. We chose
bij = 1 for all connected lines.
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Fig. 5.1. Power grid: generators—open circles; loads—filled circles.
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Fig. 5.2. δi vs. time: reference method.

The grid we chose is shown in Figure 5.1. The generators are marked by open
circles, and all other nodes (filled circles) are motors. All physical parameters chosen
were nondimensional. We chose all the voltage magnitudes to be the same (constant)
value of 1. The mechanical powers Pmi were chosen to be −0.0880 for the motor
nodes, and generator powers were all 0.7040 so that the total sums to zero. The
parameter values Mi = 2.0 and Di = 0.8 were chosen for the generators, while values
Mi = 0.1 and Di = 0.1 were chosen for all load motors. Given these parameters the
swing equations have a nontrivial (not all δi are zero) steady state solution. We picked
a random initial condition (Gaussian with zero mean and 0.1 standard deviation for
both δi and δ̇i for all i). First, we used the MATLAB ODE solver ode15s to solve
the equations in the interval [0, 10], which indicated that the steady state was more
or less reached in that time interval. A plot of the “reference solution” for δi for four
of the nodes is shown in Figure 5.2. One motor node from each subsystem was chosen
for this plot. In order to apply the DIRM method we modularized the system so that
the square grid of 6 × 6 nodes was split into four subsystems, each consisting of a
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Fig. 5.3. Decay of POD mode energies: power grid example.
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Fig. 5.4. δi vs time: DIRM.

square subgrid of 3 × 3 nodes. The broken lines in Figure 5.1 show this partitioning.
DIRM did not converge when the simulation interval was [0, 10]. However, breaking
the interval into smaller intervals achieved convergence. Using intervals of length 0.5
(i.e. [0, 0.5], [0.51], . . . , [9.5, 10]) achieved convergence. We used the same MATLAB
solver ode15s as the underlying solver. Within each interval at most seven iterations
were required. The final value of the solution from one interval was used as the initial
condition for the next interval. Initial reduced models were obtained by simulating
each subsystem in isolation (all other subsystem states were assumed to remain zero)
for the time interval under consideration. The reduced order models of all subsystems
were chosen to be of dimension 3. (The full dimension of each subsystem is 18.)
Figure 5.3 shows the largest eight eigenvalues of the DIRM solution for the first
subsystem trajectory in the final simulation interval [9.5, 10]. The decay was similar
for the other subsystems as well.

The solution obtained using DIRM is shown in Figure 5.4 for the same nodes
as in Figure 5.2. The solutions of the reference method and DIRM are visually
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indistinguishable and so we plotted them on separate figures. We also computed the
maximum relative error er defined by

er = sup
i

supt∈[0,10] |x̂i(t) − xi(t)|
supt∈[0,10] |xi(t)|

,(5.3)

where i indexed over all states (node voltage phases and velocities). It was er = 0.0037;
i.e., the relative error for any state variable was less than 0.37%.

An important point during swing dynamic transients is that large deviations of
δi and δ̇i can trigger protection mechanisms that can shut down a line or a generator,
and this changes the system parameters discontinuously (some bij change to 0, for
instance) which in turn leads to further transients and so on (see [11]). Since our
scheme predicts the solutions accurately, we expect it to predict the first failure (loca-
tion and time) accurately. However, for accurate prediction beyond the first failure,
we have to restart our iteration for a time interval beginning at the failure. Numerical
simulations done by Cao and Petzold [1] revealed that the reduced model formed from
trajectories obtained before a failure was not accurate after the failure and could not
be used to predict further failures. If we include failures in our model, our iterative
method may need to be modified. During the iterative simulations, if a subsystem
indicates failure, then the time interval of simulation may be shortened so that the
reduced models remain more accurate. We have not yet numerically investigated this
type of scenario. This is a subject of future research.

5.2. PDE Example: Comparison with WR. We considered the reaction-
convection-diffusion equation

xt = νxss + axs + bx(5.4)

in one spatial variable s in the interval s ∈ [0, 6] with spatial discretization giving
100 equally spaced interior points. Both first and second spatial derivatives were
approximated by centered differences. We used the triangular function

x(0, s) = s/3, 0 ≤ s ≤ 3,

x(0, s) = 1 − (s− 3)/3, 3 ≤ s ≤ 6,
(5.5)

as initial condition, and the boundary conditions were zero. This results in a tridiag-
onal linear system (ODE) of the form

ẋ = Ax,

where x ∈ R
100.

For DIRM we divided the system into 10 subsystems each of size 10 consisting of
adjacent grid points. For WR we used the splitting A = Ad + Ao, where Ad is block
diagonal with 10 × 10 blocks and Ao the remaining off-diagonal coupling part. This
corresponds to the Jacobi version of WR. We also used overlapping for WR in order
to improve its convergence. It is known from the work of Miekkala that in the case
of tridiagonal systems the order of convergence of WR is ω = 1 (as defined by [8]),
which is very slow. However, if we overlap by o variables, then ω = 1

o+1 , and this
should improve the asymptotic convergence [8].

Simulations of three different sets of parameter values are discussed here. In all
cases we computed the solutions using the MATLAB ODE solver ode15s to provide a
benchmark. The same solver was also used within DIRM and WR. In all simulations
of DIRM and WR we used the convergence tolerance (see (3.3)) tol = 0.001 and a
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Table 5.1
Convergence and accuracy of DIRM and WR for the 1D PDE with convection and diffusion.

Parameter values ν = 0.1, a = 1, b = 0. Simulation interval [0, 10]. Subsystem reduced model
dimension k = 3.

Number of iterations Maximum error over subsystems
DIRM 3 1.3112 × 10−3

WR overlap o = 3 21 12.2107 × 10−3

WR (no overlap) > 30 (did not converge) 241.8189 × 10−3

Table 5.2
Convergence and accuracy of DIRM and WR for the 1D PDE with reaction, convection, and

diffusion. Parameter values ν = 0.1, a = 6, b = 6. Simulation interval [0, 1.2]. Subsystem reduced
model dimension k = 3.

Number of iterations Maximum error over subsystems
DIRM 11 0.5284

WR overlap o = 3 16 0.7861
WR (no overlap) > 30 39.5314

Table 5.3
Convergence and accuracy of DIRM and WR for the 1D PDE with pure diffusion. Parameter

values ν = 0.1, a = 0, b = 0. Simulation interval [0, 10]. Subsystem reduced model dimension k = 3.

Number of iterations Maximum error over subsystems
DIRM 2 0.4511 × 10−3

WR overlap o = 5 21 1.9688 × 10−3

maximum iteration count of 30. All the subsystem reduced models in DIRM were of
dimension k = 3. The convergence and error results are summarized in Tables 5.1,
5.2, and 5.3. The error is measured by sup{‖x̂i(t)−xi(t)‖2 : t ∈ [0, T ], i = 1, . . . , 10},
where xi(t) and x̂i(t) are the benchmark solution and the iterative method (DIRM or
WR) solution of the ith subsystem, respectively. The WR method in general needed
some overlapping to achieve convergence. Especially the pure diffusion case required
a greater overlap without which WR did not converge at all.

Note that couplings exist only between adjacent subsystems. This is essentially a
property of 1D PDEs. Thus for the WR method we expect at least 10 iterations before
the first subsystem “sees” the last subsystem. This is true even when overlapping is
used. Hence we may expect at least 10 iterations (initial overhead) before we see
convergence of WR. In DIRM, the entire system is always being simulated, albeit in
a partially reduced form. Hence we do not expect this adverse effect. In order to
test this hypothesis we considered the system with ν = 0.1, a = 1, and b = 0. This
gives rise to a system with diffusion as well as convection propagating towards the
decreasing s direction (a > 0). This can be seen from Figure 5.5, where the initial
condition as well as the solution (benchmark solver) at t = 5 are shown. This may
be thought of as the initial triangle diffusing and propagating to the left at the same
time. Thus there is more “information flow” from right to left than from left to right.
In order to capture the waveform for the first subsystem (the leftmost 10 grid points)
accurately we need to capture the information flow from the other subsystems. Hence
we could expect that the WR method would take at least 10 iterations for convergence
and also expect it to converge slower for the first (leftmost) subsystem than for the
last (rightmost) subsystem. We picked a simulation interval [0, 10] so that the entire
system decayed to zero. We found that WR did not converge even after 30 iterations,
and hence used overlapping by three variables, keeping the number of subsystems the
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Fig. 5.5. Plot of the benchmark solution x(t, s) versus s at time t = 0 (solid) and at time t = 5
(dashed) for the convection-diffusion case with ν = 0.1, a = 1, b = 0.
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Fig. 5.6. Convergence of subsystems 1 and 10 for WR with overlap o = 3 for the convection-

diffusion case with ν = 0.1, a = 1, b = 0. Plot of the difference sup{‖x(j)i (t)−x
(j−1)
i (t)‖2 : t ∈ [0, T ]}

between successive iterates versus the iteration step j for subsystems i = 1 and i = 10.

same. This resulted in the first nine subsystems being of size 13 and the last one
being of size 10. The convergence plots for the overlapped WR for the first and last
subsystems are shown in Figure 5.6, which confirms our intuition. The DIRM method
did not experience this overhead and converged in three iterations. Figures 5.7 and
5.8 compare the convergence rates and Figure 5.9 compares the subsystem errors for
DIRM and WR.

Second, we considered the system with ν = 0.1, a = 6, and b = 6. This system
has a dominant reactive term. We picked the simulation interval [0, 1.2] in which
the system had an explosive reaction after which it decayed to zero. The benchmark
simulation showed that subsystem 1 (leftmost) underwent the most explosive change;
see Figure 5.10. DIRM and WR with overlapping (o = 3) performed comparably.
Even though the maximum error (Table 5.2) seems large for both DIRM and WR with
overlap, it occurred in subsystem 1 (which underwent the most explosive growth), and
it is small compared to the peak value of the subsystem trajectory. In fact it was hard
to visually distinguish the trajectory plots of subsystem 1 for DIRM and overlapped
WR from those of the benchmark solution in Figure 5.10.
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Fig. 5.7. Convergence of subsystem 1 for WR with overlap o = 3, WR without overlap,
and DIRM for the convection-diffusion case with ν = 0.1, a = 1, b = 0. Plot of the difference

sup{‖x(j)i (t) − x
(j−1)
i (t)‖2 : t ∈ [0, T ]} between successive iterates versus the iteration step j for the

subsystem i = 1.
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Fig. 5.8. Convergence of subsystem 10 for WR with overlap o = 3, WR without overlap,
and DIRM for the convection-diffusion case with ν = 0.1, a = 1, b = 0. Plot of the difference

sup{‖x(j)i (t) − x
(j−1)
i (t)‖2 : t ∈ [0, T ]} between successive iterates versus the iteration step j for the

subsystem i = 10.
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Fig. 5.9. Errors of each subsystem for WR with overlap o = 3, WR without overlap, and
DIRM for the convection-diffusion case with ν = 0.1, a = 1, b = 0. Plot of the error in ith subsystem
given by sup{‖x̂i(t) − xi(t)‖2 : t ∈ [0, T ]}, where x̂i is the iterative method solution and xi is the
benchmark solution versus the subsystem i.
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Fig. 5.10. Plot of the benchmark solution of all 10 of the states of subsystem 1 for the reaction-
convection-diffusion case with ν = 0.1, a = 6, b = 6.

Finally, we simulated the purely diffusive system with ν = 0.1, a = 0, and b = 0.
In this case WR performed worst, and DIRM performed best, showing a very clear
advantage over WR. Overlapping by o = 3 was not sufficient to achieve convergence
of WR. However, a bigger overlap of o = 5 achieved convergence.

In summary, DIRM seems to converge better than WR for both the convection-
diffusion and pure diffusion cases, with the pure diffusion case being the strongest
point for DIRM. For the reaction-convection-diffusion case there is no clear winner.
Since the error in the POD method is large when system trajectories undergo explosive
growth in the interval of interest ([13]), it is not surprising that DIRM performed
worst for this type of equation. In contrast, WR seems to have performed best for
the reaction-convection-diffusion case.

5.3. Example: Almost coincident eigenvalues λk ≈ λk+1 and the mod-
ified DIRM method. The convergence analysis of DIRM in section 4.6 predicts
difficulties in convergence if the eigenvalues λk and λk+1 of the covariance matrix
of the fixed point trajectory of any subsystem are very close. To generate such an
example, we employ the equation

ẋ = A(x− f(t)) + f ′(t),(5.6)

which for any choice of A has x = f(t) as the solution corresponding to the initial
condition x(0) = f(0).

Consider the following trajectory g(t) ∈ R
3 such that the covariance matrix for

the interval [0, 1] has prescribed eigenvalues λ1, λ2, and λ3:

g(t) =
(√

2λ1 sin(2πt),
√

2λ2 cos(2πt),
√

2λ3 sin(4πt)
)
.

Note that g(0) = (0,
√

2λ2, 0). We may construct a system of the form (5.6) which
is six dimensional, and when split into two subsystems (each of dimension 3) the
subsystem solution trajectories are both g(t). According to the analysis of section
4.5, if A is diagonally dominant, and its fundamental modes do not grow substantially
in the interval of simulation [0, 1], and the POD projection error is small, then we
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expect the fixed point trajectories of the subsystems to be close to the true solution
g(t). Thus for the system in (5.6), if we set f(t) = (g(t), g(t)), λ3 = λ2, and choose an
A with the above properties and the initial condition x(0) = (0,

√
2λ2, 0, 0,

√
2λ2, 0),

then we can expect difficulties in convergence.
Numerical experiments were conducted with A obtained from discretizing the

PDE in section 5.2 with ν = 1, a = b = 0, and six interior points. The choice of
λ1 = 0.5, λ2 = λ3 = 0.2 lead to eight iterations for convergence; the choice of λ1 =
0.5, λ2 = 0.2, λ3 = 0.199 required 12 iterations; and the choice λ1 = 0.5, λ2, λ3 = 0.19
converged in four iterations. In other cases, where λ2 and λ3 were further separated,
convergence took a similar number of (five or less) iterations.

Remark 5.1. Note that the λ2 = 0.2, λ3 = 0.19 case was worse than the λ2 =
λ3 = 0.2 case because the fixed point trajectory is slightly different from the true
solution trajectory. As a verification of our analysis we computed the quantities C1

and C2 of equations (4.30) for the fixed point trajectories of the above examples and
observed that the larger they were the more the iterations needed for convergence.

In order to make DIRM robust against such situations we tried the following
“modified DIRM” method. In modified DIRM, reduced models are computed from a
covariance matrix and mean value that are a weighted combination of the covariance
matrix and mean value of the current trajectory and some precomputed covariance
matrix and mean which are typically obtained from an ensemble of trajectories such
as those with initial conditions uniformly chosen from the unit sphere. Thus at the
αth iteration, given trajectory x(α) of a subsystem we compute the mean x̄(α) and
the covariance matrix R(α) of that trajectory as usual. However, instead of using x̄(α)

and R(α) to obtain the reduced model we compute

R̃(α) = βR(α) + (1 − β)R0,

˜̄x
(α)

= βx̄(α) + (1 − β)x̄0,

where 0 < β ≤ 1, and then compute the projection P̃ (α) corresponding to R̃(α). The

new reduced model is given by ˜̄x
(α)

and P̃ (α).
Here R0 and x̄0 are precomputed from some ensemble of trajectories with various

initial conditions and do not change from iteration to iteration. This method changes
the fixed point of DIRM. Typically if β is small you would expect the method not to
be so accurate.

When we applied the modified DIRM with β = 0.9, for the worst case above
(λ1 = 0.5, λ2 = 0.2, λ3 = 0.199), we converged in four iterations, with more or
less the same accuracy as the unmodified DIRM. It is important to note that the
precomputed covariance matrix R0 should have reasonable separation between its
kth and k + 1st eigenvalues. Then for sufficiently small β we are guaranteed to have
sufficient separation of λk and λk+1, the eigenvalues of R̃. This example confirms our
analysis, and the modified DIRM method provides a safeguard against the situation
of coincident eigenvalues.

Remark 5.2. In the modified DIRM method, it is easy to see that when β = 0
we have immediate convergence, since the reduced models do not change. However,
its accuracy is not as good as that of the regular DIRM method. When β = 1 we
have the regular DIRM method, which is more accurate, but does not always have
good convergence behavior. So one may expect that by choosing an appropriate
β we could achieve a good compromise between convergence and accuracy. How-
ever, the numerical experiments with the PDE example of section 5.2 showed that
the convergence rate did not depend monotonically on β. For the parameter values
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(ν = 0.1, a = 6, b = 6), subsystem reduced model dimension k = 2, and the time
interval [0, 0.5], convergence took 12 iterations for β = 1, 10 iterations for β = 0.8, 13
iterations for β = 0.5, and for the β = 0 case 1 iteration (as expected). This could be
because there is an intermediate regime of β values where the loss of accuracy affects
the convergence negatively. It should be noted that the WR method took more than
15 iterations.

5.4. Example: Fixed point trajectory with zero POD projection error.
For the example in section 5.3, if we choose λ1 = 0.5, λ2 = 0.2, and λ3 = 0, we have a
solution trajectory which has zero POD projection error. The fixed point trajectory
being close to the true solution also had almost zero POD projection error. Yet
DIRM took four iterations to converge, in agreement with the convergence analysis
(see section 4.6).

When trajectories of all the subsystems always lie in a k dimensional subspace
(where k is the dimension of all the reduced order models), the POD projection error
is always zero, and in this case convergence is immediate (in agreement with the
convergence analysis). This can be numerically observed from an example ẋ = Ax,
where rows of A corresponding to each subsystem are of rank k or less. When the row
rank is strictly less than k we have zero POD projection error as well as coincident
eigenvalues (λk = λk+1 = 0). In this case DIRM still converges immediately, even
though the projection matrices computed at each step may not converge.

6. Conclusions and future work. We have presented a new dynamic itera-
tion called DIRM for simulation of large scale interconnected systems. DIRM uses
reduced order models (obtained here via POD) of subsystems which are also refined
during the iterations. We provided an analysis of the DIRM method as applied to
linear time invariant systems of ODEs consisting of two subsystems, giving results on
accuracy and convergence of DIRM. We also presented numerical examples, including
some special cases chosen to test the validity of the analysis and to illustrate some
special situations, and two realistic examples: a nonlinear power grid model and a
discretized linear reaction-convection-diffusion type PDE in one dimension. Both the
power grid and the PDE examples demonstrated the success of DIRM. In the PDE
example we also provided comparisons with WR. This example showed that DIRM
has clear advantages over WR for pure diffusion and convection-diffusion-type equa-
tions. DIRM performed worst for systems showing explosive reactions, for which WR
performed best.

Future work will include DAEs as well as hybrid systems such as the power grid
with failure models resulting in discontinuous changes in system parameters. The
complementary nature of DIRM and WR seen in the PDE example suggests that the
development of an approach that combines the two methods in an optimal manner
might prove valuable in parallel computation of large scale systems. The framework of
DIRM allows for the use of model reduction techniques other than POD provided that
they are data driven. Since the POD reduced models may not achieve considerable
savings for nonlinear banded Jacobian systems [13], it might be advantageous to
explore the use of other model reduction methods.
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