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Abstract. We develop a theory of local errors for the explicit and implicit tau-leaping methods
for simulating stochastic chemical systems, and we prove that these methods are first-order consistent.
Our theory provides local error formulae that could serve as the basis for future stepsize control
techniques. We prove that, for the special case of systems with linear propensity functions, both
tau-leaping methods are first-order convergent in all moments. We provide a stiff stability analysis
of the mean of both leaping methods, and we confirm that the implicit method is unconditionally
stable in the mean for stable systems. Finally, we give some theoretical and numerical examples to
illustrate these results.
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1. Introduction.

1.1. Background on tau-leaping methods. Chemical reaction systems which
involve small numbers of molecules of certain species may not be adequately modeled
by a deterministic ordinary differential equation (ODE) model. Systems that involve
small numbers of molecules of some species and very large numbers of molecules
of other species may exhibit dynamics that range from discrete and stochastic to
continuous and deterministic. Important examples of such systems are living cells
[13, 12, 1, 4].

Gillespie [5, 6] describes a discrete stochastic microscopic model for well-stirred
systems, and an algorithm called the stochastic simulation algorithm (SSA) for its
exact simulation in which each chemical reaction event is simulated, one at a time.
More recent papers [9, 10] show that starting from this “finer scale” model and making
certain approximations, one may carry out a more efficient but approximate simula-
tion called tau-leaping, which is valid under certain assumptions. Furthermore, it is
shown that under a sequence of assumptions, which generally hold when the number
of molecules of every species is very large, successive steps of approximations can be
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made that lead to a stochastic differential equation (SDE) model (i.e., one driven by
Gaussian white noise) and ultimately to the ODEs that are well known to chemists
as the reaction rate equations. Tau-leaping, together with known methods for SDEs
and ODEs, provides a framework for the seamless approximation and solution of mul-
tiscale chemically reacting systems, where the scales are over a range of populations
of chemical species from moderate to very large numbers.

Another sense in which chemically reacting systems are multiscale involves the
wide variation of reaction rates. For deterministic systems, this type of multiscale
behavior is commonly known as stiffness. In the chemical kinetics context, stiffness
occurs due to the presence of slow and fast reactions where two or more fast reactions
nearly cancel each other. It is well known that in such situations, explicit numer-
ical methods perform very poorly compared to implicit methods [2]. The stiffness
phenomenon can also be observed in the stochastic chemical model. The implicit
tau method [15] was proposed as an alternative to the explicit tau method for stiff
stochastic systems and was numerically demonstrated to outperform the explicit tau
method for those systems.

1.2. Motivation and contributions of this work. The explicit tau-leaping
method introduced in [9] uses a piecewise Poisson approximation of the continuous
time discrete state Markov process that is described by the chemical master equa-
tion [8]. The stochastic chemical model described by the master equation is a Markov
process with state transition rates aj that are functions of the state x. In the context
of chemical kinetics these rates are also known as propensity functions aj(x). These
aj(x) are such that the probability of a type j reaction occurring in the time interval
[t, t + τ), given that the system is in state x at time t, is aj(x)τ + o(τ) as τ → 0.
Intuitively, one might expect that the behavior of explicit tau, as well as that of im-
plicit tau, would approach for small τ that of the model described by the SSA (or
equivalently by the chemical master equation [8], which is an infinite system of ODEs
for the time evolution of the probabilities). However, a quantitative analysis of the
errors incurred by the use of these approximate methods has not been provided in
the literature. A quantitative estimate of the local errors as a function of stepsize τ
should be useful for developing strategies for automatic stepsize selection, as well as
a guide in the search for higher-order accurate tau-leaping methods.

In this paper we develop an analysis of local errors of both the explicit and the
implicit tau methods. We do so by observing that the exact probability for any
given sequence of reactions to occur in a finite time duration τ can be written as a
sequence of iterated integrals involving the propensity functions and exponentials of
the propensity functions. Although these integrals cannot be simplified in general,
they can be expanded as a Taylor series in powers of τ . Using this approach we
show that both the explicit and the implicit tau methods are first-order consistent
in τ . In addition we provide explicit formulae for the leading-order local error term
of O(τ2) for the mean and covariance of explicit tau. We also provide a similar but
less explicit formula for implicit tau. More importantly, our approach provides a
systematic method for finding the local error terms of all moments up to any power
of τ .

It must be noted that unlike an ODE, the discrete stochastic model can be sim-
ulated exactly since it involves a sequence of discrete events, albeit happening in
continuous time. Thus any local error formulae that hold only for small enough τ
may not be of relevance unless the range of validity includes τ values in which multi-
ple reactions are likely to occur. This way the local error formulae could be applied
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in situations where one actually would use the leaping methods. We look at this issue
in the context of some examples and show that keeping only the τ2 term in the local
error for the mean and variance often provides reasonable approximations to the local
error for τ values that are large enough that the mean number of reactions leapt over
is on the order of 10 or more.

Consistency of a leaping method alone does not guarantee convergence over a
finite interval. We restrict ourselves to systems with linear propensity functions and
show that for both the explicit and the implicit tau methods, all moments converge to
those of the correct solution with a global error of O(τ). The significance of this result
is that it rigorously justifies the claim that the tau methods “seamlessly” transition
into the SSA. If indeed tau methods diverged or converged to some processes other
than the SSA, then one would have to be wary of using very small τ steps. This would
also raise concerns about how small is too small. Knowing that they converge assures
us that we need only concern ourselves with computational efficiency in deciding when
to switch from the tau methods to the SSA.

We also provide finite stepsize asymptotic stability results for the mean of both tau
methods for systems with linear propensity functions. These stability results confirm
that the mean of the implicit tau is unconditionally stable if the original system is
asymptotically stable, while explicit tau requires limitations on its stepsize to ensure
stability. These results are very similar to the stiff stability results for explicit and
implicit Euler methods applied to ODEs. This also explains why the implicit tau
method performs better for stiff systems [15]. We note that a more thorough analysis
of stiff stability involves looking at not just the mean but also the behavior of higher-
order moments, and this is dealt with in a different paper [3].

1.3. Relationship to other multiscale approaches. One approach to under-
standing and analyzing multiscale behavior is via singular perturbation methods in
which a small parameter ε is introduced in the system equations and the asymptotic
behavior as ε → 0 of the system is derived. Notions of averaging microscopic variables
to obtain macroscopic variables could also be dealt with in this framework. See [11]
for a good overview. Such analysis may be used to motivate and analyze numeri-
cal methods for “macroscopic time stepping” [18]. These works primarily deal with
ODEs and SDEs (driven by Brownian motion), but such analysis may be extended to
discrete state continuous time Markov processes as well. We do not perform such an
analysis in this paper. However, the convergence results and absolute stability results
for the mean in this paper as well as the absolute stability results for all moments
in [3] do provide an important first step towards a better understanding of tau-leaping
methods, which have shown promise in simulation results [15].

1.4. Outline of the paper. In section 2 we briefly describe the stochastic chem-
ical model and the tau-leaping schemes. We also discuss two issues that impact our
analysis, namely extension of the propensity function to real states and bounding
the number of reaction events to avoid negative states as well as an arbitrarily large
number of firings. In section 3 we present the local error analysis of the tau-leaping
methods and prove their first-order consistency. In section 4 we focus on systems with
linear propensity functions and prove 0-stability and convergence of all moments for
both tau-leaping methods. Furthermore, we provide finite stepsize asymptotic stabil-
ity analysis of the mean for both tau methods. In section 5 we present some examples
and provide both theoretical and numerical results showing first-order convergence
of the tau methods, as well as the region of validity of the second-order local error
formulae. Finally, we make some concluding remarks and suggestions for future work.
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2. The stochastic chemical model and the tau-leaping schemes. In this
section we describe the discrete state, continuous time Markov process model for
well-stirred chemical reaction systems, as well as an exact simulation algorithm for
this model known as the SSA [5, 6]. We also describe the tau-leaping schemes, both
explicit and implicit, which were designed for efficient and approximate simulation
of this model [9, 10, 15]. Throughout this paper, Z+ denotes the set of nonnegative
integers and R+ the set of nonnegative real numbers.

Well-stirred chemical reaction systems can be accurately described by a continu-
ous time discrete state Markov process [5]. A system consisting of N molecular species
has state X(t) ∈ Z

N
+ , where Xi(t) is the number of molecules of the ith species at

time t. Suppose that M chemical reactions Rj (j = 1, . . . ,M) may occur among
these species. Associated with each reaction Rj is a nonnegative propensity function
aj : Z

N
+ → R+ such that the probability that reaction Rj will happen in the next

small time interval [t, t+τ) is aj(X(t))τ +o(τ) as τ → 0. Occurrence of a reaction Rj

leads to a change in state of νj ∈ Z
N . The νj are determined by the type of reac-

tion Rj and are independent of the state as well as time. This model leads to the
probability density function a0(x)e−a0(x)τ for the time t + τ for the next reaction,

where x is the state at time t, and a0(x) =
∑M

j=1 aj(x). Also, the probability that

the next reaction is Rj is given by
aj(x)
a0(x) . Knowing these two probability densities for

the next reaction time and type, we can simulate the system one reaction event at a
time. Since the density functions have simple forms, the simulation process is easy.
This method is known as the SSA [6]. Given a system of chemical reactions, the form
of the propensities aj(x) may be derived from fundamental principles under certain
assumptions, and the aj turn out to be polynomials [5]. Note that the dynamics of a
system is completely characterized by N , M , and aj , νj for j = 1, . . . ,M .

Remark 2.1. For any real chemical system starting in a nonnegative state,
a reaction event should not lead to a negative state, since nonnegative states are not
physically meaningful. The following condition on aj and νj is necessary and sufficient
to ensure this. The condition is that for any x ∈ Z

N
+ , if x+ νj /∈ Z

N
+ , then aj(x) = 0.

Note that these conditions are automatically captured by the polynomial propensities
that come from Gillespie’s model.

Assumption 2.2. Throughout this paper we shall assume that given any initial
state X(0) = x ∈ Z

N
+ , there is a bounded subset Ωx ⊂ Z

N
+ such that the system

remains in Ωx for all time with probability 1. In other words,

P{X(t) ∈ Ωx ∀t ≥ 0} = 1.(2.1)

2.1. The explicit and implicit tau methods. The explicit tau-leaping meth-
od has been described in [9, 10] together with certain stepsize selection criteria.
Throughout this paper we shall refer to the state update method to be described
below as the explicit tau method, and this terminology shall apply regardless of what
stepsize selection criterion is used.

Suppose X(et)(t) = x is the current state (the superfix “et” stands for explicit
tau). Then for a time step of τ > 0, the state at t + τ is given by

X(et)(t + τ) = x +

M∑
j=1

νjK
(et)
j (x, τ).(2.2)

Here K
(et)
j (x, τ) = Pj(aj(x), τ) for j = 1, . . . ,M are independent Poisson random

variables with mean and variance aj(x)τ .
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The implicit tau (unrounded version) method proposed in [15] proceeds as follows.
Given that X(it)(t) = x is the current state, the state at time t + τ (τ > 0) is taken
to be

X(it)(t + τ) = x +

M∑
j=1

νjaj(X
(it)(t + τ)) τ +

M∑
j=1

νj (Pj(aj(x), τ) − aj(x) τ) .(2.3)

Here the superfix “it” stands for implicit tau.
The unrounded implicit tau has the disadvantage that it leads to state values that

are not integers. In order to circumvent this problem, the rounded implicit tau was
proposed in [15]. It may be described as follows.

Suppose that at time t we have the state X(itr)(t) = x. (The superfix “itr” stands
for rounded implicit tau.) First, compute the intermediate state value X ′ according
to (2.3). Thus

X ′ = x +

M∑
j=1

νjaj(X
′) τ +

M∑
j=1

νj (Pj(aj(x), τ) − aj(x) τ) .(2.4)

Then approximate the actual number of firings Kj(x, τ) of reaction channel Rj in the

time interval (t, t + τ ] by the integer-valued random variable K
(itr)
j (x, τ) defined by

K
(itr)
j (x, τ) = [aj(X

′) τ + Pj(aj(x), τ) − aj(x) τ ].(2.5)

Here the Pj(aj(x), τ) for j = 1, . . . ,M are the same numbers used in (2.4), and
[z] denotes the nearest nonnegative integer to z.

Finally, take the state at time t + τ to be

X(itr)(t + τ) = x +

M∑
j=1

νjK
(itr)
j (x, τ).(2.6)

If X(itr)(t) = x is an integer vector, then so is X(itr)(t + τ).
Throughout the rest of this paper, implicit tau shall mean the unrounded implicit

tau, unless specified otherwise.

2.2. Extension of propensity function to real states. For the purpose of
analysis as well as practical computation of the implicit tau, it is important to extend
the definition of propensity function to positive real states. The implicit tau method
can produce states that are in R

N
+ but are not necessarily integers. Even though

physically this is not meaningful, it nevertheless results in a mathematically well-
defined process because the propensity functions aj(x) are polynomials, and hence
have a natural extension to real numbers. However, if one or more of the propensity
functions become negative, then the process becomes ill defined. This is easily fixed
by setting to zero any propensity function aj(x) that evaluates to being negative.

Consider the example of a single reaction, single species case

S1 + S1 → 0.

The propensity function a(x) = 1
2cx(x − 1) will be negative if 0 < x < 1. Even

when the state is positive, the propensity can be negative. This does not happen with
integer states. When x is an integer, a(x) = 0 for both x = 0 and x = 1, and a(x) > 0
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for x ≥ 2. Thus it makes sense to set a(x) = 0 for 0 < x < 1. When 1 < x < 2,
a(x) > 0, however, the occurrence of a reaction will lead to an unrealistic negative
state x − 2. This may be avoided by defining a(x) = 0 for 1 < x < 2 as well. But
then this leads to a discontinuous propensity function a(x). From the point of view of
our analysis, it is far more convenient to have continuity of a(x) to ensure consistency
results. We shall adopt the following extension of the propensity function.

Definition 2.3 (extension of propensity function to positive real states). Given
a polynomial propensity function aj : Z

N
+ → R, its extension aj : R

N
+ → R to any

nonnegative real vector x is defined as follows. If the value of aj(x) according to
the “natural extension” is nonnegative, then aj(x) is given by the natural extension.
Otherwise aj(x) = 0.

The following lemma is easy to prove.
Lemma 2.4. If the original propensity functions aj : Z

N
+ → R are polynomi-

als, then their extensions aj : R
N
+ → R as defined by Definition 2.3 are Lipschitz

continuous on any bounded subdomain of R
N
+ .

Remark 2.5. None of the consistency and convergence results proven in this
paper require aj to be polynomials. But the results for implicit tau assume them to be
Lipschitz continuous on any bounded subdomain of R

N
+ .

2.3. Bounding of the Poisson random variables. All the tau-leaping meth-
ods are based on generating Poisson random numbers with given mean and variance.
The Poisson distribution with nonzero mean assigns nonzero probability to arbitrarily
large numbers. This can cause some practical as well as theoretical problems.

One problem is that it may produce negative state values, which are nonphysical.
Then the propensities may become negative for negative states. This can lead to a pro-
cess which is both mathematically and computationally ill defined, since probabilities,
and hence propensities, cannot be negative. For instance, consider the isomerization
reaction

S1 → 0.

The propensity function is a(x) = cx, where c > 0 is some constant. Starting at an
initial state x0, there is a nonzero probability that the first step of explicit tau may
produce a negative state. If this happens, then the explicit tau method becomes ill
defined. In order to avoid this situation, whenever a negative state is reached we shall
replace it with a nonnegative state as follows.

Bounding the Kj to avoid negative states. Suppose the state before the tau-leap is
x (nonnegative), the state reached by the leap xn is a negative state, and the number
of reactions that occurred according to the leap is Kj for j = 1, . . . ,M . Then

while xm has negative components

for l = 1 to M

Kl ← Kl − 1;

xm =

M∑
j=1

νj Kj ;

if xm is nonnegative, then break;

end for

end while
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The resulting state xm is taken to be the new updated state. Also note that this
procedure will terminate (will not result in an infinite loop).

The second problem is that even if the true system satisfies Assumption 2.2, the
tau methods using Poisson random numbers will generate arbitrarily large numbers
with nonzero probability. This unboundedness leads to difficulties with the implicit
tau method because the range of τ values for which the implicit method is well defined
could possibly get arbitrarily small. In order to avoid this problem, throughout the
rest of the paper we shall assume that the following bounding/truncating procedure
is used.

Bounding the Kj to avoid an arbitrarily large number of reactions. We choose a
predefined value for Kmax such that whenever Kj = P(aj , τ) exceeds Kmax we set
Kj = Kmax. In fact, any practical numerical scheme for producing Poisson random
numbers always produces a bounded distribution to avoid overflow. So something
akin to this bounding is automatically done by any Poisson number generator that
one would use in practice.

Remark 2.6. We observe that starting at any nonnegative integer state x the
bounding procedures described in this section do not alter the probability of events
that involve zero or one reaction firing (assuming Kmax > 1). This is because by
Remark 2.1, if the current state x ∈ Z

N
+ is such that the occurrence of one reaction Rj

leads to a negative state, the propensity function would be zero, and hence this will
not happen.

3. Local error analysis. In general, the evolution equations for probability
densities of continuous time Markov chains on an infinite lattice form an infinite
system of ODEs which is known as the chemical master equation in the case of the
stochastic chemical kinetic model [6]. In this section we derive recursive integral forms
for the solution of these equations and local Taylor expansions of these integrals. This
gives us a basis for analyzing the local errors incurred by the tau-leaping methods.

Let the multi-index k = (k1, . . . , kl), where kj ∈ {1, . . . ,M}, denote a sequence
of reaction events Rkj happening in that order, and let |k| = l be the number of
reaction events. Let p(k;x, τ) denote the probability that the sequence of reactions
that occurred in the interval (t, t + τ ] is precisely k, conditioned on being at state x
at time t. Then it follows that

p(();x, τ) = e−a0(x)τ ,

where () stands for no reactions happening (the empty sequence) and a0(x) =∑M
j=1 aj(x). In addition p((k1, . . . , kl);x, τ) may be written recursively in terms of

p((k1, . . . , kl−1);x, τ) by

p((k1, . . . , kl);x, τ) =

∫ τ

0

p((k1, . . . , kl−1), x; s)

× akl
(x + νj1 + · · · + νjl−1

)e−a0(x+νj1+···+νjl
)(τ−s)ds.

(3.1)

It follows by induction that, for each x and k, p(k;x, τ) is an analytic function of τ
for all τ ∈ R and that p(k;x, τ) = O(τ |k|) as τ → 0.

We will compute p(k;x, τ) for terms up to |k| = 2 (i.e., terms of up to O(τ2))
for general M and N . A numerical scheme must have a Taylor expansion in τ for
the transition probabilities that matches that of the true process described above for
terms up to O(τ) for first-order accuracy.
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Using (3.1) once, we obtain

p((j);x, τ) =

∫ τ

0

e−a0(x)saj(x)e−a0(x+νj)(τ−s)ds, j = 1, . . . ,M.

Applying (3.1) once again, we obtain

p((j1, j2);x, τ) =

∫ τ

0

p((j1);x, s)aj2(x + νj1)e
−a0(x+νj1+νj2 )τea0(x+νj1+νj2 )sds,

where j, j1, j2 = 1, . . . ,M .
We may Taylor expand the equations for p((j);x, τ) and p((j1, j2);x, τ) to obtain

the following result:

p((j);x, τ) = aj(x)τ − 1

2
τ2

M∑
j1=1

aj(x){aj1(x + νj) + aj1(x)} + O(τ3),

p((j1, j2);x, τ) =
1

2
τ2aj1(x)aj2(x + νj1) + O(τ3),

(3.2)

where j, j1, j2 = 1, . . . ,M .

3.1. Local Taylor series for the evolution of the moments. We con-
sider the moments of the increment X(t + τ) −X(t). The conditional first moment
E(X(t + τ) −X(t) | X(t) = x) is given by

E(X(t + τ) −X(t) | X(t) = x) =

∞∑
l=1

∑
k,|k|=l

p(k;x, τ)

(
l∑

α=1

νkα

)
.(3.3)

More generally, the conditional rth moment E((X(t+τ)−X(t))r | X(t) = x) is given
by

E((X(t + τ) −X(t))r | X(t) = x) =

∞∑
l=1

∑
k,|k|=l

p(k;x, τ)

(
l∑

α=1

νkα

)r

.(3.4)

We have adopted the simple notation that for a vector y ∈ R
N , yr denotes the r-fold

tensor product, which is a tensor of rank r in N dimensions. In particular the second
moment may be regarded as an N ×N matrix. Any of the above moments exists (is
finite) only if the corresponding infinite series (3.4) converges. Since, for any fixed x
and k, p(k;x, τ) is analytic for all τ , and if the infinite series converges uniformly for
τ ∈ [0, δ(x)] for any fixed x, then the components of E((X(t+ τ)−X(t))r | X(t) = x)
will be analytic functions of τ for τ ∈ [0, δ(x)] for some δ(x) > 0. Assuming that the
moments exist, we will compute them up to terms including O(τ2). For this we need
only to sum terms with l = 1 and l = 2 in (3.3) and (3.4). Thus we get

E(X(t + τ) −X(t) | X(t) = x) =
M∑
j=1

νjp((j);x, τ)

+

M∑
j1=1

M∑
j2=1

(νj1 + νj2)p((j1, j2);x, τ) + O(τ3)
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and

E((X(t + τ) −X(t))r | X(t) = x) =

M∑
j=1

νrj p((j);x, τ)

+

M∑
j1=1

M∑
j2=1

(νj1 + νj2)
rp((j1, j2);x, τ) + O(τ3).

Substituting (3.2) and simplifying we obtain

E(X(t + τ) −X(t) | X(t) = x) = τ
M∑
j=1

νjaj(x)

+
1

2
τ2

M∑
j1=1

M∑
j2=1

νj1aj2(x){aj1(x + νj2) − aj1(x)} + O(τ3)

(3.5)

for the mean and

E((X(t + τ) −X(t))r | X(t) = x) = τ

M∑
j=1

νrj aj(x)

− 1

2
τ2

M∑
j1=1

M∑
j2=1

νrj1aj1(x)aj2(x)

− 1

2
τ2

M∑
j1=1

M∑
j2=1

νrj1aj1(x)aj2(x + νj1)

+
1

2
τ2

M∑
j1=1

M∑
j2=1

(νj1 + νj2)
raj1(x)aj2(x + νj1)

+ O(τ3)

(3.6)

for the general rth moment.
The conditional covariance up to O(τ2) may be computed also using (3.2). Using

the fact that

Cov(X(t + τ) | X(t) = x) = Cov(X(t + τ) −X(t) | X(t) = x)

= E((X(t + τ) −X(t))2 | X(t) = x) − (E(X(t + τ) −X(t) | X(t) = x))2,

we may obtain

Cov(X(t + τ) | X(t) = x) = τ

M∑
j=1

ν2
j aj(x)

(3.7)

+
1

2
τ2

M∑
j1=1

M∑
j2=1

ν2
j1aj2(x) {aj1(x + νj2) − aj1(x)}
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+
1

2
τ2

M∑
j1=1

M∑
j2=1

νj1νj2aj1(x) {aj2(x + νj1) − aj2(x)}

+
1

2
τ2

M∑
j1=1

M∑
j2=1

νj1νj2aj2(x) {aj1(x + νj2) − aj1(x)} + O(τ3),

where we have not shown the details of algebra.

3.2. The explicit tau method. For the explicit tau method, the rth moment
of the increment conditioned on X(et)(t) = x is given by

E
(
(X(et)(t + τ) −X(et)(t))r

∣∣∣ X(et)(t) = x
)

= E

⎛
⎝ M∑

j=1

νjPj(aj(x), τ)

⎞
⎠

r

.(3.8)

For convenience we summarize a well-known fact about the moments of a Poisson
random variable with mean λ.

Lemma 3.1. Suppose P is a Poisson random variable with mean and variance λ.
Then for any integer r ≥ 2

E(P r) = λ + O(λ2), λ → 0.(3.9)

The term inside the expectation operator on the right-hand side of (3.8) may be
expanded as sums of Mr terms, each of which is an r-fold tensor product. It must be
noted that the tensor products do not commute in general. For instance ν1ν2, which
may be interpreted as the matrix ν1ν

T
2 , is not equal to ν2ν1, which may be interpreted

as the matrix ν2ν
T
1 . Since the Pj are independent Poissons of these Mr terms, those

which involve two or more different values of j (two or more different reaction channels)
will have expectations that are O(τ2) or higher. First, let us consider the terms that
involve only one reaction channel. There are M of these, and they are of the form

νrjPr(aj(x), τ), j = 1, . . . ,M.

Taking expectations and retaining only terms up to O(τ), we obtain

E(νrjPr(aj(x), τ)) = τνrj aj(x) + O(τ2),

where we have used Lemma 3.1. Thus we conclude that

E
(
(X(et)(t + τ) −X(et)(t))r

∣∣∣ X(et)(t) = x
)

= τ

M∑
j=1

νrj aj(x) + O(τ2).(3.10)

Remark 3.2. Equation (3.10) still holds if the Poisson numbers are bounded
according to the procedures in section 2.3, because by Remark 2.6 (provided x is an
integer state) this bounding affects only events with probability O(τ2).

Comparing (3.10) with (3.6) and also considering Remark 3.2 provides the proof
of the following theorem.

Theorem 3.3 (weak consistency of the explicit tau method). The explicit tau
method is weakly consistent to first order in the following sense. Consider a given
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initial state x ∈ Z
N
+ for the explicit tau. Then for each r ≥ 1 there exist Cr > 0 and

δr > 0 (depending on x) such that

(3.11)

‖E((X(et)(t+τ)−X(et)(t))r | X(et)(t) = x)−E((X(t+τ)−X(t))r | X(t) = x)‖ < Crτ
2

∀τ ∈ [0, δr].

Here the norm is any suitable norm such as the induced 2-norm for the tensor. This
result holds regardless of whether or not the Poisson numbers are bounded.

Since the components of the moment tensors are expectations of scalar-valued
polynomials in X(t + τ) or X(et)(t + τ) conditioned on X(t) = X(et)(t) = x, Theo-
rem 3.3 leads to the following corollary.

Corollary 3.4. For any multivariate polynomial function g : R
N → R and

initial state x ∈ Z
N
+ there exist C > 0 and δ > 0 such that

∣∣∣E (
g(X(et)(t + τ)) − g(X(t + τ))

∣∣ X(et)(t) = X(t) = x
)∣∣∣ < Cτ2 ∀τ ∈ [0, δ].

(3.12)

Now we will find expressions for the coefficients of the O(τ2) error terms for the
mean and the covariance matrix. For the mean we get

E
(
X(et)(t + τ) −X(et)(t)

∣∣∣ X(et)(t) = x
)

= E

⎛
⎝ M∑

j=1

νjPj(aj(x), τ)

⎞
⎠ ,

which gives

E
(
X(et)(t + τ) −X(et)(t)

∣∣∣ X(et)(t) = x
)

= τ

M∑
j=1

νjaj(x).(3.13)

Equations (3.13) and (3.5) together provide the local error in the mean for the explicit
tau method.

Local error formula for the mean of explicit tau.

(3.14) E
(
X(et)(t + τ) −X(t + τ)

∣∣∣ X(et) = X(t) = x
)

= −1

2
τ2

M∑
j1=1

M∑
j2=1

νj1aj2(x) {aj1(x + νj2) − aj1(x)} + O(τ3).

Since the Poisson numbers Pj(aj(x), τ) are independent, we get

Cov(X(et)(t + τ) | X(et)(t) = x) = τ

M∑
j=1

ν2
j aj(x),(3.15)

where the tensors ν2
j can be represented by the matrices νjν

T
j . Equations (3.15) and

(3.7) together provide us with the local error in the covariance for explicit tau.
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Local error formula for the covariance of explicit tau.

Cov(X(et)(t + τ) | X(et)(t) = x) − Cov(X(t + τ) | X(t) = x)

= −1

2
τ2

M∑
j1=1

M∑
j2=1

ν2
j1aj2(x) {aj1(x + νj2) − aj1(x)}

− 1

2
τ2

M∑
j1=1

M∑
j2=1

νj1νj2aj1(x) {aj2(x + νj1) − aj2(x)}

− 1

2
τ2

M∑
j1=1

M∑
j2=1

νj1νj2aj2(x) {aj1(x + νj2) − aj1(x)} + O(τ3).

(3.16)

Remark 3.5. Note that the O(τ2) local error terms derived for the mean and co-
variance hold regardless of whether or not the Poisson numbers are truncated at Kmax,
since this affects only events with probability O(τKmax). However, these formulae do
not hold if x is one reaction away from a state with at least one zero component. This
is because the probabilities of two reaction events (which is O(τ2)) will be altered by
the bounding procedure of section 2.3, which avoids negative states.

3.3. The implicit tau method. Given that X(it)(t) = x, for a step size τ > 0
the implicit tau method involves finding X(it)(t + τ), which is the unique solution of
(2.3). Writing X(it)(t + τ) = X ′ and comparing (2.3) with (2.2) shows that X ′ may
be written as the unique solution of

X ′ = X ′
e + τ

M∑
j=1

νj {aj(X ′) − aj(x)} ,(3.17)

where

X ′
e = x +

M∑
j=1

νjK
(et)
j (x, τ).

Thus given an initial state x ∈ R
N
+ we can think of the implicit tau method as involving

first the computation of an intermediate state X ′
e according to explicit tau and then

solving for X ′ in the implicit equation (3.17). Thus X ′ is a deterministic function
of X ′

e.
We rewrite (3.17) for convenience as

F (X ′, X ′
e, x, τ) = 0,(3.18)

where the C∞-smooth function F (X ′, X ′
e, x, τ) : R

N × R
N × R

N × R → R
N is given

by

F (X ′, X ′
e, x, τ) = X ′ −X ′

e − τ

M∑
j=1

νj {aj(X ′) − aj(x)} .(3.19)

In order to ensure that X ′ is well defined for τ sufficiently small, we use the implicit
function theorem. We note that

F (X ′
e, X

′
e, x, 0) = 0.
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The Jacobian ∂F
∂X′ is given by

∂F

∂X ′ = I − τ

M∑
j=1

νj
∂aj
∂x

(X ′),(3.20)

where I is the N × N identity matrix. Thus at τ = 0 the Jacobian is the identity
matrix, and hence is full rank. Therefore, by the implicit function theorem there
exists δ > 0, a region De ⊂ R

N , and a C∞-smooth function G : De × [0, δ] → R
N

such that X ′ is given by

X ′ = G(X ′
e, τ) ∀(X ′

e, τ) ∈ De × [0, δ].(3.21)

Note that G(X ′
e, 0) = X ′

e. (The function G also depends on x, but since we have fixed
the x we do not show the dependence on it explicitly.) A careful look at the proof of
the implicit function theorem (see [14] for instance) tells us that since the Jacobian is
independent of X ′

e, we may choose De to be arbitrarily large but bounded. However,
the size of δ may be smaller the larger De gets. Since by the bounding procedure of
Poisson random numbers X ′

e takes bounded values, we can choose De to be a bounded
region that contains all possible values of X ′

e. For this choice, we are still assured of
the existence of δ > 0 such that (3.21) holds.

Remark 3.6. While the theoretical consideration mentioned above indicates that
the larger Kmax is, the smaller δ may be, in practice we have never encountered
problems in finding a solution to the implicit equation using the Newton iteration
when using practical stepsizes. It must be noted that a similar theoretical concern
exists in the application of the implicit Euler method to SDEs driven by Gaussian
white noise.

We will compute the values of ∂G
∂τ and ∂2G

∂τ2 by differentiating (3.18). Differenti-
ating (3.18) with respect to τ , we obtain

∂F

∂X ′
∂G

∂τ
+

∂F

∂τ
= 0,

which upon using the expression (3.19) for F yields⎛
⎝I − τ

M∑
j=1

νj
∂aj
∂x

(X ′)

⎞
⎠ ∂G

∂τ
−

M∑
j=1

νj{aj(X ′) − aj(x)} = 0.(3.22)

Substituting τ = 0 in (3.22) and also using (3.21) and the fact that G(X ′
e, 0) = X ′

e

yields

∂G

∂τ
(τ = 0) = τ

M∑
j=1

νj{aj(X ′
e) − aj(x)}.(3.23)

Differentiating (3.22) with respect to τ , we obtain

∂2F

∂X ′2

(
∂G

∂τ

)2

+
∂F

∂X ′
∂2G

∂τ2
+

∂2F

∂τ∂X ′
∂G

∂τ
+

∂2F

∂τ2
= 0.

Noting that ∂2F
∂τ2 = 0 and that when τ = 0, ∂2F

∂X′2 = 0 and ∂F
∂X′ = I, we obtain

∂2G

∂τ2
(τ = 0) =

M∑
j1=1

M∑
j2=1

νj1
∂aj1
∂x

(X ′
e)νj2{aj2(X ′

e) − aj2(x)},(3.24)
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where we have used the fact that X ′ = X ′
e at τ = 0 and (3.23). Since G is jointly

C∞-smooth in X ′
e and τ , we obtain using Taylor’s formula and (3.23) and (3.24)

X ′ = X ′
e + τ

M∑
j=1

νj{aj(X ′
e) − aj(x)}

+
τ2

2

M∑
j1=1

M∑
j2=1

νj1
∂aj1
∂x

(X ′
e)νj2{aj2(X ′

e) − aj2(x)} + O(τ3).

(3.25)

To show the consistency of the implicit tau method we need certain lemmas which
are stated and proven in Appendix A.

The following lemma asserts that for sufficiently small stepsizes the rounded ver-
sion of the implicit tau coincides with explicit tau.

Lemma 3.7. Assuming the bounding procedures of section 2.3, for any given
initial state x ∈ Z

N
+ there exists δ > 0 such that X(itr)(t + τ) = X(et)(t + τ) with

probability 1, conditioned on X(itr)(t) = X(et)(t) = x, for all τ ∈ [0, δ].

Proof. It follows from (2.5) and Lemma A.4 that for τ > 0 small enough, K
(itr)
j =

K
(et)
j (with probability 1).

Theorem 3.8 (consistency of rounded implicit tau). Assuming the bounding
procedures of section 2.3, for any multivariate polynomial function g : R

N → R and
initial state x ∈ Z

N
+ there exist C > 0 and δ > 0 such that

∣∣∣E (
g(X(itr)(t + τ)) − g(X(t + τ))

∣∣ X(itr)(t) = X(t) = x
)∣∣∣ < Cτ2 ∀τ ∈ [0, δ].

(3.26)

Proof. The proof follows from Lemma 3.7 and Corollary 3.4.
Theorem 3.9 (consistency of unrounded implicit tau). Assuming the bounding

procedures of section 2.3, for any multivariate polynomial function g : R
N → R and

initial state x ∈ Z
N
+ there exist C > 0 and δ > 0 such that

∣∣∣E (
g(X(it)(t + τ)) − g(X(t + τ))

∣∣ X(it)(t) = X(t) = x
)∣∣∣ < Cτ2 ∀τ ∈ [0, δ].

(3.27)

Proof. The proof follows from Lemma A.3 and Corollary 3.4.
Moreover, we can derive the formula for the local error of the implicit tau method.
Local error formulae for implicit tau. We note that the term with double summa-

tion in (3.25) is O(τ3). This follows from Lemma A.1. Hence the following equation
may be used to relate local error in implicit tau to that of explicit tau:

X(it)(t + τ) = X(et)(t + τ) + τ

M∑
j=1

νj{aj(X(et)(t + τ)) − aj(x)} + O(τ3).(3.28)

Note that this equation assumes X(it)(t) = X(et)(t) = x. In order to compute the rth
moment of X(it)(t + τ), one has to raise this equation to the power r and take ex-
pectations of both sides. If the aj are polynomials, the expectation on the right-hand
side will involve taking expectations of various powers of Poisson random variables,
the formulae for which are well known.
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4. Stability and convergence for systems with linear propensity func-
tions. In this section we will investigate the stability properties of the explicit and
implicit tau methods for systems with linear propensity functions and prove that they
converge with first-order accuracy. We focus on chemical reaction systems where N
and M are arbitrary, but the propensity functions aj(x) take the form

aj(x) = cTj x, x ∈ R
N ; j = 1, . . . ,M,(4.1)

where cj ∈ R
N are constant vectors. An important form of stability relevant for

convergence is that of 0-stability [2]. The following definition is a generalization of
this notion to stochastic systems that is adequate for our purpose of establishing the
convergence of all moments.

Definition 4.1 (0-stability). Denote by X̂ the discrete time numerical approx-
imation of a stochastic process. We shall say that the numerical method is 0-stable
up to r moments if, for a fixed time interval [0, T ], there exist δ > 0 and Klj > 0 for
l = 1, . . . , r and j = 1, . . . , l, such that

‖E((X̂1(t))
l) − E((X̂2(t))

l)‖ ≤
l∑

j=1

Klj ‖E((X̂1(0))j) − E((X̂2(0))j)‖

for all l = 1, . . . , r, and t =
∑n

i=1 τi ≤ T , where n is arbitrary, 0 < τi ≤ δ for

i = 1, . . . , n, and X̂1, X̂2 correspond, respectively, to the numerical solutions obtained
from any pair of arbitrary initial conditions X̂1(0), X̂2(0), which are random variables
assumed to have finite moments.

For systems with linear propensities of the form (4.1), the explicit tau method is
given by

X(et)(t + τ) = X(et)(t) +

M∑
j=1

νjPj(c
T
j X

(et)(t), τ).(4.2)

Taking expectations conditioned on X(et)(t), we obtain

E(X(et)(t + τ) | X(et)(t)) = X(et)(t) + τ

M∑
j=1

νjc
T
j X

(et)(t),

which may be written as

E(X(et)(t + τ) | X(et)(t)) = X(et)(t) + τAX(et)(t),(4.3)

where the N ×N matrix A is given by

A =
M∑
j=1

νjc
T
j .(4.4)

Remark 4.2. We remark for the unfamiliar reader that if X and Y are random
variables, then E(Y | X) is the conditional expectation of Y conditioned on X and
is a random variable which is a deterministic function of X that takes the value
E(Y | X = x) when X takes the value X = x. Then it follows that E(E(Y | X)) =
E(Y ). We have used these concepts in the above derivations. For a basic treatment
of this notion see [16] for instance.
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Taking the expectation of (4.3), we obtain

E(X(et)(t + τ)) = (I + τA)E(X(et)(t)).(4.5)

Similarly we obtain the following for implicit tau:

X(it)(t + τ) = X(it)(t) + τ

M∑
j=1

νjc
T
j X

(it)(t + τ)

+

M∑
j=1

νjPj(c
T
j X

(it)(t), τ) − τ

M∑
j=1

νjc
T
j X

(it)(t),

(4.6)

which leads to

E(X(it)(t + τ)) = (I − τA)−1E(X(it)(t)),(4.7)

where A is the same matrix given by (4.4).

4.1. Asymptotic stability of the mean. For a constant stepsize τ ,

E(X(et)(t + nτ)) = (I + τA)nE(X(et)(t))(4.8)

and

E(X(it)(t + nτ)) = (I − τA)−nE(X(it)(t)).(4.9)

Thus the mean of the explicit tau simulation evolves in a geometric progression just
the same as the explicit Euler simulation of the system of equations ẋ = Ax, while
the mean of implicit tau evolves just the same as the implicit Euler simulation. Thus
the mean value of the explicit tau simulation is asymptotically stable if

|1 + λi(A)τ | < 1, i = 1, . . . , N,(4.10)

while the mean value of the implicit tau simulation is asymptotically stable if

1/|1 − λi(A)τ | < 1, i = 1, . . . , N,(4.11)

where λi(A) is the ith largest eigenvalue of A.
Remark 4.3. Note that implicit tau is unconditionally stable in the mean for

stable systems (i.e., systems whose A matrix has all eigenvalues in the left complex
half plane). This clearly confirms its advantage over explicit tau for stiff systems,
as observed in [15]. However, a detailed study of the asymptotic behavior of the
covariance and higher-order moments is necessary in order to assess the suitability of
implicit tau for stiff systems [3].

4.2. 0-stability of the mean.
Lemma 4.4. Both the explicit and the implicit tau methods are 0-stable in the

mean.
Proof. These follow from standard procedures known in numerical analysis of

ODEs. They essentially follow from bounding ‖I + τA‖ < eτ‖A‖ for explicit tau and
the bound ‖I−τA‖ < eKτ which holds for sufficiently small τ . Here K is any number
greater than ‖A‖.
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4.3. Weak convergence. We will derive equations for the evolution of the rth
moment E((X(et)(t + nτ))r). From (4.2) it follows that

E((X(et)(t + τ))r | X(et)(t)) = (X(et)(t))r

+

r∑
k=1

r!

k!(r − k)!
(X(et)(t))(r−k)

M∑
j=1

νkj {cTj X(et)(t)τ + O(τ2)},

where we have used Lemma 3.1. We rewrite this equation as

E((X(et)(t + τ))r | X(et)(t)) = (X(et)(t))r

+ τ

r∑
k=1

M∑
j=1

r!

k!(r − k)!
(X(et)(t))(r−k) νkj (cTX(et)(t))

+ O(τ2).

(4.12)

The following lemma is useful.
Lemma 4.5. If z, ν, c ∈ R

N , then the components of the rank r tensor
z(r−k)νk(cT z) are linear combinations of the components of the rank (r − k + 1)
tensor z(r−k+1).

Proof. Each component of the tensor z(r−k)νk(cT z) (which has Nr components)
is a linear combination of multivariate monomials in z with degree r − k + 1. The
tensor z(r−k+1) consists of all the multivariate monomials in z of degree r−k+1.

Combining Lemma 4.5 with (4.12) enables us to write

E((X(et)(t + τ))r | X(et)(t)) = X(et)(t)r + τBrr(X
(et)(t))r

+ τ

r−1∑
l=1

Blr(X
(et)(t))l + O(τ2),

where the linear operators Blr map symmetric tensors of rank l into symmetric tensors
of rank r. Taking expectations of both sides, we obtain

E((X(et)(t + τ))r) = (I + τBrr)E((X(et)(t))r) + τ

r−1∑
l=1

BlrE((X(et)(t))l) + O(τ2).

(4.13)

Similarly we shall derive equations for the evolution of the rth moment E((X(it)(t +
nτ))r). From (4.6) it follows that

X(it)(t + τ) = X(it)(t) +

M∑
j=1

(I − τA)−1νjP(cTj X
(it)(t), τ).

Hence it follows that

E((X(it)(t + τ))r | X(it)(t)) = (X(it)(t))r

+ τ

r∑
k=1

r!

k!(r − k)!
(X(it)(t))(r−k)

M∑
j=1

(
(I − τA)−1νj

)k {cTj X(it)(t)τ + O(τ2)},
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where we have used Lemma 3.1. Taylor expanding (I−τA)−1 and rearranging terms,
we rewrite this equation as

E((X(it)(t + τ))r | X(it)(t)) = (X(it)(t))r

+ τ

r∑
k=1

M∑
j=1

r!

k!(r − k)!
(X(it)(t))(r−k) νkj (cTX(it)(t)) + O(τ2).

(4.14)

This equation is similar to (4.12) up to O(τ) terms. Hence, as before, combining
Lemma 4.5 with (4.14) enables us to write

E((X(it)(t + τ))r) = E((X(it)(t))r) + τB(it)
rr E((X(it)(t))r)

+ τ

r−1∑
l=1

BlrE((X(it)(t))l) + O(τ2),
(4.15)

where the linear operators Blr are defined as in the case of explicit tau.
Lemma 4.6. Both the explicit tau and the implicit tau methods are 0-stable up

to the rth moment for all integers r > 0.
Proof. This lemma is true for r = 1 by Lemma 4.4. The proof follows by induction.

Use (4.13) or (4.15) and apply standard bounding techniques (see Lemma 7.2.2.2
of [17] for instance).

Remark 4.7. The bounding procedures of section 2.3 do not affect the 0-stability
of moments, since bounding affects only events of O(τ). For explicit tau and rounded
implicit tau, because of integer states it will affect only O(τ2) terms according to Re-
mark 2.6. For the (unrounded) implicit tau, since noninteger states occur the O(τ)
term may be modified. Thus, in any event, bounding amounts to modifying the ma-
trix A as well as the tensors Blr in (4.13) and (4.15), but their norms will still be
finite since they are finite dimensional.

Theorem 4.8 (weak convergence of explicit tau). Consider a system with linear
propensity functions. For any given initial state X(t0) = x ∈ Z

N
+ , let the explicit tau

method be applied with the initial state X(et)(t0) = x and with time steps τ1, τ2, . . . , τn,
where

∑n
j=1 τj = T and τ = max{τj}. Then for each positive integer r there exist

constants C > 0 and δ > 0 (which depend on x and r) independent of n and τ such
that

‖E((X(et)(t0 + T ))r) − E((X(t0 + T ))r)‖ < Cτ ∀τ ∈ (0, δ).

Proof. The proof follows from a modification of standard techniques in numerical
analysis that show that consistency and 0-stability imply convergence. See Appen-
dix B.

Theorem 4.9 (weak convergence of implicit tau). Consider a system with linear
propensity functions. For any given initial state X(t0) = x ∈ Z

N
+ , let the implicit tau

method be applied with the initial state X(it)(t0) = x and with time steps τ1, τ2, . . . , τn,
where

∑n
j=1 τj = T and τ = max{τj}. Assume the bounding procedures of section 2.3

are used. Then for each positive integer r there exist constants C > 0 and δ > 0
(which depend on x and r) independent of n and τ such that

‖E(X(it)(t0 + T )r) − E(X(t0 + T )r)‖ < Cτ ∀τ ∈ (0, δ).

Proof. See Appendix B.
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5. Examples. In this section we consider several examples and illustrate via
theory and numerical experiments that the local error formulae and the linear conver-
gence behavior may be observed for a range of stepsize-τ values in which the expected
number of reactions occurring is considerably larger than 1.

5.1. Example 1: Isomerization reaction. Consider the isomerization reac-
tion

X −→ ∅,(5.1)

with propensity function a(x) = cx, X(0) = X0 in the time interval [0, T ].
Linear convergence of mean and variance. For this problem we can derive explicit

analytical solutions X(t) for the mean and variance of the exact process (according
to the SSA), as well as for the explicit and implicit tau method (unrounded) with
constant stepsize τ . It may be shown that X(T ) is a binomial random variable with
parameters p = e−cT and N = X0 [9]. Hence the expected value and variance are
given by

E(X(T )) = X0e
−cT(5.2)

and

Var(X(T )) = X0e
−cT

(
1 − e−cT

)
.(5.3)

Note that (5.2) is the same as the solution of the deterministic ODE model Ẋ = −cX
with X(0) = X0. This is due to the linearity of the propensity function. In general
the true mean of the model does not evolve the same way as the ODE model.

It follows from the results of section 4 that

E(X(et)(t + τ)) = (1 − cτ)E(X(et)(t))

and

Var(X(et)(t + τ)) = (1 − cτ)2 Var(X(et)(t)) + cτE(X(et)(t)).

From these recursive relationships we obtain E(X(et)(T )) and Var(X(et)(T )):

E(X(et)(T )) = (1 − cτ)nX0(5.4)

and

Var(X(et)(T )) = (1 − τc)n−1 (1 − (1 − τc)n)X0.(5.5)

We omit the details of the derivation. We have assumed X(et)(0) = X0 to be deter-
ministic. Thus Var(X0) = 0. Note that the evolution of the mean is the same as for
the explicit Euler applied to the ODE model Ẋ = −cX with X(0) = X0 (again due
to linearity of the propensity function).

It follows from the results of section 4 that

E(X(it)(t + τ)) =
E(X(et)(t))

(1 + τc)

and

Var(X(it)(t + τ)) =
Var(X(it)(t))

(1 + τc)2
+

cτE(X(it)(t))

(1 + τc)2
.
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Fig. 5.1. The errors for the mean vs. the stepsize for Example 1 estimated with 105 samples.
The solid line plot with “o” is for implicit tau, while the dashed line with “+” is for rounded implicit
tau, and the dotted-dashed line with “*” is for explicit tau.

From these recursive relationships we obtain E(X(it)(T )) and Var(X(it)(T )):

E(X(it)(T )) =
X0

(1 + τc)n
(5.6)

and

Var(X(it)(T )) =
(1 − 1

(1+τc)n )

(1 + τc)n
X0.(5.7)

We have assumed X(it)(0) = X0 to be deterministic. Thus Var(X0) = 0.
For this example we show both numerical estimates as well as theoretical compu-

tations. We chose the specific values, X(0) = 100 and c = 0.1, with a time interval
[0, 10].

First, we refer to Figure 5.1, where estimated errors in the mean of explicit tau,
implicit tau, and the rounded implicit tau are shown. The linear convergence of
explicit and (unrounded) implicit tau is clear from the graphs. In this plot, for the
largest value τ = 1, starting at X(0) = 100 we expect 100× 0.1× 1 = 10 reactions to
occur on average per step. The linear convergence behavior is apparent in a region of
τ values in which up to 10 expected number of reactions occur. The deviations from
the linear curve are due to the effects of the finite sample size of 105.

The error of the rounded implicit tau is worth commenting on. For larger tau
values it is similar to the unrounded implicit tau. This is intuitively expected, since
for large τ values the expected number of reactions according to (unrounded) implicit
tau is large, and rounding a large number produces a negligible change. However, for
small τ values, as pointed out in Lemma 3.7, the rounded implicit tau should produce
the same results as explicit tau. This behavior is observed in Figure 5.1.

Figure 5.2 shows the errors in the variance for the explicit and (unrounded) im-
plicit tau methods as computed from (5.3), (5.5), and (5.7). Note that the curves are
almost linear up to τ = 1, which again corresponds to 10 reactions firing on average
when starting at X0 = 100. Finally, Figure 5.3 shows the error in variance of implicit
tau for a larger range of τ values.
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Fig. 5.2. The errors for the variance vs. the stepsize for Example 1 computed using theory.
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Fig. 5.3. The errors for the variance of implicit tau vs. the stepsize for Example 1, computed
using theory.

Second-order local error formulae. In this example it is also possible to compare
the actual local error with its approximation by the O(τ2) term, since the former can
be derived analytically. This exercise is rather uninteresting in the case of the mean
since the behavior is similar to what one expects from explicit and implicit Euler local
error formulae for the ODE Ẋ = −cX. Instead we show a plot of the local error in
the variance and its approximation by the O(τ2) term. Figures 5.4 and 5.5 show these
plots for x = 100. From these plots it is apparent that the second-order formula is
valid up to τ = 1 for explicit tau and up to τ = 0.5 for implicit tau. In fact, the
graphs in Figures 5.4 and 5.5 scale proportional to x2 (in the y-axis) retaining the
same shape. Thus the region of validity of the local error formula holds up to τ = 0.5
for implicit tau, regardless of x. The expected number of reactions leapt over will be
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Fig. 5.4. Local errors for the variance of explicit tau vs. the stepsize for Example 1, computed
using theory. The solid line is the exact local error. The dashed line is the O(τ2) approximation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
- 0.025

- 0.02

- 0.015

- 0.01

- 0.005

0
Local error in implicit - tau vs stepsize

Exact
2nd order approx

Fig. 5.5. Local error for the variance of implicit tau vs. the stepsize for Example 1, computed
using theory. The solid line is the exact local error. The dashed line is the O(τ2) approximation.

given by x×0.1×0.5 = x/20. For example, if the current state is x = 1000 molecules,
we may leap over 50 reactions and still use the same local error formula. If x = 105,
we can leap over 5000 reactions on average. In this case the system will be behaving
nearly deterministically, and implicit tau will practically be implicit Euler.

5.2. Example 2: Decaying-dimerizing reaction set. This reaction system
was studied in [9] and [15]. It consists of N = 3 species undergoing M = 4 different
types of chemical reactions:

S1
c1−→ 0,(5.8)

S1 + S1
c2−→ S2,

S2
c3−→ S1 + S1,
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Fig. 5.6. Local error for the variance of explicit tau vs. the stepsize for Example 2, computed
using theory and numerical estimation. The solid line is the numerical estimation using 104 samples.
The dashed line is the O(τ2) theoretical approximation.

S2
c4−→ S3.

We chose values for the parameters

c1 = 1, c2 = 10, c3 = 1000, c4 = 0.1.

Hence the propensity functions are given by

a1 = x1, a2 = 5x1(x1 − 1), a3 = 1000x2, a4 = 0.1x2,

xi being the number of species Si. We chose the initial conditions X1(0) = 400,
X2(0) = 798, and X3(0) = 0 and the final time T = 0.2 (the same as in [15]). We

computed the second-order local error formula for the variance of X
(et)
1 (τ) after a

time step of τ , starting at X1(0) = 400. Using (3.16) we find that the local error is

Var(X
(et)
1 (τ)) − Var(X1(τ))) = 5.7340 × 1010τ2.

We estimated the local error in the variance by running 104 samples with both the
SSA and explicit tau. Figure 5.6 shows that the second-order local error formula
is reasonable up to a stepsize of τ = 3 × 10−5. At the initial state X1(0) = 400,
X2(0) = 798, and X3(0) = 0, the total propensity is 1.60× 106. Hence the number of
reactions leapt over for τ = 3 × 10−5 is about 48 on average.

To compute the local error in implicit tau we use the formula (3.28). Substituting
all the appropriate values into this equation gives

X
(it)
1 (τ) = X

(et)
1 (τ) + 9τX

(et)
1 (τ) + 400τ − 10τ(X

(et)
1 (τ))2 + 2000τX

(et)
2 (τ) + O(τ3).

Taking expectations directly on both sides of this formula, as well as squaring the for-

mula and then taking expectations, gives us the values of E(X
(it)
1 (τ)) and

E((X
(it)
1 (τ))2) as functions of τ . To keep the presentation short we do not show the
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Fig. 5.7. Local error for the variance of implicit tau vs. the stepsize for Example 2, computed
using theory and numerical estimation. The solid line is the numerical estimation using 104 samples.
The dashed line is the O(τ2) theoretical approximation.

details of the computations here. We obtained with the aid of MAPLE the following
formula for the O(τ2) error term for the variance of implicit tau (for state X1):

Var(X
(it)
1 (τ)) − Var(X1(τ)) = −3.3174 × 1010τ2.

As in the case of explicit tau we estimated the local errors numerically, using a sample
size of 104. Figure 5.7 shows that the second-order local error formula is a good
approximation up to a stepsize of τ = 3× 10−5. Hence the number of reactions leapt
over for τ = 3 × 10−5 is about 48 on average.

5.3. Example 3: Schlögl reaction. The Schlögl reaction [7] is a famous ex-
ample of a reaction with a bimodal stationary distribution. Note that a probability
density function is bimodal if it has two local maxima:

B1 + 2X ←→ 3X,

B2 ←→ X.
(5.9)

B1 and B2 denote buffered species whose molecular populations N1 and N2 are as-
sumed to remain essentially constant over the time interval of interest. Let

X(t) = number of X molecules in the system at time t.

The propensity functions are

a1(x) =
c1
2
N1x(x− 1),

a2(x) =
c2
6
x(x− 1)(x− 2),

a3(x) = c3N2,

a4(x) = c4x.

(5.10)

The state change vectors are ν1 = ν3 = 1, ν2 = ν4 = −1. Note that this reaction does
not satisfy Assumption 2.2.
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Fig. 5.8. Histogram distribution of the Schlögl reaction at T = 4 with 106 SSA samples.

For some parameter values, the probability distribution of this reaction is bimodal.
The special parameter set that we used in our simulation is

c1 = 3 × 10−7, c2 = 10−4, c3 = 10−3, c4 = 3.5; N1 = 1 × 105, N2 = 2 × 105.

(5.11)

We ran the simulation from t = 0 with initial state x(0) = 250 to time T = 4.
The distribution of the final state is plotted in Figure 5.8. Since the Schlögl

solution has a bimodal distribution, the mean and variance alone do not provide a
good measure of weak convergence or convergence in distribution. Hence we use an
estimate of the total variation distance between two distribution functions as our
measure of error. Suppose X and Y are scalar random variables with probability
density functions pX and pY . The total variation between X and Y is defined as

d(X,Y ) =

∫
|pX(s) − pY (s)|ds.(5.12)

In the simulation, the distance (5.12) can be approximated in an efficient way. Sup-
pose we have realizations x1, . . . , xN for X and y1, . . . , yM for Y , both bounded in
the interval I = [0, L). Divide the interval I into K subintervals and denote the

subintervals as zi = [ (i−1)L
K , iL

K ). Now define

fX(zi) = K
NL · #{xj : xj ∈ zi},

fY (zi) = K
ML · #{yj : yj ∈ zi}.

(5.13)

This yields an estimate DK(X,Y ) of d(X,Y ) given by

DK(X,Y ) =

K∑
i=1

L

K
|fx(zi) − fy(zi)|.(5.14)

Figure 5.9 shows the distribution error vs. the stepsize. Again we see linear conver-
gence behavior.
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6. Conclusions and future work. We have presented consistency results for
the explicit and implicit tau leaping methods for simulation of stochastic chemical
reaction systems. Our results show that both the explicit and the implicit tau meth-
ods are first-order consistent. Our local error analysis provides a systematic way to
compute the local error in all the moments up to any power of τ . We have explicitly
provided the O(τ2) error formulae for the mean and covariance of explicit tau as well
as implicit tau. These results hold for general systems under physically reasonable
assumptions. We have also verified for several examples that the range of validity of
this formula is large enough to be practically applicable in tau-leaping situations.

We showed first-order convergence of all the moments of both tau methods for
systems with linear propensity functions. The extension of this result to general
nonlinear systems is a subject of ongoing research.

In addition, we have given an asymptotic stability analysis for the mean of both
tau methods. This shows that implicit tau is unconditionally asymptotically stable,
provided the system is asymptotically stable, while explicit tau has restrictions on its
stepsize. These results are identical to those for explicit and implicit Euler methods
applied to ODEs.

Appendix A. Some lemmas relevant for the analysis of implicit tau.

Lemma A.1. Assuming the bounded Poisson numbers are used, for any function
g : R

N → R that is Lipschitz continuous on any bounded domain of R
N and initial

state x there exist K > 0 and δ > 0 such that∣∣∣E (
g(X(et)(t + τ)) − g(x)

∣∣ X(et)(t) = x
)∣∣∣ < Kτ ∀τ ∈ [0, δ].

Proof. Given any initial state X(et)(t) = x, the possible values for X(et)(t+ τ) lie
in a bounded subdomain of R

N . By the stated Lipschitz property of g, there exists
γ > 0 such that

|g(X(et)(t + τ)) − g(x)| ≤ γ |X(et)(t + τ) − x|.



CONSISTENCY AND STABILITY OF TAU-LEAPING 893

Note that

|X(et)(t + τ) − x| ≤
M∑
j=1

|νj | Pj(aj(x), τ),

where |νj | denotes the absolute value of each component of vector νj . Thus

E
(
|X(et)(t + τ) − x|

∣∣∣ X(et)(t) = x
)
≤ τ

M∑
j=1

|νj | aj(x).

By the reasoning in Remark 3.2, we conclude that

E
(
|X(et)(t + τ) − x|

∣∣∣ X(et)(t) = x
)
≤ τC1(x)

for all τ > 0 sufficiently small, where C1(x) > 0 is a constant independent of τ . Thus∣∣∣E (
g(X(et)(t + τ)) − g(x)

∣∣ X(et)(t) = x
)∣∣∣

≤ E
(
|g(X(et)(t + τ)) − g(x)|

∣∣∣ X(et)(t) = x
)

≤ γ E
(
|X(et)(t + τ) − x|

∣∣∣ X(et)(t) = x
)

≤ γ C1(x)τ

for τ sufficiently small.
Lemma A.2. For any positive integer l and initial state x there exist K > 0 and

δ > 0 such that ∣∣E (
(X ′ −X ′

e)
l
)∣∣ < Kτ l+1 ∀τ ∈ [0, δ].

Proof. From (3.25) it follows that

(X ′ −X ′
e)

l = τ l

⎛
⎝ M∑

j=1

νj{aj(x) − aj(X
′
e)}

⎞
⎠

l

+ τ l+1H(X ′
e, x),

where H is bounded for bounded values of X ′
e. Taking expectations and using

Lemma A.1 (and also using the fact that aj are Lipschitz on any bounded domain by
Lemma 2.4), we obtain

∣∣E (
(X ′ −X ′

e)
l
)∣∣ ≤ τ l

⎛
⎝ M∑

j=1

|νj |τKj

⎞
⎠ + τ l+1E(|H(X ′

e, x)|),

where Kj are the constants in Lemma A.1 corresponding to the functions aj . Since X ′
e

takes values in a bounded domain with probability 1, we may bound E(|H(X ′
e, x)|) ≤

H0(x), where H0(x) is the maximum value of H on this domain. This proves the
result.

Lemma A.3. For any multivariate polynomial function g : R
N → R and initial

state x there exist C > 0 and δ > 0 such that

|E(g(X ′) − g(X ′
e))| ≤ Cτ2 ∀τ ∈ [0, δ].
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Proof. This is an immediate consequence of Lemma A.2. Taylor expanding and
then taking expectations, we obtain

E(g(X ′) − g(X ′
e)) =

d∑
l=1

E

(
dlg

dxl
(X ′

e) (X ′ −X ′
e)

l

)
,

where d is the degree of g. Since X ′
e takes values on a bounded domain, we obtain

the bound ∣∣∣∣E
(
dlg

dxl
(X ′

e) (X ′ −X ′
e)

l

)∣∣∣∣ ≤ Cl

∣∣E((X ′ −X ′
e)

l)
∣∣ ,

where Cl are upper bounds for the absolute values of the derivatives on the bounded
domain. Using Lemma A.2 we obtain the result.

Lemma A.4. For any function g : R
N → R that is Lipschitz continuous on any

bounded domain of R
N and initial state x there exist K > 0 and δ > 0 such that

|E (g(X ′) − g(x))| < Kτ ∀τ ∈ [0, δ].

Proof. This follows directly from Lemmas A.1 and A.3. Note that by definition,
conditioned on X(et)(t) = x, X(et)(t + τ) = X ′

e.

Appendix B. Proof of convergence. Let Φτ (X0) denote the result of one
step of size τ of either of the tau-leaping schemes applied to the initial condition X0

(which is a random variable assumed to have finite moments). Let X̂ denote the
numerical solution obtained by the tau-leap method with stepsizes τ1, . . . , τn starting
at t = t0 over an interval of length T = τ1 + · · · + τn. Let ti = t0 + τ1 + · · · + τi, and
let τ = max τi. Let X be the true solution process. Then

‖E(X̂(t0 + T )r) − E(X(t0 + T )r)‖

=

∥∥∥∥∥
n∑

i=1

(
E((Φτn ◦ Φτn−1

◦ · · · ◦ Φτi(X(ti−1)))
r)

−E((Φτn ◦ Φτn−1
◦ · · · ◦ Φτi+1(X(ti)))

r)
)∥∥∥∥∥

≤
n∑

i=1

r∑
j=1

Krj ‖E((Φτi(X(ti−1)))
j) − E((X(ti))

j)‖

≤
n∑

i=1

r∑
j=1

KrjCijτ
2
i ≤

r∑
j=1

Krj

(
n∑

i=1

Cijτi

)
δ

≤
r∑

j=1

KrjCτ

(
n∑

i=1

τi

)
≤ Kτ.

Here we have used 0-stability as well as consistency. Constants Krj relate to 0-
stability, and Cij relate to consistency. The quantity δ > 0 is small enough for both
to hold, provided τ < δ. An important point to note is that the consistency is needed
only for initial states X(t) for t ∈ [t0, t0 +T ]. Since the true process is integer valued,
it is adequate to prove consistency for integer initial states. For 0-stability, however,
noninteger states need to be considered as well since Φτi(X(ti)) need not be integer
valued for (unrounded) implicit tau.
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