Deriving User Interface Requirementsfr om Denselyinterleaved
Scientific Computing Applications

Andrew Strelzof
Universty of CaliforniaSantaBarbara
Departmentf ComputerScience
SantaBarbaraCalifornia93106
strelz@engineering.ucsulu

Abstract

Deriving user interface requiremerts is a key stepin
userinterfacegenertion andmaintenace For singlepur-
posenumericroutinesuserinterfacerequirementsare rela-
tivelysimpleto derive However, geneal numericpadkages,
which are solvesfor entire classeof problemsare densely
interleavedwith strandsshaedand mixedamorgy userop-
tions. This compleity forms a signifiant barrier to the
derivation of userinterfacerequirementsand therefore to
userinterfacegenemtionandmaintenace Our methoal-
ogy usesa graph representatia to find potentialuserdeci-
sionpointsimpliedbythecontml structue of thecode This
graphistheniterativelyrefinedo forma DecisionPoint Di-
agram, a statemadine representatio of all possibleuser
traversalsthrougha userinterfacefor theunderlying code

Keywords

automatedoftwareengireering,userinterfacerequire-
mentsreverseengineeringscientificcomputing, XML
technology

1. Intr oduction and Moti vation

AutomatedGraphicUserlInterface[GUI] geneationand
mainteranceis animportant problemthathasextersive ap-
plicatiors for mary gerresof programmirg, including sci-
entific computing. The prodem is to enablerelatively in-
experiencedinterfaceprogammes to generateand main-
tain sophisticatedsUI's. Many physical scientistsanden-
gineas develop their own applicdions. Theseapplicatiors
wouldbemucheasietto learnandusewith aGUI front end.
The devdlopersof scientificapplicatiors typically lack the
time andexpertisenecessaryo produceandmaintainhigh
qudity GUI's. A key stepin thegeneationof a GUI is the

Linda Petzold
University of CaliforniaSantaBarbara
Departmentf ComputerScience
SantaBarbaraCalifornia93106
petzold@engieering.ucskedu

derivation of the userinterface requilementsfor the under
lying application

The derivation of userinterfacerequrementsfor com-
plex scientific computing applicatiors by handis a non-
trivial prodem. The MAUI software developedat Sandia
National Labomatories[3] takesan XML descriptia of an
application’s userinterface requirenents and geneatesa
GUI skeletonwhich is a useful platform for further devel-
opment. As partof the MAUI project a seniorpostdotoral
researchrwasgiventhetaskof prodicing userinterfacere-
quirementsfor amediumsizednumericpacka@. Thistask
requred 6 montts [2]. This is a prodem in reverseengi-

COOPT (serban and Petzold)

Gradi
Infomnnl;?;n+—l ,_fPurameters
SNOPT ADIFOR

(Gill, Murray, Saunders) (Bischof, Carle, Hovland,
etal.)

Control I_* +—| Sensitivities

DASPK

(Petzold and Lij

Simulation and
sensitivity analysis
F(t.xx%ux)=0

Autom atic differentiation
to form sensitivity
equations

Parameter optimization
using SQP method

minimize p)
2

subject to G(p)=0 e

Figure 1. DASPK as part of COOPT contr ol
optimization package.

neerirg. Considerhle researcthasbeendore in this area
[9, 10, 13, 11, 16). The paper‘Detectinglntedeaving” by
Rugater, StirwaltandWills [17] laysoutsomeusefultermi-
nology for dealingwith reverseengineeing computational
codes.Theauthos describea “plan” to denotea compua-
tional structue whichis intendedto solve a problan using
aparticdar methoalogy. The“interleaving” of plansin an

appication is the comnon pradice of sharingcodeamong
differentplans. In a seriesof papes the researchars de-
scribea process of separatig plansusing“domain-baset
programuncerstandind15, 6, 14, 7].

Thereare several problens with usingthe domainde-
composition appro&h for the software we have targeted.
First,we aredealingwith very generapackagesvhichmay
be usedto solve a variety of prodemsin vastly different
scientificfields. Thesepackagesmaybenestedwithin each
otherand are often usedin very conplicatedways, with
multiple restartsusingthe samepackag for differentpur
poseswith eachpass.It does not seempraticalto decom-
poseplanson the basisof what type of prablemis being
solved Second,thesegeneal solvers have a very large
nurber of optionswhich specifythe numeric methodto be
used. The differercesbetweenmethals canbe very sub-
tle and understadableonly to an expert with engyclope-
dic knawledgeof numeic methals. Decommsingdomans
on the basisof the methal of solutionwould be very dif-
ficult. Third, sincetheseareresearctcodestherearecon-
stantchangsandadditiors asnew prodemsariseandnew
methalsaredevelgpedor appeaiin theliterature. Any sort
of domaindeconpositionof suchcodesiis likely to becone
anendlesgproessof chasinga moving target.

Our methoalogy proceedsin several stages.We trans-
form thecodeto anetwork represetationwith basicblocks
asnodesandthe directionof progam exeaution asedges.
We thencolor this network with threecateyories: decision
poirts which areprog-am brarchescontrolledby usercon-
trol variables,requrementsblocks which are basicblocks
thatcontainnon<contrd userinput (thesemaybe variables
setby theuseror subraitinessuppliedby the user),andall
otherblocks which we labelascomputationalblocks. The
next stageis to remove all computationalblocks. If we add
rumablestatego all theresultingleafstheresultis arough
DecisionPoint Diagran [DPD] which is a statemachire
representatiorof all possiblepathsa usercouldtake while
filling in a userinterface. This preliminay DPD could be
transfemedinto a working valid interface,but it would be
an annging interface,with numerais redurdancies. This
preliminary DPD is then iteratively redwced using graph
opeaationsto prodice a more reasonale DPD which then
canbe transfamed into a workable interface. The result
of our methal is MAUI-compatible XML. This allows the
quick gererationof GUI skeletonsaswell asmaking XML-
encaled userinterface specificatios readily available for
othersoftwareengireeringpurpaes.

In the next sectionwe examire the processof producing
andrefiningDPDsin moredetail,but first we introdwce our
target application. DASSL: Differential Algebraic System
Software[12] is awell-known softwarepackag developed
by Petzoldin 198 to solve Differertial Algebraic Equa-
tions[DAESs]. DAEsare,roughy speakingsystem®f ordi-

nary differential equatims coupledwith corstraints.These
systemsaarisenatually in the simulationof awide rangeof
prodemsin scienceandengineeng[4]. TheDASSL pack-
agehasevolved into DASPK [5] andthenDASPK3.0[8].
Overtheyearsa gred dealof fundionality hasbeenadded,
first for solvingmuchlarger systemsf DAEs[5], andlater
for sensitvity analysig8].

2. Methodology

Our methal for derving userinterface requirenentshas
five steps.

1. Characterization: Every variade and subrautine is
charaterizedby tracingusagehroudhoutthe scopeof
theprimary subrautine.

2. Graph Representdion and Coloring: The progam
is transfamedinto a directedgraph. Eachnodein the
progam gragh is determired to be in one of the fol-
lowing classes{DecisionPoint,RequirenentsBlock,
CompuationalBlock}.

3. Removal of ExtraneousInformation: All blocksand
edgeswhich obviously will not contritute to the solu-
tion areremoved.

4. Iterati ve Graph Reduction: Gragh opeationsareit-
eratvely appliedto thegraphuntil nofurtherimprove-
mentis possible.

5. Constructing the DPD: The redwced gragh is anro-
tatedwith runnale statego form a DPD.

2.1 Characterization

We begin amore formal descriptio of our methoalogy
with someassumptions.We assumethat program values
arenottransfered amorg routinesby indirectian. Thisis a
safeassumptionn FORTRAN77 whereindirectim is pos-
sible but rarely used. It is clearly not valid for C, where
langwageflexibility and comnon practiceencouagewild
poirter arithmetic. For the purposesof this studywe deal
exclusively with FORTRAN77[F77], whichis still themost
comnonly usedprogamminglanguagefor this classof ap-
plicatiors. The primary barrie to extensionof this work
to C is that a more completememay emulatorwould be
needd to traceexecution throudh multiple levelsof indirec-
tion. Similarly, we assumehatapplicatiors do notuse“file
mediation” wheredatais carriedfrom oneprogammaodule
to anothetby intermediatefile storage.

We chosenot to dealwith theseissuesin part becase
we wishto makeimmediateprogressin anareawherethere
hasbeenlittle traction andin part for philosoplical rea-
sons. Our methoalogy essentiallyemulatesandtherefae

autonatesthe processesvhich take placewhena software
engneersits down to build aninterfacefor a compex sci-
entificapplication As suchit seemseasonale thatin situ-
ationswherea humanwouldbeconfused,our methoalogy
would alsofail to make muchheadvay.

Giventheabore assumptios, userinput canenterasub-
routine as formal parametes, a comnon block or as the
formal paranetersof a function or subraitine called from
within the origind subrotine. We seekto discoser which
of thesevariales, arraysor “passed-g-nanme” subraitine
names is intendel to be userinput. We determinethis by
tracingprogramelementusagethroughout the scopeof the
primary subrautine. Elemerts which areusedbut never ini-
tialized (or at mostinitialized very early, perfapsasa de-
fault value) mustbe userinput. We alsoneedto determire
whichinput variadesare“control variades” whichtheuser
setsin orderto determire thenumeical method employed,
andtherefae the geneal directin of the program. We de-
fine control variables to be thoseuserinputs which appear
onlyin programbranchstatementgor areinitialized atmost
once to somedefault).

2.2 Network Represntation and Coloring

The next stepis prodice a network represetation of
the application. The procedire is similar to Basic Block
derivation,which is a comnon compilerprocedire. A Ba-
sic Block is a sequene of consecutie statementi which
flow of control entersat the beginning andleafsat the end
withou the possibility of brarching excep at the end. We
usetheprocedureoutlinedin [1] for deriving BasicBlocks,
with the additionthatwe conside subraitine andfunction
calls to be equvalent to jumps and returnsfrom remde
coce (whichin staticFORTRAN they clearlyare).It should
be notedthat BasicBlock networks aredirectedand semi-
ordered. A semi-oraéredgraphis onein which somesib-
lingsmaybeswappedvith eachotherwhile othes maynot,
dependingon the type of paren nock involved. If the par
entis a Branchblock repesentingan“IF”, statementhen
the ordeing of child blocksis arbitray andtherebre un-
ordered. All otherblodks areordeedamongsiblingsfrom
left to right. The network is usuallynot a treebut it does
have aroot: the beginning of the primary subraitine and
oneleaf: theexecuion end-mint of theprimarysubrotine.

We cannow definedecisionpoints,requrementsblocks
andcompuationalblocks.

Definition 1 A decisionpoirt is a programbranch which is
cortrolled by a usercontmol variable

Definition 2 A requrementsblockis a non-decisionpoirt
BasicBlock which doescontdn someuserinp.

Definition 3 A compuationalblockis a BasicBlodk which
does notcontainanyuserinpt at all.

After thederivation of the BasicBlockswe needto color
the resulting network. Potentialdecisionpoints are Ba-
sic Blocks which are brandiesand which contan one or
moreusercontrd variables. Requiremets blocksare Ba-
sic Blockswhich containary type of userinputandwhich
arenotpoternial decisionpoints.We now begin the process
of coalescinghis colorednetwork down to adecisionpoint
diagam.

2.3 Removing ExtraneousInformation

All compuational blocks areremoved. When a block
is removed, all parentsof the block areconnetedwith the
remaoved block’s child blocks. This mayresultin illogical
situationssuchas a requiranentsblock with two or more
edgedeadingout of it. We canresol\e this situationby ex-
aminirg thepathsfrom the offendingrequirenentsblock If
thesepathssharea commoncontmol variabe thenthecorre-
spondng decisionpointsmaybepronoteduntil they areall
children of the prodematicrequrementsblock Thesibling
decisionblocks are then combired, and the requiements
blockbeconestheparern of asingledecisionpoirt, solving
theprobdem. An exanple of this problemandits solutionis
given in thecasestudyin Section3.

Thetype of applicatiors underconsideationarenotin-
teractive andtherefae the contiol variades areusuallyset
earlyin the progam andnever chamged. Therdore, loops
andback-jumpswhich areeffedively actingasloops,will
notfigurein the solutionandareremored.

Theresultingnetwork is actuallya DPD, which we call
the “preliminary DPD”. If we translatedthis preliminay
DPD to XML andthento a GUI, we would obtaina GUI
whichrantheundelying applicatio but it would beof poor
quality. In the casestudythatfollows,thepreliminary DPD
hasnumerais redundantstatesand is unneessarilycom-
plex with 37 statesfor entering20 variaes andsubrotine
names. By combning statesand reducirg the depthand
comgexity of the DPD we arrive at a muchmorecompact
andlogical userinterface. In the casestudyour methoal-
ogyreducsthe DPD from 37to 21 states.

2.4 Reducingthe DPD lteratively

The processof generatig acompactDPD from the pre-
liminary DPD involvesmaving blodks up the decisiontree
asfar aspossible. Requirenentsblocks which male it all
thewayto theDPDrootcombireto becomedefaut requre-
ments.Decisionpointswhichinvolve thesamevariade and
areon pardlel brarchesmay be combined and pushedup
towards the parern branch It is possiblethat thesetasks
couldbeacconplishedin a singlemassie recursve traver-
sal. For large scientificapplicatims we maystill have from
severalhundedto a few thowsandblocksremainng in the

network at this point. Froma pradical standpoit, holdng
sucha large network andall of its edges while traversing
and piling iterationsup on the stackwill quickly exhaust
thememay of eventhelargestmachine. Insteadwe have
optedfor anincrementalapprach.

The following opeations are repeateduntil no more
improvenent is possibleand a compat DPD has been
reacled.

COMBINE

BLOCKS OF
THE SAME
TYPE

Figure 2. Combining blocks

COMBINE
AND
PROMOTE
IDENTICAL
SIBLINGS

Figure 3. Combine and promote identical re-
quirements block siblings

1. Combine adjacent requirements blocks and adja-
centdecisionpoints controlled by the samevariable
(Figure 2).

2. Swap identical requirements block siblings with
their parent (Figure 3). If all the childrenof a deci-
sion point areidenticalrequirementsblocks,combire
theminto onerequilementdlock. Thisnex comtined
requrementsblockis thenswappedwith its paren.

3. Swap identical decision point siblings with their
parent (Figure 4). If all the children of a decision
poirt areidenticaldecisionpoints,combne theminto
onedecisionpoint. This new combineddecisionpoint
is then swappedwith its parert. Non-brancling se-
riesof decisionpointsaretreatedasunorceredsothat
they may bereordeedto prodice a situationwherea

COMBINE
(=o) ano

PROMOTE

@ @ IDENTICAL
SIBLINGS @
\\

Figure 4. Combine and promote identical de-
cision point siblings

MOVE 1
REQUIREMENTS
; BLOCKS
UP PATHS
; WITHOUT @
\J

:: BRANCHES

Figure 5. Move requirements blocks up non-
branc hing paths

combhbnationwith adecisionpointonanotterbrarchis
possible.

4. Move requiremens up non-branching paths (Fig-
ureb). Eitherof the previoustwo stepsmay resultin
a decisionpoint which leadsonly to a singlerequre-
mentsblock Swapthis block with its paren decision
point, moving the requiranentsblock up the decision
tree.If it reachesherootthenall variadesandsubrai-
tinesin the pronmoted decisionblock becomedefaut
requrements. All otherdecisionblocksin the DPD
have thesevarialles and subraitinesremoved. This
may resultin empty requilementsblocks, which are
removed.

2.5 DPD Construction

Whentheseoperatios have completedhe only remain-

ing stepis to add“runnable” statego the leafs. Theresult-
ing DPDscanbe separatetihto threecatearies.

1. Simple. No decisionpoints werefound sothesimplest
possibleDPD is a defadt requiementsblock with an
attachedunrablestate.

2. Treeor “Connected Forest”. Themostcomnon pat-
ternfor a DPD of a compex applicatia is a decision
treeor a forestof decisiontreesconnetedonly at the
roa requilements.

3. Complex Network. DASPK is sometimesusedto
geneateinitial conditiors andthenrestartedThisand
other nesting,combiration and multiple calls to the
sameprog-am underdiffering corditions resultsin a
compex network of decisionsand requireanents. In
thiscasedeternining arunnablestatels morecompex
andmay requite multiple passeghrough our method
(first for theinitialization, thenfor themainrun)in or-
derto correctly assignrunrablestates.

In the next sectionwe outline the derivation of user
interface requirenentsfor one of our target applicatiors,
DASPK.

3. DASPK: A CaseStudy

Figure 6. Network Representation.

Figure 6 shaws the initial translationof a centralpart
of DASPK to a network repesentation.DASPK is abou

200 lines of FORTRAN77. Thefull network repiesenta-
tion has660blocksand888 edges.This is muchtoo large
to displayonan8 by 11 pagesowe will illustrateonly the
derivationfor thecentra sectionof DASPK, whichincludes
theiterative-vs-dired linearsolverdecision.Figure7 shavs

Figure 7. Network Coloring: Black diamonds
represent potential decision points. Black
ovals are requirements blocks. All of the
other hollo w blocks are comput ational blocks
whic h will be removed in the next step.

the coloiing of the network representatio of DASPK. This
centralpottion of DASPK has13 contrd varialles, 6 input
variables,and2 inputsubrotines.

Figure8 shawsthe preliminary DPD for the centralpor-
tion of DASPK afterall of theextraneousblocks andedges
have beenremoved. Therearenow 27 decisionblocks and
10requrementshlocks.

Figure9 shows the compat DPD after 14 iterations,at
which point no further improvementis possible. The GUI
correspondiny to the compactDPD is closeto the solution
which would be arrived at by hand The processof trans-

INFO(1) EQ.1

DDAWTS DINVWT INFO(7) EQ.0

(TN - TOUT)*H .GT. 0.000

INFO(7).EQ.0

@
e

(TSTOP - TOUT)*HO .LT. 0.0D0

-
vy

DDAWTS DINVTS

Figure 8. The preliminar y DPD after all extra-
neous information is removed.

lating a DPD to a matchingGUI is discussedn the next
section.

4. Discussion

In this sectionwe discusstwo topics: the Trarslationof
DPDsto XML to autoratically produce matchingGUIs,
andfuturedirectiors for thisresearch

4.1 Transforming a DPD to XML-MA Ul Input

The MAUI [3] softwarean XML-to- GUI enginefor sci-
entific computing hasbeendevelopedat SandiaNational
Labaatories. Translatinga DPD to MAUI-XML is rela-
tively simple. Eachdecisionpoirt beconesa MAUI class,
with the elemerts of the requrementsblock leadingto that
decisionas membervariabdes. Subsequet decisiors are
sub-dassesof previous decisions. A simple examge is
given in figure 10. The MAUI-XML to geneate the GUI
in figure 10 begins asfollows:

<Maui Root Cl ass="DDASPK" >
<Cl ass type="DDASPK">
<Fi el ds>
<Doubl e | abel ="T" name="T"/>

T,TOUT, TSTOP
INFO(1).EQ.1

INFO(7).EQ.0 INFO(16).NE.O

DDAWTS,DINVWT,NEQ

INFO(3).EQ.1 INFO(4).EQ.0

DDATRP INFO(17).EQ.0 INFO(8).EQ.0

INFO(8).EQ.0 INFO(7).EQ.0

INFO(7).EQ.0
INFO(11).EQ.0

INFO(12).EQ.0

DDASID

Figure 9. Compact DPD for the central section
of DASPK

<Doubl e | abe
<Doubl e | abe
</ Fi el ds>
</ d ass>
<Cl ass type="INFOL" base="DDASPK">
<Fi el ds>
<Int |abel ="INFQ(1)" name="1NFOL"/ >
</ Fi el ds>
</ d ass>
<Cl ass type="INFO7" base="I|NFOL" | abel ="1NFO7">
<Fi el ds>
<Int |abel ="INFQ(7)" name="|NFO7" defaul t="0"/>
</ Fi el ds>
</ d ass>
<Cl ass type="I NFOL6" base="|NFOL" | abel =" NFOL6" >
<Fi el ds>
<Int |abel ="INFQ(16)" nanme="|NFOL6" />
<Doubl e | abel =" DDAWIS" nane="DDAWS"/ >
<Doubl e | abel =" DI NVWI" name="DI N\VWI"/ >
<Int |abel ="NEQ' nanme="NEQ'/>
</ Fi el ds>
</ d ass>
<Cl ass type="INFO4" base="I|NFOL6" | abel ="1 NFO4" >
<Fi el ds>
<Int |abel ="INFQ(4)" name="|NFO4"/>
</ Fi el ds>
</ C ass>

"TOUT" name="TOUT"/ >
"TSTOP" name="TSTCP"/ >

Using the extensibility featuesof MAUI theinput sub-

[=E

| start New Session | Configure Maui | Bxit|

E Maui session 53357
File

select subclass DDA‘SFK|

| INFOL ¥ INFOF

s ' INFOLE »|| INFO4 »| INFOL17 |
Tout:[

TsTor []

MEO(L: [

MFOF o

Figure 10. Maui GUI skeleton for central sec-
tion of DASPK

routines can be commsed,compled andrun from within
the MAUI ervironment.

4.2 FutureDirections

The iterative methodof redwcing DPDs producesrea-
sonalte solutionsbut we canna say that they are optimal
eitherin length of pathto a rumnablestateor in minimiz-
ing the numter of statesn the DPD. In anupcomng paper
we intendto introducea new methoalogy which attempts
to producean optimal solutionusingtechriqguesborraved
from expert systems.

The resultsof the MAUI XML-to-GUI techndogy are
relatively simple GUI skeletons. Also MAUI principally
targets“file input” stylenumeic progamswhich arecom-
monatthe natioral labs. DASPK andotherresearcttodes
are“compiled-in” input stylewhichgivestheuserthepower
of an entireprogammirg langlageto describetheir prob-
lem. In anupconing paperwe will descrite the develop-
mentof an extersionto MAUI which producesmorecom-
plex anduserfriendy working ervironmerns for compled-
in researcltodes.

5. Acknowledgmerts

This work was suppoted by grants: NSF/ITR ACI-
0086061 NSF/KDI ATM-987313, and DOE DE-FGO03-
00ER 25430

References

[1] A.Aho. Compiles - Principles, Techniquesand Tools
Addison-Wésley, 1988

[2] B. Boggs. Corversdion with Maui researchteam. San-
dia/Livermore,2002.

[3] P Boggs, L. Lehoucq, K. Long, A. Rothfuss,
E. Walsh, and R. Whiteside. A Maui users guide.
http://csmrca.sandia.gdprojects/maui/dos/MauiTutorial/.

[4] K. Brenan,S. Campbell,andL. Petzold. The Numerical
Solutionof Initial Value Problemsin Differential-Algebraic
Equations 2nd Edition, SIAM, Philadelphia,1996.

[5] P.Brown, A. Hindmarsh,andL. R. Petzold. Using krylov
methodsn the solutionof large-scalalifferential-algebraic.
SIAMJ. Sci.Comp, 15:1467-148, 199%4.

[6] R. Clayton, S. Rugaber and L. Wills. Domain
Based Design Documentation and Componeh
Reuse and their Application to a System Evolution
Recod. PhD thesis, Geogia Tech., October 1997.
http://www.cc.gatech.edu/verse/dare/finalreport/ingehtml.

[7] J.-M.DeBaudandB. M. Moopen, andS. Rugaber Domain
analysisandreverseenginering.In Proceeding®fthe 1994
International Confeenceon Softwae Maintenarce, pages
326-33%, 1994.

[8] S. Li and L. Petzold. Design of new Daspk
for sensitvity analysis. Technical Report 1999
28, University of California Santa Barbara, 199.
www.cs.ucstedu/research/trcs/aibacts/1999-28.shtml.

[9] M. MooreandS.Rugaberlssuesn userinterfacemigration.
In Proceeding®f the Third Softwae EngineeringReseath
Forum, 1993.

[10] M. Moore, S. Rugaberand P. Searer. Knowledgebased
userinterfacemigration. In Proceedingof the 1994 Inter-
national Confeence on Softwae Maintenarte, 1994

[11] L. Perronchonand R. Fischer IDLE: Unified w3-access
to interactie information seners. In Proceedingsof the
Third International Confeence on the World-Wide Web
(WWW’95) Darmstadt 1995

[12] L. Petzold. A descriptionof Dassl: A differential/algebraic
¢ systemsolver. TechnicalReport SAND82-8637,Sandia
NationalLab,1982

[13] M. Ronchetti,S. Giancarlo,andD. Feltrin. Facelift: Using
www technolog for anexternalreengineeringf old appli-
cations. In Proceedingof the Third Internationd Confer
enceon the World-Wide Web (WWW'95),Darmstadt 1995.

[14] S. Rugaber Domain analysisand reverse engine&ing.
White Paper Januaryl994

[15] S.Rugaber Theuseof domainknowledgein programun-
derstandingAnnalsof Softwae Engineering 9, 2000. 143-
192.

[16] S.RugaberT. ShikanoandK. Stirewalt. Adequde reverse-
engineering. In AutomatedSoftwae EngineeringConfer
ence 2001.

[17] S.RugaberK. Stirewalt, andL. Wills. Detectinginterleas-
ing. In InternationalConfeenceon Softwae Maintenarce,
1995.265-274

