
Deriving User Interface Requirementsfr om DenselyInterleaved
Scientific Computing Applications

Andrew Strelzoff
University of CaliforniaSantaBarbara

Departmentof ComputerScience
SantaBarbara,California93106

strelz@engineering.ucsb.edu

LindaPetzold
University of CaliforniaSantaBarbara

Departmentof ComputerScience
SantaBarbara,California93106
petzold@engineering.ucsb.edu

Abstract

Deriving user interface requirements is a key step in
userinterfacegeneration andmaintenance. For singlepur-
posenumericroutinesuserinterfacerequirementsare rela-
tivelysimpletoderive. However, general numericpackages,
whicharesolversfor entireclassesof problems,aredensely
interleavedwith strandssharedandmixedamong userop-
tions. This complexity forms a significant barrier to the
derivation of user interfacerequirementsand therefore to
userinterfacegenerationandmaintenance. Our methodol-
ogy usesa graph representation to findpotentialuserdeci-
sionpointsimpliedbythecontrol structureof thecode. This
graph is theniterativelyrefinedto forma DecisionPointDi-
agram, a statemachine representation of all possibleuser
traversalsthrougha userinterfacefor theunderlyingcode.

Keywords

automatedsoftwareengineering,userinterfacerequire-
ments,reverseengineering, scientificcomputing,XML
technology

1. Intr oduction and Moti vation

AutomatedGraphicUserInterface[GUI] generationand
maintenanceis animportantproblemthathasextensiveap-
plications for many genresof programming, including sci-
entific computing. The problem is to enablerelatively in-
experiencedinterfaceprogrammers to generateandmain-
tain sophisticatedGUI’s. Many physical scientistsanden-
gineers develop their own applications. Theseapplications
wouldbemucheasierto learnandusewith aGUI front end.
Thedevelopersof scientificapplications typically lack the
time andexpertisenecessaryto produceandmaintainhigh
quality GUI’s. A key stepin thegenerationof a GUI is the

derivationof theuserinterface requirementsfor theunder-
lying application.

The derivation of userinterfacerequirementsfor com-
plex scientific computing applications by hand is a non-
trivial problem. The MAUI softwaredevelopedat Sandia
NationalLaboratories[3] takesan XML description of an
application’s user interface requirements and generatesa
GUI skeletonwhich is a usefulplatform for furtherdevel-
opment. As partof theMAUI project a seniorpostdoctoral
researcherwasgiventhetaskof producinguserinterfacere-
quirementsfor amedium-sizednumericpackage. This task
required 6 months [2]. This is a problem in reverseengi-

Figure 1. DASPK as par t of COOPT contr ol
optimization package.

neering. Considerable researchhasbeendone in this area
[9, 10, 13, 11, 16]. Thepaper“DetectingInterleaving” by
Rugaber, Stirwalt andWills [17] laysoutsomeusefultermi-
nology for dealingwith reverseengineering computational
codes.Theauthors describea “plan” to denotea computa-
tional structure which is intendedto solve a problem using
a particular methodology. The“interleaving” of plansin an



application is thecommon practice of sharingcodeamong
differentplans. In a seriesof papers the researchers de-
scribea processof separating plansusing“domain-based”
programunderstanding[15, 6, 14, 7].

Thereare several problems with using the domainde-
composition approach for the software we have targeted.
First,wearedealingwith very general packageswhichmay
be usedto solve a variety of problems in vastly different
scientificfields.Thesepackagesmaybenestedwithin each
other and are often usedin very complicatedways, with
multiple restartsusingthe samepackage for differentpur-
poseswith eachpass.It does not seempraticalto decom-
poseplanson the basisof what type of problem is being
solved. Second,thesegeneral solvers have a very large
numberof optionswhich specifythenumeric methodto be
used. The differencesbetweenmethods canbe very sub-
tle andunderstandableonly to an expert with encyclope-
dic knowledgeof numeric methods.Decomposingdomains
on the basisof the method of solutionwould be very dif-
ficult. Third, sincetheseareresearchcodestherearecon-
stantchangesandadditions asnew problemsariseandnew
methodsaredevelopedor appearin theliterature.Any sort
of domaindecompositionof suchcodes is likely to become
anendlessprocessof chasinga moving target.

Our methodology proceedsin severalstages.We trans-
form thecodeto anetwork representationwith basicblocks
asnodesandthe directionof program execution asedges.
We thencolor this network with threecategories: decision
points which areprogrambranchescontrolledby usercon-
trol variables,requirementsblockswhich arebasicblocks
thatcontainnon-control userinput (thesemaybevariables
setby theuseror subroutinessuppliedby theuser),andall
otherblocks which we labelascomputationalblocks. The
next stageis to remove all computationalblocks.If we add
runnablestatesto all theresultingleafstheresultis a rough
DecisionPoint Diagram [DPD] which is a statemachine
representationof all possiblepathsa usercouldtake while
filling in a userinterface. This preliminary DPD couldbe
transformedinto a working valid interface,but it would be
an annoying interface,with numerous redundancies.This
preliminary DPD is then iteratively reduced using graph
operationsto producea more reasonable DPD which then
canbe transformed into a workable interface. The result
of our method is MAUI-compatibleXML. This allows the
quickgenerationof GUI skeletonsaswell asmaking XML-
encoded userinterfacespecifications readily available for
othersoftwareengineeringpurposes.

In thenext sectionweexamine theprocessof producing
andrefiningDPDsin moredetail,but first we introduceour
target application. DASSL: Differential Algebraic System
Software[12] is a well-known softwarepackage developed
by Petzoldin 1982 to solve Differential Algebraic Equa-
tions[DAEs]. DAEsare,roughly speaking, systemsof ordi-

narydifferential equationscoupledwith constraints.These
systemsarisenaturally in thesimulationof a wide rangeof
problemsin scienceandengineering [4]. TheDASSLpack-
agehasevolved into DASPK [5] andthenDASPK3.0[8].
Over theyearsa great dealof functionality hasbeenadded,
first for solvingmuchlargersystemsof DAEs [5], andlater
for sensitivity analysis[8].

2. Methodology

Our method for deriving userinterface requirementshas
fivesteps.

1. Characterization: Every variable and subroutine is
characterizedby tracingusagethroughoutthescopeof
theprimary subroutine.

2. Graph Representation and Coloring: The program
is transformedinto a directedgraph. Eachnodein the
program graph is determined to be in oneof the fol-
lowing classes:

�
DecisionPoint,RequirementsBlock,

ComputationalBlock � .

3. Removal of ExtraneousInf ormation: All blocksand
edgeswhich obviously will not contributeto thesolu-
tion areremoved.

4. Iterati ve Graph Reduction: Graph operationsareit-
eratively appliedto thegraphuntil nofurther improve-
mentis possible.

5. Constructing the DPD: The reducedgraph is anno-
tatedwith runnable statesto form a DPD.

2.1 Characterization

We begin amore formaldescription of ourmethodology
with someassumptions.We assumethat program values
arenot transferredamong routinesby indirection. This is a
safeassumptionin FORTRAN77 whereindirection is pos-
sible but rarely used. It is clearly not valid for C, where
languageflexibility andcommon practiceencouragewild
pointer arithmetic. For the purposesof this studywe deal
exclusivelywith FORTRAN77[F77],whichis still themost
commonly usedprogramminglanguagefor thisclassof ap-
plications. The primary barrier to extensionof this work
to C is that a more completememory emulatorwould be
needed to traceexecution through multiple levelsof indirec-
tion. Similarly, weassumethatapplicationsdonotuse“file
mediation” wheredatais carriedfrom oneprogrammodule
to anotherby intermediatefile storage.

We chosenot to dealwith theseissuesin part because
wewishto makeimmediateprogressin anareawherethere
hasbeenlittle traction, and in part for philosophical rea-
sons.Our methodology essentiallyemulatesandtherefore



automatestheprocesseswhich take placewhena software
engineersits down to build an interfacefor a complex sci-
entificapplication. As suchit seemsreasonable thatin situ-
ationswhereahumanwouldbeconfused,ourmethodology
wouldalsofail to make muchheadway.

Giventheaboveassumptions,userinput canenterasub-
routine as formal parameters, a common block or as the
formal parametersof a function or subroutine calledfrom
within theoriginal subroutine. We seekto discover which
of thesevariables, arraysor “passed-by-name” subroutine
names is intended to be userinput. We determinethis by
tracingprogramelementusagethroughout thescopeof the
primarysubroutine.Elements whichareusedbut never ini-
tialized (or at most initialized very early, perhapsasa de-
fault value) mustbeuserinput. We alsoneedto determine
whichinput variablesare“control variables” whichtheuser
setsin orderto determinethenumerical methodsemployed,
andtherefore thegeneral direction of theprogram.We de-
fine controlvariables to bethoseuserinputs which appear
only in programbranchstatements(orareinitializedatmost
once to somedefault).

2.2 Network Representation and Coloring

The next step is produce a network representation of
the application. The procedure is similar to Basic Block
derivation,which is a common compilerprocedure. A Ba-
sic Block is a sequenceof consecutive statementsin which
flow of controlentersat thebeginning andleafsat theend
without thepossibilityof branchingexcept at theend. We
usetheprocedureoutlinedin [1] for deriving BasicBlocks,
with theadditionthatwe consider subroutineandfunction
calls to be equivalent to jumps and returnsfrom remote
code(whichin staticFORTRAN they clearlyare).It should
benotedthatBasicBlock networks aredirectedandsemi-
ordered. A semi-orderedgraphis onein which somesib-
lingsmaybeswappedwith eachotherwhileothersmaynot,
dependingon the typeof parent node involved. If thepar-
ent is a Branchblock representingan “IF”, statementthen
the ordering of child blocks is arbitrary andtherefore un-
ordered.All otherblocks areorderedamongsiblingsfrom
left to right. The network is usuallynot a treebut it does
have a root: the beginning of the primary subroutine and
oneleaf: theexecution end-point of theprimarysubroutine.

We cannow definedecisionpoints,requirementsblocks
andcomputationalblocks.

Definition 1 A decisionpoint is a programbranch which is
controlled bya usercontrol variable.

Definition 2 A requirementsblock is a non-decisionpoint
BasicBlock which doescontain someuserinput.

Definition 3 A computationalblock is a BasicBlock which
does notcontainanyuserinput at all.

After thederivation of theBasicBlocksweneedto color
the resulting network. Potentialdecisionpoints are Ba-
sic Blocks which are branchesand which contain one or
moreusercontrol variables. Requirements blocksareBa-
sic Blockswhich containany typeof userinput andwhich
arenotpotential decisionpoints.Wenow begin theprocess
of coalescingthiscolorednetwork down to adecisionpoint
diagram.

2.3 Removing ExtraneousInf ormation

All computationalblocksare removed. Whena block
is removed,all parentsof theblock areconnectedwith the
removedblock’s child blocks. This may result in illogical
situationssuchasa requirementsblock with two or more
edgesleadingout of it. We canresolve this situationby ex-
amining thepathsfromtheoffendingrequirementsblock. If
thesepathsshareacommoncontrol variable thenthecorre-
sponding decisionpointsmaybepromoteduntil they areall
children of theproblematicrequirementsblock. Thesibling
decisionblocks are then combined, and the requirements
blockbecomestheparent of asingledecisionpoint, solving
theproblem. An exampleof thisproblemandits solutionis
given in thecasestudyin Section3.

Thetypeof applications underconsiderationarenot in-
teractive andtherefore thecontrol variablesareusuallyset
early in the program andnever changed. Therefore, loops
andback-jumpswhich areeffectively actingasloops,will
notfigurein thesolutionandareremoved.

Theresultingnetwork is actuallya DPD, which we call
the “preliminary DPD”. If we translatedthis preliminary
DPD to XML andthento a GUI, we would obtaina GUI
whichrantheunderlying application but it wouldbeof poor
quality. In thecasestudythatfollows,thepreliminaryDPD
hasnumerous redundantstatesand is unnecessarilycom-
plex with 37statesfor entering20variablesandsubroutine
names. By combining statesand reducing the depthand
complexity of theDPD we arrive at a muchmorecompact
andlogical userinterface. In thecasestudyour methodol-
ogyreduces theDPDfrom 37to 21states.

2.4 Reducingthe DPD Iteratively

Theprocessof generating a compactDPD from thepre-
liminary DPD involvesmoving blocks up thedecisiontree
asfar aspossible.Requirementsblocks which make it all
thewayto theDPDrootcombinetobecomedefault require-
ments.Decisionpointswhichinvolvethesamevariable and
areon parallel branchesmay be combined andpushedup
towards the parent branch. It is possiblethat thesetasks
couldbeaccomplishedin a singlemassive recursive traver-
sal.For largescientificapplicationswe maystill have from
severalhundred to a few thousandblocksremaining in the



network at this point. Froma practical standpoint, holding
sucha large network andall of its edgeswhile traversing
andpiling iterationsup on the stackwill quickly exhaust
thememory of eventhelargestmachines. Instead,we have
optedfor anincrementalapproach.

The following operations are repeateduntil no more
improvement is possibleand a compact DPD has been
reached.

COMBINE
BLOCKS OF
THE SAME
TYPE

Figure 2. Combining bloc ks

x,y

x,y x,y

COMBINE
AND
PROMOTE
IDENTICAL
SIBLINGS

Figure 3. Combine and promote identical re-
quirements bloc k sib lings

1. Combine adjacent requirements blocks and adja-
centdecisionpoints controlled by the samevariable
(Figure 2).

2. Swap identical requirements block siblings with
their parent (Figure 3). If all the childrenof a deci-
sionpoint areidenticalrequirementsblocks,combine
theminto onerequirementsblock. Thisnew combined
requirementsblock is thenswappedwith its parent.

3. Swap identical decision point siblings with their
parent (Figure 4). If all the children of a decision
point areidenticaldecisionpoints,combine theminto
onedecisionpoint. This new combineddecisionpoint
is then swappedwith its parent. Non-branching se-
riesof decisionpointsaretreatedasunorderedsothat
they maybereordered to producea situationwherea

COMBINE
AND
PROMOTE
IDENTICAL
SIBLINGS

J=1 J=1

K=0

K=0

J=1

Figure 4. Combine and promote identical de-
cision point sib lings

REQUIREMENTS
BLOCKS
UP PATHS 
WITHOUT

MOVE

BRANCHES

Figure 5. Move requirements bloc ks up non-
branc hing paths

combinationwith adecisionpointonanotherbranchis
possible.

4. Move requirements up non-branching paths (Fig-
ure5). Eitherof theprevious two stepsmayresultin
a decisionpoint which leadsonly to a singlerequire-
mentsblock. Swapthis block with its parent decision
point, moving therequirementsblock up thedecision
tree.If it reachestherootthenall variablesandsubrou-
tines in the promoteddecisionblock becomedefault
requirements. All otherdecisionblocks in the DPD
have thesevariables and subroutinesremoved. This
may result in empty requirementsblocks, which are
removed.

2.5 DPD Construction

Whentheseoperations havecompletedtheonly remain-
ing stepis to add“runnable”statesto theleafs.Theresult-
ing DPDscanbeseparatedinto threecategories.

1. Simple. No decisionpointswerefoundsothesimplest
possibleDPD is a default requirementsblock with an
attachedrunnablestate.



2. Treeor “ConnectedForest”. Themostcommonpat-
ternfor a DPD of a complex application is a decision
treeor a forestof decisiontreesconnectedonly at the
root requirements.

3. Complex Network. DASPK is sometimesusedto
generateinitial conditionsandthenrestarted.Thisand
other nesting,combination and multiple calls to the
sameprogram underdiffering conditions resultsin a
complex network of decisionsand requirements. In
thiscase,determiningarunnablestateismorecomplex
andmay require multiple passesthrough our method
(first for theinitialization,thenfor themainrun) in or-
derto correctly assignrunnablestates.

In the next sectionwe outline the derivation of user
interface requirements for one of our target applications,
DASPK.

3. DASPK: A CaseStudy

Figure 6. Network Representation.

Figure 6 shows the initial translationof a centralpart
of DASPK to a network representation.DASPK is about

2000 lines of FORTRAN77. The full network representa-
tion has660blocksand888edges.This is muchtoo large
to displayon an8 by 11 pagesowe will illustrateonly the
derivationfor thecentral sectionof DASPK,whichincludes
theiterative-vs-direct linearsolverdecision.Figure7 shows

Figure 7. Network Coloring: Blac k diamonds
represent potential decision points. Blac k
ovals are requirements bloc ks. All of the
other hollo w bloc ks are comput ational bloc ks
whic h will be remo ved in the next step.

thecoloring of thenetwork representation of DASPK.This
centralportion of DASPK has13 control variables,6 input
variables,and2 inputsubroutines.

Figure8 shows thepreliminaryDPD for thecentralpor-
tion of DASPK afterall of theextraneousblocks andedges
have beenremoved. Therearenow 27 decisionblocks and
10requirementsblocks.

Figure9 shows thecompact DPD after14 iterations,at
which point no further improvementis possible.TheGUI
corresponding to thecompactDPD is closeto thesolution
which would be arrived at by hand. The processof trans-



INFO(1).EQ.1

DDAWTS,DINVWT INFO(7).EQ.0

INFO(16).NE.0 INFO(16).NE.0 T.EQ.TOUT

(T-TOUT)*H.GT.0.0D0

INFO(4).EQ.1

INFO(3).EQ.1

(T-TOUT)*H.LT.0.0D0 (TN-T)*H .LE. 0.0D0

DDATRP (TN - TOUT)*H .GT. 0.0D0

DO 305 I=1,NEQ DO 357 I=1,NEQ

INFO(17).EQ.0 INFO(8).EQ.0

INFO(8).EQ.0 INFO(7).EQ.0 DDWNRM

INFO(4).NE.0

(TOUT - T)*H0 .LT. 0.0D0

DDWNRM

INFO(7).EQ.0

INFO(4).EQ.0

(TSTOP - T)*H0 .LT. 0.0D0

SIGN

(TSTOP - TOUT)*H0 .LT. 0.0D0

(TSTOP - TOUT)*H0 .LT. 0.0D0

INFO(11).EQ.0

T,TSTOP

INFO(12).EQ.0

DDASID DDASIK

DDAWTS,DINVTS

(T + H0 - TSTOP)*H0 .GT. 0.0D0

T,TSTOP

Figure 8. The preliminar y DPD after all extra-
neous inf ormation is remo ved.

lating a DPD to a matchingGUI is discussedin the next
section.

4. Discussion

In this sectionwe discusstwo topics: theTranslationof
DPDs to XML to automatically produce matchingGUIs,
andfuturedirections for this research.

4.1 Transforming a DPD to XML-MA UI Input

TheMAUI [3] softwareanXML-to-GUI enginefor sci-
entific computing hasbeendevelopedat SandiaNational
Laboratories. Translatinga DPD to MAUI-XML is rela-
tively simple.Eachdecisionpoint becomesa MAUI class,
with theelements of therequirementsblock leadingto that
decisionas membervariables. Subsequent decisions are
sub-classesof previous decisions. A simple example is
given in figure 10. The MAUI-XML to generate the GUI
in figure10begins asfollows:

<Maui RootClass="DDASPK">
<Class type="DDASPK">
<Fields>
<Double label="T" name="T"/>

T,TOUT,TSTOP

INFO(1).EQ.1

INFO(7).EQ.0 INFO(16).NE.0

DDAWTS,DINVWT,NEQ

INFO(4).EQ.0

INFO(4).EQ.1

INFO(3).EQ.1

DDATRP INFO(17).EQ.0

INFO(8).EQ.0

INFO(8).EQ.0

INFO(7).EQ.0 DDWNRM

INFO(7).EQ.0

DDWNRM

INFO(11).EQ.0

SIGN

INFO(12).EQ.0

DDASID DDASIK

Figure 9. Compact DPD for the central section
of DASPK

<Double label="TOUT" name="TOUT"/>
<Double label="TSTOP" name="TSTOP"/>

</Fields>
</Class>
<Class type="INFO1" base="DDASPK">
<Fields>
<Int label="INFO(1)" name="INFO1"/>

</Fields>
</Class>
<Class type="INFO7" base="INFO1" label="INFO7">
<Fields>
<Int label="INFO(7)" name="INFO7" default="0"/>

</Fields>
</Class>
<Class type="INFO16" base="INFO1" label="INFO16">
<Fields>
<Int label="INFO(16)" name="INFO16" />
<Double label="DDAWTS" name="DDAWTS"/>
<Double label="DINVWT" name="DINVWT"/>
<Int label="NEQ" name="NEQ"/>

</Fields>
</Class>
<Class type="INFO4" base="INFO16" label="INFO4">
<Fields>
<Int label="INFO(4)" name="INFO4"/>

</Fields>
</Class>

Using theextensibility featuresof MAUI the input sub-



Figure 10. Maui GUI skeleton for central sec-
tion of DASPK

routinescanbe composed,compiled andrun from within
theMAUI environment.

4.2 Futur eDir ections

The iterative methodof reducing DPDs producesrea-
sonable solutionsbut we cannot say that they areoptimal
either in lengthof pathto a runnablestateor in minimiz-
ing thenumber of statesin theDPD. In anupcoming paper
we intendto introducea new methodology which attempts
to producean optimal solutionusingtechniquesborrowed
from expert systems.

The resultsof the MAUI XML-to-GUI technology are
relatively simple GUI skeletons. Also MAUI principally
targets“file input” stylenumeric programswhich arecom-
monat thenational labs.DASPK andotherresearchcodes
are“compiled-in” input stylewhichgivestheuserthepower
of anentireprogramming languageto describetheir prob-
lem. In an upcoming paperwe will describe the develop-
mentof anextensionto MAUI which producesmorecom-
plex anduserfriendly working environments for compiled-
in researchcodes.

5. Acknowledgments

This work was supported by grants: NSF/ITR ACI-
0086061, NSF/KDI ATM-9873133, and DOE DE-FG03-
00ER 25430.

References

[1] A.Aho. Compilers - Principles, Techniquesand Tools.
Addison-Wesley, 1988.

[2] B. Boggs. Conversation with Maui researchteam. San-
dia/Livermore,2002.

[3] P. Boggs, L. Lehoucq, K. Long, A. Rothfuss,
E. Walsh, and R. Whiteside. A Maui user’s guide.
http://csmr.ca.sandia.gov/projects/maui/docs/MauiTutorial/.

[4] K. Brenan,S. Campbell,and L. Petzold. The Numerical
Solutionof Initial ValueProblemsin Differential-Algebraic
Equations. 2ndEdition,SIAM, Philadelphia,1996.

[5] P. Brown, A. Hindmarsh,andL. R. Petzold. Using krylov
methodsin thesolutionof large-scaledifferential-algebraic.
SIAMJ. Sci.Comp., 15:1467–1488, 1994.

[6] R. Clayton, S. Rugaber, and L. Wills. Domain
Based Design Documentation and Component
Reuse and their Application to a System Evolution
Record. PhD thesis, Georgia Tech., October 1997.
http://www.cc.gatech.edu/reverse/dare/finalreport/index.html.

[7] J.-M. DeBaudand,B. M. Moopen, andS.Rugaber. Domain
analysisandreverseengineering.In Proceedingsof the1994
International Conferenceon Software Maintenance, pages
326–335, 1994.

[8] S. Li and L. Petzold. Design of new Daspk
for sensitivity analysis. Technical Report 1999-
28, University of California Santa Barbara, 1999.
www.cs.ucsb.edu/research/trcs/abstracts/1999-28.shtml.

[9] M. MooreandS.Rugaber. Issuesin userinterfacemigration.
In Proceedingsof theThird Software EngineeringResearch
Forum, 1993.

[10] M. Moore, S. Rugaber, and P. Seaver. Knowledge-based
userinterfacemigration. In Proceedingsof the1994Inter-
nationalConferenceon Software Maintenance, 1994.

[11] L. Perronchonand R. Fischer. IDLE: Unified w3-access
to interactive information servers. In Proceedingsof the
Third International Conference on the World-Wide Web
(WWW’95),Darmstadt, 1995.

[12] L. Petzold.A descriptionof Dassl:A differential/algebraic
c systemsolver. TechnicalReportSAND82-8637,Sandia
NationalLab,1982.

[13] M. Ronchetti,S.Giancarlo,andD. Feltrin. Facelift: Using
www technology for anexternalreengineeringof old appli-
cations. In Proceedingsof the Third International Confer-
enceon theWorld-Wide Web(WWW’95),Darmstadt, 1995.

[14] S. Rugaber. Domain analysis and reverse engineering.
WhitePaper, January1994.

[15] S. Rugaber. The useof domainknowledgein programun-
derstanding.Annalsof Software Engineering, 9, 2000. 143-
192.

[16] S.Rugaber, T. Shikano,andK. Stirewalt. Adequatereverse-
engineering. In AutomatedSoftware EngineeringConfer-
ence, 2001.

[17] S.Rugaber, K. Stirewalt, andL. Wills. Detectinginterleav-
ing. In InternationalConferenceon Software Maintenance,
1995.265-274.


