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Abstract

A new adjoint sensitivity analysis approach is presented for time-dependent partial differential equations with

adaptive mesh refinement. The new approach, called ADDA, combines the best features of both the adjoint of the

discretization (AD) and discretization of the adjoint (DA) approaches. It removes the obstacles of applying AD to

adaptive methods and, in contrast to DA, requires for its use only a minimal amount of knowledge about the for-

mulation of adjoint PDEs and their boundary conditions. The effectiveness and efficiency of ADDA are demonstrated

for several numerical examples.
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1. Introduction

In recent years there has been a growing interest in sensitivity analysis for large-scale systems governed

by partial differential equations (PDEs). The results of sensitivity analysis have wide-ranging applications in

science and engineering, including optimization, parameter estimation, model simplification, data assimi-

lation, optimal control, uncertainty analysis and experimental design. Two important classical fields that
make extensive use of sensitivity analysis are inverse heat-conduction problems [11] and shape design in

aerodynamic optimization [15,16]. The mathematical theory for control systems governed by PDEs has

created a framework for the formulation of inverse design and general aerodynamic problems at a reduced
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computational cost. Gradient-based methods are often used for solving optimization problems involving

PDEs. The gradient can be calculated via sensitivity methods, which is more accurate than finite-difference

methods. In the pioneering work of Jameson [15], the gradient is calculated indirectly by solving the adjoint
equations.

Sensitivity methods for PDE problems have been studied by many authors (see [1,4,5,13–15]). Most of

this work has focused on steady-state PDE control and design optimization problems. For the transient

case, Bewley [4] has given an excellent review on the adjoint-based optimization approach for flow-control

problems.

In this paper we focus on adjoint methods for general transient PDE systems. Although many of the

results from the steady-state system can be readily extended to the time-dependent PDE system, the time-

dependent system has some unique features that must be treated differently. For example, apart from the
boundary conditions, we now have initial conditions that must be determined.

Given a parameter-dependent PDE system

F ðt; u; ut; ux; uxx; pÞ ¼ 0; ð1Þ

and a vector of objective functions Gðx; u; pÞ that depend on u and p, the sensitivity problem usually takes

the form: find dG=dp, where p is a vector of parameters. By the chain rule, the sensitivity dG=dp is given by

dG
dp

¼ oG
ou

ou
op

þ oG
op

: ð2Þ

If we treat (1) as a nonlinear system about u and p, say Hðu; pÞ ¼ F ðt; u; ut; ux; uxx; pÞ, we have the following
relationship:

oH
ou

ou
op

þ oH
op

¼ 0:

Assuming that oH=ou is boundedly invertible, the sensitivity dG=dp is given by

dG
dp

¼ � oG
ou

oH
ou

� ��1
oH
op

þ oG
op

: ð3Þ

There are two basic methods to calculate dG=dp in (3): forward and adjoint. Forward methods calculate

ou=op ¼ ðoH=ouÞ�1
oH=op first, which is the solution of the sensitivity PDE for each uncertain parameter.

Adjoint methods compute oG=ouðoH=ouÞ�1
first, which is the solution of the adjoint PDE. The sensitivity

and adjoint PDEs will be defined later. Although both methods yield the same analytical sensitivities, the

computational efficiency may be quite different, depending on the number of objective functions (dimension

of G) and the number of sensitivity parameters (dimension of p). The forward method is attractive when

there are relatively few parameters or a large number of objective functions, while the adjoint method is

more efficient for problems involving a large number of sensitivity parameters and few objective functions.

In this paper we focus on the adjoint method.

Two approaches can be taken for each method. In the first, called the discrete approach, we approximate

the PDE by a discrete nonlinear system and then differentiate the discrete system with respect to the pa-
rameters. The discrete approach is easy to implement with the help of automatic differentiation tools, such as

ADIFOR [6] and TAMC [12]. However, when the mesh is solution or parameter dependent (e.g., for an

adaptive mesh or moving boundary), or a nonlinear discretization scheme (e.g., upwinding) is used, the

discrete approach may not be computationally effective.

In the second, called the continuous approach, we differentiate the PDE with respect to the parameters

first and then discretize the sensitivity or adjoint PDEs to compute the approximate sensitivities. The
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system resulting from the continuous approach is usually much simpler than that from the discrete

approach.

It has been demonstrated [9] that a fully discrete approach is not very accurate and efficient for the
sensitivity analysis of adaptive numerical integration of ordinary differential equations (ODEs). Therefore,

in previous work for ODE and differential-algebraic equation (DAE) systems we have made use of the

discrete approach only to generate the sensitivity and/or adjoint ODE (or DAE), which is then solved

by adaptive numerical integration. In [7], we describe such an adjoint method for DAE systems of index up

to 2.

Adaptive methods, including adaptive mesh refinement (AMR) [3,18] and other types of adaptive

methods, have become more and more popular in the numerical simulation of transient PDE systems.

Several AMR software packages (e.g., CHOMBO [8] from the Lawrence Berkerly National Laboratory,
FLASH [10] from the flash center of the University of Chicago, and many others) have been devel-

oped and used in the large-scale simulation of physical systems. However, few of them have the sen-

sitivity analysis capability. The adaptive regions and the number of state variables usually varies

with time, which presents difficulties in sensitivity analysis and optimization. In previous work [21], we

have proposed a framework for forward sensitivity analysis and optimal control for transient

PDEs with AMR. In this paper we study how to apply the adjoint method to transient PDEs with

AMR.

It is well known that the method of lines (MOL) can transform a PDE system into an ODE or DAE
system by spatial discretization. Thus the sensitivity calculation methods in [7] can be used if the semi-

discretized PDE is obtained. However, we have observed that the adjoint of the discretization (AD) may not

be consistent with a PDE, and the adjoint variables are not smooth on an adaptive grid. Therefore, if the

adaptive region is changing with time, the interpolation for the adjoint variables between different grids will

introduce large errors.

A second possibility, called discretization of the adjoint (DA), is to form the adjoint PDE system along

with its boundary conditions, and then discretize it. The DA approach is naturally consistent with the

adjoint PDE system. Therefore, the adaptive grid method and interpolation can be used without difficulty.
However, it is difficult to formulate proper boundary conditions for the adjoint of a general PDE system.

To the best of our knowledge an algorithm for generating the boundary conditions does not exist for a

general PDE system. Moreover, the adjoint system may become inadmissible for some objective functionals

(see [1,2]), where the boundary conditions (or initial conditions) for the adjoint PDE system cannot be

formulated properly.

Our objective is to automate the adjoint sensitivity analysis for a PDE system as much as possible, in

particular for PDE problems where AMR is used. In this paper we propose an approach to combine the

AD method and the DA method in an efficient manner so that it can be used with AMR. The new approach
combines the best features of both the AD and DA methods. It removes the obstacles of applying AD to

adaptive methods and requires only a minimal amount of knowledge about the formulation of adjoint

PDEs and their boundary conditions. Both the AD and DA methods are used in this new approach which

we call ADDA, but are applied in different regions. The new approach is able to use existing software, such

as an AMR package for the mesh refinement, automatic differentiation tools for the forward solver to

generate the derivative codes, and DASPKADJOINT [18] for the sensitivity calculation to help automate

this process as much as possible.

The outline of this paper is as follows. In Section 2 we outline the calculation of the sensitivity by the
adjoint method and derive the adjoint PDE system and its boundary and initial conditions. In Section 3 we

describe the AD approach and illustrate its inconsistency and its difference from the DA approach through

a simple example. In Section 4 we describe the strategy of combining AD and DA into one method ADDA

and discuss its implementation in the context of AMR. Numerical examples are presented in Section 5

which demonstrate the effectiveness of the ADDA method.
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2. Sensitivity calculation by the adjoint method

2.1. Sensitivity PDE

Given a PDE in the domain X, without loss of generality we will assume that the PDE involves only up

to second order spatial derivatives

F ðt; u; ut;DxðuÞ;D2
xðuÞ; pÞ ¼ 0:

The objective function will be defined as an integral in both the time and space domains by

Gðx; u; pÞ ¼
Z T

0

Z
X
gðt; x; u; pÞ dx dt: ð4Þ

Then the sensitivity of Gðx; u; pÞ with respect to p can be calculated via either the forward or the adjoint

sensitivity method.

We first consider the forward sensitivity method. The sensitivity is given by

dG
dp

¼
Z T

0

Z
X
ðgp þ gusÞ dx dt;

where s ¼ up is obtained by solving the sensitivity PDE

dF
dp

¼ Fp þ Fusþ Fut st þ Fuxsx þ Fuxx sxx ¼ 0:

If the dimension of p is large, then the number of sensitivity PDEs is large. Thus the method can become
intractable for a large number of parameters.

2.2. Adjoint PDE and sensitivity evaluation

To derive the adjoint PDE and its boundary conditions, we introduce the adjoint variable v. Since
F ðx; u; pÞ ¼ 0 on the domain X, the derived function satisfies

Gðx; u; pÞ ¼ Gðx; u; pÞ �
Z T

0

Z
X
vF dx dt

and the sensitivity dG=dp is given by

dG
dp

¼
Z T

0

Z
X
ðgusþ gpÞ �

Z T

0

Z
X
v
dF
dp

: ð5Þ

Using integration by parts, we obtain

Z T

0

Z
X
v
dF
dp

¼
Z T

0

Z
X
vFp þ vFu

�
� ðvFutÞt � ðvFuxÞx þ ðvFuxxÞxx

�
s dx dt þ

Z
X
vFut sj

T
0 dx

þ
Z T

0

Z
oX
ðvFuxsþ vFuxx sx � ðvFuxxÞxsÞ dl:

Under certain circumstances, we can derive a set of boundary conditions for v so that s and sx either

disappear or are specified via Dirichlet boundary conditions. That is to say, the last term is easy to compute
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without solving for the transient values of s and sx, if the boundary conditions are chosen properly. We

denote the last term by BT . Defining v to satisfy

vFu � ðvFut Þt � ðvFuxÞx þ ðvFuxxÞxx ¼ gu; ð6Þ

Eq. (5) becomes

dG
dp

¼
Z T

0

Z
X
ðgp � vFpÞ �

Z
X
vFut sj

T
0 dx� BT : ð7Þ

Eq. (6) is called the adjoint PDE for the objective function G. With proper initial conditions at t ¼ T , (6)
can be solved backward for the value of v at initial time t ¼ 0. In order to compute the sensitivity easily in

(7) without solving the forward sensitivity PDE, the initial conditions for v at t ¼ T must be determined in
such a way that the term vFut sðT Þ is either eliminated or replaced by another term that is easy to compute.

If the PDAE has index (see [19,20]) of no more than one in time, we can choose v at t ¼ T so that

vFut jT ¼ 0 [7]. Then the sensitivity for the objective function is given by

dG
dp

¼
Z T

0

Z
X
ðgp � vFpÞ þ

Z
X
ðvFutÞjt¼0s0 dx� BT :

For a standard PDE system, where Fut is an identity matrix or has full rank, the initial condition for the

adjoint PDE (6) is v ¼ 0. If the adjoint PDAE is index-1, the index-1 equation must be satisfied at the initial

time. For an index-2 PDAE system, the condition vFut jT ¼ 0 may conflict with the index-2 constraints.
Hence it needs to be reconsidered carefully [7].

When the objective function is not of integral form in time, i.e., when the cost function is
R
X gðx; u; pÞ dx,

the above procedures result in an adjoint PDE system of homogeneous form

vFu � ðvFut Þt � ðvFuxÞx þ ðvFuxxÞxx ¼ 0; v 2 X ð8Þ

with the same boundary conditions, and a different initial condition that satisfies

gu � vðT ÞFut ¼ zðT Þ; ð9Þ

where zðT Þ may be zero if Fut has full rank (index-0 case). For a PDAE with time index greater than zero,

zðT Þ has a different form that may depend on the structure of the system. We should point out that, unlike

the DAE case [7], the initial conditions vðT Þmust be subject to the boundary conditions of the adjoint PDE.

zðT Þ may not be zero at boundaries if the boundary conditions are inconsistent with (9), even for the index-

0 case. Finally, the sensitivity of G ¼
R
X gðx; u; pÞ dx with respect to p becomes

dG
dp

¼
Z
X
gp dx�

Z T

0

Z
X
vFp dxþ

Z
X
vFut sð0Þ dxþ

Z
X
zðT ÞsðT Þ dx� BT ; ð10Þ

where zðT ÞsðT Þ can be calculated without evaluation of sðT Þ [7] by exploiting the structure of the adjoint

system (8) and the forward sensitivity PDE system.

If the proper boundary and initial conditions can be derived, the adjoint PDE system is discretized

spatially and then solved backward in time. The sensitivity can be calculated via (10). This approach is

called the discretization of the adjoint (DA) method.
2.3. Boundary conditions

The boundary conditions (BCs) should be derived in such a way that terms related to s and sx disappear.
It has been shown [13] that the boundary integral terms in the primal objective function lead to inhomo-
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geneous BCs for the adjoint, while inhomogeneous BCs for the primal problem lead to boundary terms in

the adjoint functional.

For a scalar PDE, the boundary conditions for the adjoint PDE can be obtained in a consistent manner.
However, the boundary conditions for systems of PDEs are much more complicated (see [13]). Under

certain restrictions, the boundary conditions exist and can be derived as described in [13]. We are aware of

no approach for deriving boundary conditions for the adjoint PDE, in the general case.

2.4. Inadmissible objective functional

As pointed out by many authors (see [1,2]), some objective functionals may be ‘‘inadmissible’’ to

an adjoint PDE problem. For partial differential algebraic equations (PDAEs) with index [19] in time
of greater than zero, e.g. Navier–Stokes equations, the objective functional is more likely to be

inadmissible.

For steady-state PDE problems, some inadmissible functionals can become admissible through the

incorporation of auxiliary boundary equations (ABEs) [2]. We attempted to apply this idea to the time-

dependent PDE problem. However, if t ¼ T is treated as one of the boundaries of the time domain, there

are no boundary conditions specified at t ¼ T . Hence it is difficult to apply the ABE method for the initial

conditions. In many cases, an inadmissible problem can become admissible if the boundary conditions are

also incorporated during the derivation of the adjoint PDE. However, this approach is highly problem-
dependent and cannot be applied generally.
3. Adjoint of the discretization

In this section we study the AD approach. We assume that the PDE system has been transformed

into an ODE/DAE system following semi-discretization in space. The adjoint ODE/DAE system is

obtained by taking the adjoint of the discretized PDE system. The cost functional is also discretized
spatially. The sensitivity of the functional can be calculated by the methods proposed for ODEs and

DAEs in [7].

It is clear that no explicit boundary conditions are needed for the AD approach. The AD method also

works for any cost functional; inadmissibility is not an issue. Moreover, the adjoint ODE system can be

generated automatically via automatic differentiation tools (see TAMC [12] and its applications). It is ideal

to a non-expert to calculate the sensitivity without knowing much details of the simulation codes.

3.1. Inconsistency of AD

As pointed out in [22], AD may not be consistent with the adjoint PDE if a nonlinear high-resolution

discretization scheme, such as an upwinding scheme, is used. This type of inconsistency exists even for the

forward sensitivity method. By the equivalence theorem, consistency (and stability) of the discrete scheme is

equivalent to convergence. We have found that this type of inconsistency does not lead to incorrect results

for the sensitivity of the objective functional. We think the reason is that although AD does not converge to

the adjoint PDE pointwise, it converges in L2, i.e., in a weak sense. It is the latter convergence that matters

in calculating the gradient of the cost functional.
There is another type of inconsistency that can result from the spatial discretization near the boundaries,

including the external boundaries and internal boundaries which are generated during the mesh adaptation.

We illustrate this by a simple example. Consider the one-dimensional heat equation

ut ¼ uxx ð11Þ
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with boundary conditions

uxð0Þ ¼ 0; uð1Þ ¼ 1: ð12Þ

If central differencing is adopted on a uniform grid, the discretization yields

_u1 ¼
2u2 � 2u1

h2
;

_ui ¼
uiþ1 � 2ui þ ui�1

h2
; i ¼ 2; . . . ;N � 1;

_uN ¼ 0;

where the first equation is obtained by adding a ghost boundary point u0 and the boundary condition

uxð0Þ ¼
u2 � u0
2h

¼ 0:

The equations for the adjoint of the discretization are

� _v1 ¼
v2 � 2v1

h2
;

� _v2 ¼
2v1 � 2v2 þ v3

h2
;

� _vi ¼
viþ1 � 2vi þ vi�1

h2
; i ¼ 3; . . . ;N � 2;

� _vN�1 ¼
�2vN�1 þ vN�2

h2
;

� _vN ¼ vN�1

h2
:

From Section 2, the adjoint PDE and its boundary conditions for an objective function G ¼
R 1

0
gðuÞ dx are

given by

�vt ¼ vxx;
vxð0Þ ¼ 0; vð1Þ ¼ 0:

Central differencing applied to the adjoint PDE yields

� _v1 ¼
2v2 � 2v1

h2
;

� _vi ¼
viþ1 � 2vi þ vi�1

h2
; i ¼ 2; . . . ;N � 1;

� _vN ¼ 0:

It is clear that AD is not the same as DA. The difference between DA and AD occurs for the equations
defined at x1 and x2, xN�1 and xN . Further investigation shows that for this example, AD is not consistent

with any continuum PDE, which is undesirable since by the equivalence theorem, consistency (and stability)

of the discrete scheme is equivalent to convergence.

In many cases the inconsistency can be removed by some manipulations. For example, by variable

substitution w1 ¼ ð1=2Þv1, the first two equations at x1 and x2 become consistent with the adjoint PDE; by

adding a new variable wN ¼ 0 and rewriting the last two equations as
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� _vN�1 ¼
wN � 2vN�1 þ vN�2

h2
;

� _wN ¼ 0;

� _vN ¼ vN�1

h2
;

the last two equations can be made to be consistent.

It is worthwhile to make several points about this type of manipulation. First, the sensitivity calculation

method must be changed after the manipulation. The sensitivity evaluation method for the AD approach,

described in [7], cannot be used directly. Neither can the evaluation method for the DA approach (10) be

used without intervention. Second, the manipulation is highly problem-dependent and cannot be done

automatically. It is error-prone and cumbersome to look into the AD-generated code and modify those

parts related to the boundary discretizations for a large-scale application. Finally, it is not suitable for the

artificial internal boundaries generated by the adaptive mesh method.

3.2. Difference between AD and DA

In this subsection we analyze the AD and DA methods, identify where the difference between AD and

DA comes from, and how to eliminate or reduce it.

During the derivation of the adjoint PDE, we used the product hv; F i ¼
R T
0

R
X vF dx dt. If we have

discrete values of v and F at grid points, the product can be evaluated by a numerical integration method. If

the trapezoidal rule is used on a one-dimensional grid, we obtain

hv; F i ¼
Z
X
vF dx ¼ V TMF þOðh3Þ ¼ ðV ; F ÞM þOðh3Þ; ð13Þ

where V ¼ ðV1; . . . ; VN ÞT, F ¼ ðF1; . . . ; FN ÞT, and M ¼ diagð0:5h; h; . . . ; h; 0:5hÞ. An alternative way to

evaluate the product is to first approximate v and F with basis functions at the grid points and then do the

integration. If the first order chapeau (hat) function is used for a 1D grid, then

M ¼ h
6

2 1

1 4 1

. .
. . .

. . .
.

1 4 1
1 2

0
BBBB@

1
CCCCA:

Similarly, the objective function can be integrated in space by the same methodZ
X
gus dx ¼ gUMS ¼ ðgU ; SÞM ¼ ðMgU ; SÞ;

where ð�; �Þ is the standard inner-product in RN .

Assume A is a representation of the linear differential operatorD in discrete space. If integration by parts
is used in space, then the product is

hv; F i ¼ hv;Dsi ¼
Z
X
v �Ds dx ¼ BT þ hD�v; si;

which results in

ðV ;ASÞM ¼ ðBV ; SÞM þ BT þHOT; ð14Þ
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where B represents the discretization of the adjoint operator D�, and HOT represents the high order term

OðhqÞ from the discretization. For example (11) and boundary conditions (12), if the central-difference is

used on a uniform grid then

B ¼ A ¼ 1

h2

�2 2
1 �2 1

. .
. . .

. . .
.

1 �2 1

0

0
BBBB@

1
CCCCA: ð15Þ

The discretization via the method of lines (MOL) of a forward linear problem yields a linear ODE

_U ¼ AU

and objective function (assume the integration is over the whole time domain)

GðUÞ ¼
Z T

0

MgðUÞ dt:

The conventional AD is with respect to the standard inner-product ð�; �Þ and generates the following adjoint

ODE:

� _V ¼ A�V þMgU ð16Þ

with initial conditions V ¼ 0 at t ¼ T . However, the adjoint operation in DA is with respect to the inner
product (13) and yields

� _V ¼ BV þ gU ð17Þ

with initial condition V ¼ 0. It is clear from (15) that B is different from A�, and MgU is not gU . Another

difference between AD and DA comes from the sensitivity calculation. There is an extra term BT in (14),

which does not arise in the derivation of AD. This boundary term BT , which comes from the integration by

parts in space, is calculated as part of the sensitivity.

To sum up, AD and DA use two different inner products during the derivation, and DA also uses in-

tegration by parts and has an extra term BT in the sensitivity evaluation. In the following, we will show that

even if AD uses the same inner product as DA, it still may not be consistent with the adjoint PDE.

The inner-product ðV ; F ÞM is equivalent to ðMV ; F Þ. If we let ~V ¼ M�1V in AD system (16), then

� _~V ¼ M�1A�M ~V þ gU ; ð18Þ

which is more similar to DA system (17) than to (16). For an objective function that is defined only at the

final time, AD and DA have different initial conditions. The transformation ~V ¼ M�1V can transform the

initial conditions of AD to the initial conditions of DA. Since

ðM�1A�MV ; SÞM ¼ ðV ;ASÞM ¼ ðBV ; SÞM þ BT þHOT;

we obtain

ðM�1A�M
�

� BÞV ; S
�
M
¼ BT þHOT: ð19Þ

Since M , A, and B are not unique, M�1A�M may not be a good approximation to B even if BT ¼ 0. For

example, if A is a second order scheme and B is a fourth order scheme, M�1A�M can be quite different from

B. However, this does not mean thatM�1A�M is not consistent with the adjoint PDE. After studying several
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one-dimensional problems, we found that for a given discretization scheme A, there was an integration

scheme M such that M�1A�M was consistent with the adjoint PDE internally. General speaking, if every cell

or node on a grid is treated in the same way during the discretization and integration,M�1A�M is consistent
with the adjoint PDE internally.

The inconsistency is most likely to occur at the boundaries, including external boundaries and artificial

internal boundaries. For the external boundaries, we found that at those with Dirichlet BCs, M�1A�M will

never be consistent with a PDE. If the boundary conditions are of Neumann or mixed type, M�1A�M is

consistent with the adjoint PDE when there is no advection (or convection) term in the primal PDE.

Otherwise, the inconsistency will occur at or near the boundaries. Artificial internal boundaries are usually

generated from an adaptive grid.

With a fixed grid and a linear discretization method, a consistent approximation to the objective
functional and a consistent approximation to the adjoint PDE can be produced outside the boundary layer.

This is one of the bases for the ADDA method, which will be described in the next section. For a nonlinear

discretization (e.g., the upwinding scheme), the consistency can be obtained in a weak sense.

There are three kinds of adaptive methods for time-dependent PDEs: r-refinement or moving grid

method, p-refinement or adaptive order method and h-refinement or local grid refinement method. Internal

boundaries can be generated from p-refinement and h-refinement. We have observed that AD for

p-refinement and h-refinement is not consistent with the adjoint PDE at and near the interface between the

low and high order methods (for p-refinement) and between the fine and coarse grids (for h-refinement).
This is because the interface acts as an internal boundary and the extra terms generated from integration by

parts there cannot be canceled numerically as they are analytically.
4. Adjoint sensitivity method for adaptive mesh refinement

There are two types of adaptive grids for time-dependent PDEs. The first is a fixed adaptive grid, which

is adapted initially and then fixed during the time integration. The second type of adaptive grid also varies
with time. When a new grid is generated, interpolation must be used to obtain the solution on the new grid.

There is less interpolation error if the most interesting regions are covered by both the old and new grids.

This is why the grid must be adapted frequently during the time integration. We focus on the second type of

adaptive grid in the following. We also assume that the method of lines approach is used for solution of the

forward PDE problem.

Since the adjoint variables must be interpreted differently in the AD and the DA methods, the two

methods cannot easily be mixed, i.e., we cannot solve for the adjoint variables in AD and use them in the

sensitivity evaluation of DA, and vice versa. This is true even when the transformation ~V ¼ M�1V is applied
to make them more similar.

The AD method is easy to implement. Given a spatial discretization for a PDE problem and sensitivity

parameters, automatic differentiation tools can be used to generate a spatial discretization for the adjoint

problem. However, the original AD method can be used only for a fixed grid. This is because the AD

system may not be consistent with the PDE. Hence the interpolation in the adaptive grid method makes no

sense for the AD method. The initial conditions of the original AD method also contain the grid-spacing

information, which will be lost when the grid is refined later. Fig. 1 shows a plot of the adjoint variable

(after the M transformation for AD) on the interface of the fine and coarse grids. It is obvious that the
adjoint variable in the AD method exhibits a high frequency oscillation.

The DA method can be used for adaptive grids. Since the discretization is straightforward from a PDE,

the DA system is usually simpler and requires less memory than the corresponding AD system. However, it

is difficult to obtain the DA solver automatically. To our knowledge, no automatic tool can do that. This is

partly because the boundary conditions and the boundary term BT in the DA method are problem
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dependent, and it is not possible to generate them automatically from a solver for the state variables. It

would be troublesome for an inexperienced user to provide the boundary conditions and boundary term

BT . Moreover, for inadmissible objective functionals, the DA method is problematic as discussed earlier.
To overcome the difficulties of the AD and DA methods, we propose a new method which combines the

advantages of the two methods and can also be used in combination with AMR. We call this method

ADDA, where AD takes care of the boundary discretization and DA takes care of the internal discreti-

zation and mesh adaptivity. We developed the ADDA method based on an observation that the discret-

ization from the AD method is consistent with the adjoint PDE (hence it can be replaced with the

discretization of the DA method) at the internal points if the mesh and the (linear) discretization are

uniform everywhere except at the boundaries. The basic idea of the ADDA method is illustrated in Fig. 2.
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Fig. 2. Diagram of the ADDA method.
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The results of the ADDA method should be equal or close to the results of the AD method on a

nonadaptive fine grid. Given a reference nonadaptive fine grid, we first split the whole domain into two

zones: boundary buffer zone and internal zone (see Fig. 2). The boundary buffer zone consists of the
boundary points and points that use the boundary points in their discretization. The remainder of

the points belong to the internal zone. Since the discretization of the AD method may not be con-

sistent with the adjoint PDE at or near the boundaries, the buffer zone is fixed and never adapted

during the entire time integration. In the internal zone, the discretization from the AD method can be

replaced with the discretization from the DA method if we assume that the discretization from the AD

method is consistent with the adjoint PDE. As discussed in Section 3.2, this assumption is not always

true for a general discretization and grid. However, if the mesh and discretization of the forward

problem are uniform in the internal zone, the adjoint of the discretization is indeed consistent with the
adjoint PDE.

After the discretization in the internal zone has been replaced by that from the DA method, the mesh can

be adapted to achieve efficiency without loss of accuracy. The adaptive mesh refinement in the internal zone

is invisible to the AD method, which expects that the discretizations for the adjoint system are generated by

the AD method on a nonadaptive fine grid. Instead the discretization is accomplished efficiently by the DA

method on an adaptive grid. The internal zone looks like a black box to the AD method.

Since the sensitivity calculation is based on the AD method, the initial conditions for the adjoint system

must be generated by the AD method. However, the initial conditions generated by the AD method may
involve the grid spacing information due to the spatial discretization and integration in the objective

functional evaluation. The variable transformation ~V ¼ M�1V can eliminate the grid spacing information

related to the integration scheme in the objective function evaluation. However, it cannot eliminate the grid

spacing information related to the integrand function.

Strictly speaking, the values of the adjoint variables are different on different grids. That is why the

sensitivity calculation by the AD method must be performed on a fixed mesh. The initial given mesh, which

is the last mesh generated at t ¼ T in the forward adaptive method, may not be the same as the reference

nonadaptive fine mesh we seek. Therefore, we must calculate the initial conditions for the ADDA method
on the reference mesh first and then project them onto the initial given mesh by interpolation.

The overall algorithm of the ADDA method is as follows: First we obtain the initial conditions for the

adjoint system by the AD method on a virtual nonadaptive fine grid. Then we transform and project them

to the adaptive grid with a fixed boundary buffer zone. We assume that the discretization has been chosen

so that AD is consistent with the adjoint PDE internally. Then the spatial discretization in the boundary

buffer zone is generated by the AD method via automatic differentiation, and the discretization in the

internal zone is defined by discretization of the adjoint PDE. Finally, an ODE or DAE time solver is used to

advance the solution to the next time step. After the adjoint variables have been computed, the sensitivity
evaluations of the AD method are used to calculate the sensitivities.
5. Numerical examples

In this section we present two examples to illustrate the difference between the AD, DA, and ADDA

methods. For simplicity, we use only h-refinement and two refinement levels. We use the structured

adaptive mesh refinement method (SAMR), which is described in [18]. Our SAMR algorithm in [18] also
has a feature to calculate the sensitivity by the forward sensitivity method. In both examples, we first

calculated the sensitivity by the forward method on a fine uniform grid, and then compared it with the

results of the adjoint method. Central differencing is used in all of our spatial discretizations. Our ODE/

DAE solver DASPKADJOINT [17] is used to do time integration and sensitivity calculation.
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The first example is of reaction-diffusion type and is described in [23]. The PDE is given by

ut ¼ Duþ Dð2� uÞ expð�d=uÞ on the domain X ¼ ð0; 1Þ � ð0; 1Þ;

ujt¼0 ¼ 1;
ou
on

¼ 0 at x ¼ 0; y ¼ 0; and u ¼ 1 at x ¼ 1; y ¼ 1;
ð20Þ

where D is the Laplacian operator and D ¼ Red=d; R ¼ 5; d ¼ 20: R is chosen as the sensitivity parameter,

and the objective functional at the final time is defined byZ 1

0:8

dx
Z 1

0:8

ðu2x þ u2yÞ dy:

This objective functional is inadmissible for the DA method, because the initial condition for the DA

method

v0 ¼ 2ux o
ox þ 2uy o

oy if ðx; yÞ 2 ½0:8; 1:0� � ½0:8; 1:0�;
0 otherwise

�

is not a regular function but a linear functional.

Table 1 shows the sensitivity calculated by the different methods. We can see that both the AD and DA

methods are not very accurate on the adaptive grid. It is surprising that the DA method has a large error,

which we believe is due to the inadmissible objective functional. However, if we use the initial conditions of

ADDA, which are generated on a uniform fine grid, in the DA method, the ADDA and DA methods give

almost the same results, which is expected because the boundary term BT ¼ 0 and the boundary conditions

generated by AD are the same as those given by DA.

The second example is the 2D Burgers� equation

ut ¼ ar2u� uux � uuy ; 0:66 t6 1:3:

The initial and boundary conditions are chosen such that the exact solution is

uðx; y; tÞ ¼ 1

1þ eðxþy�tÞ=ð2aÞ :

The sensitivity parameter is chosen to be a, with initial value a ¼ 0:008, and the objective functional at
t ¼ 1:3 is

gðx; yÞ ¼
Z 1

0

Z 1

0

uðx; y; 1:3Þ2 dx dy:

In order to test the adjoint method for different boundary conditions, we set Dirichlet boundary conditions

on the right and top boundaries and Neumann boundary conditions on the left and bottom boundaries. We

first solved it by the forward sensitivity method, and then compared the results with those of the adjoint
methods. The sensitivity equation is
Table 1

Comparison of different sensitivity methods

Method Fixed Adapted with two refinement levels

Forward AD AD DA DA2a ADDA

Base grid

points

100� 100 100� 100 50� 50 50� 50 50� 50 50� 50

Sensitivity 0.01478 0.01476 0.01440 0.01693 0.01470 0.01470

aDA2 is DA with the initial conditions of ADDA.
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st ¼ ar2s� ðusÞx � ðusÞy :

The adjoint equation is

�vt ¼ ar2vþ uvx þ uvy ;

where u is the state variable. The AD method is generated automatically by TAMC [12] from the forward

solver. For the DA method, the Dirichlet boundary conditions become homogeneous v ¼ 0, and the

Neumann boundary conditions become

v~n þ uv ¼ 0:

For this problem, the boundary term BT is

BT ¼
Z 1:3

0:6

dt
Z 1

0

vyupjy¼1 dx
�

þ
Z 1

0

vxupjx¼1 dy þ
Z 1

0

vuypjy¼0 dxþ
Z 1

0

vuxpjx¼0 dy
�
;

which is no longer zero. Fig. 3 shows the refinement at the beginning and final times. Table 2 shows the

sensitivities calculated by different methods.
The sensitivity evaluation of the DA method includes the BT term, BT ¼ 0:2032, which is not present for

the sensitivity evaluation of the AD and ADDA methods. Fig. 4 shows the values of the adjoint variable at

the line y ¼ 0:04. We can see that the results of ADDA are quite different from that of DA due to the

different boundary conditions, although they use the same discretization internally.

We should point out that we chose these two examples in part because the results could be compared to

those of the forward sensitivity methods. In practice, the adjoint method is advantageous if there are many
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Fig. 3. Grid refinement at different times for Burgers� equations.

Table 2

Comparison of different sensitivity methods

Method Fixed Adapted with two refinement levels

Forward AD (fixed) AD (adaptive) DA ADDA

Grid points 100� 100 100� 100 50� 50 50� 50 50� 50

Sensitivity 1.6036 1.5984 1.4913 1.5797 1.5952
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parameters and few objective functions. The ADDA approach is insensitive to the thickness of the AD
subdomain as long as it covers the stencil of the numerical scheme. For example, for central-differencing on

a domain with ghost boundaries, a thickness of only two cells is sufficient.

Our ADDA approach is not restricted to the method of lines with finite-difference method. It can be

applied to any PDE discretization (e.g., finite element and full discretization). The only difference for

different approaches is in the sensitivity calculation.
6. Conclusion

We have proposed a new adjoint sensitivity analysis approach (ADDA) that combines the discrete

approach (AD), where the adjoint system is derived by automatic differentiation of the discretized PDE,

with the continuous approach (DA), where the adjoint system is derived from the discretization of the

adjoint PDE, for time-dependent PDEs. The ADDA method removes the obstacles of applying AD in

the context of AMR and, in contrast to DA, requires for its use only a minimal amount of expertise on the

formulation of the adjoint PDE and its boundary conditions.

The DA approach can be used with AMR. Although experts have often been successful in deriving
boundary conditions for the adjoint of a given PDE system, there is no systematic method for deriving the

boundary conditions for the adjoint of a general PDE system. Moreover, the use of the DA method is

complicated by the inadmissibility problem for some objective functionals. In contrast, generation of

boundary conditions for the adjoint problem is not an issue for the AD approach, and there is no problem

with inadmissibility. On the other hand, the AD approach cannot be used with AMR because it is usually

inconsistent with the adjoint PDE (or with any PDE) at the internal grid boundaries.

In the ADDA method, the discretization on (or near) the boundary is generated by AD, which cir-

cumvents the difficulties of deriving the boundary conditions for the adjoint PDE system. The discretization
at the internal points comes from a DA approach, which is naturally consistent with the adjoint PDE.
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During the time integration, the adaptive method is applied only at the internal points. The interface be-

tween the AD and DA approaches becomes seamless if the discretization in the AD approach is consistent

with the adjoint PDE internally on a nonadaptive grid.
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