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Abstract. This paper proposes a new method for estimating the error in the solution of linear
systems. A condition number is defined for a linear function of the solution components. This
definition of the condition number is quite versatile. It reduces to the component condition number
proposed by Chandrasekaran and Ipsen [SIAM J. Matrix Anal. Appl., 16 (1995), pp. 93–112] and to
Skeel’s definition of condition number [J. ACM, 26 (1979), pp. 494–526] in some special cases, and
it can be used to estimate the error in a subspace. The estimate is based on the adjoint equation in
combination with small sample statistical theory. It can be implemented simply and is inexpensive
to compute. Numerical examples are presented which illustrate the power and effectiveness of this
error estimate.
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1. Conditioning and error estimation for linear systems. Perturbation
theory for linear systems has been studied for many years. The basic question is,
How sensitive is the solution to perturbations in the data? First order analysis is
often used in estimating errors; for instance, for stability analysis of algorithms or for
the condition number of an eigenvalue.

Consider the linear system

Ax = b,(1.1)

where A ∈ Rn×n. The basic question of perturbation theory is, How much will x
change if A and b are perturbed? Suppose we are solving a perturbed linear system
(A+∆A)x̃ = b+∆b. We would like to estimate the relative error ‖x− x̃‖/‖x‖. Here
we skip the details of which norm we are using and what kind of perturbation we are
assuming. Traditionally the relative error is estimated using the condition number
K(A) = ‖A‖‖A−1‖ and the backward error. The following results are well known [6,
p. 133].

If ‖∆A‖
‖A‖ < µ, ‖∆b‖

‖b‖ < µ, and µK(A) < 1, then

‖x− x̃‖
‖x‖ ≤ 2µK(A)

1− µK(A)
.(1.2)

Here we take µ to be a multiple of the relative machine precision εmach. The error
estimate can be given in terms of the residual r = Ax̃− b by

‖x− x̃‖
‖x‖ ≤ K(A)‖r‖

‖A‖‖x‖ .(1.3)
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When the condition number K(A) is very large, the system is considered to be ill-
conditioned and the solution may not be accurate. We call K(A) the standard con-
dition number in the following.

Many examples have demonstrated that the standard condition number may lead
to an overly pessimistic estimate for the overall error and that it may underestimate
the relative error for some components. Consider the following problems.

Example 1. Let

A =

[
1 0
0 δ

]
, b =

[
1
δ

]
,

where δ is very small. The solution is
(
1
1

)
The condition number is 1

δ
. Although

for small ε the condition number is very large, the solution is accurate. In fact, the
solution always has a high relative accuracy for any right-hand side b (assuming a
relative perturbation in A and b).

Example 2. Let

A =

[
1 1 + δ

1− δ 1

]
, b =

[
1 + δ + δ2

1

]
,

where δ is a small parameter. Choosing δ = 10−5, the estimate (1.2) will not produce a
warning in Matlab [9]. However, the true value of x2 is 10

−5 and the result computed
by Matlab is 8.8818 × 10−6, which has relative error of 0.112. There is not even
one digit of accuracy! On the other hand, when δ = 10−4, the computed result is
1.000888 × 10−4, with a relative error of 8.89 × 10−5. The computed result has four
digits of accuracy. The discrepancy can be explained using sensitivity analysis of
individual solution components [2].

Example 3. The numerical solution [12] of certain high-index differential-algebraic
equations (DAEs) by a fully implicit method yields an ill-conditioned system of linear
equations to be solved at each time step. But the propagation of error to future time
steps depends only on a well-conditioned subspace. Consider the following simple
index-2 DAE system: 


ẋ1 = x3 + 1,
ẋ2 = x3 + 2,
0 = x1 + x2 − 1.

(1.4)

Discretization by the backward Euler method yields a linear system with the matrix

A =


 1 0 −h
0 1 −h
1 1 0


 .(1.5)

The stepsize h at each time step may be very small. The condition number of A
is O( 1

h ) [12, p. 144]. Thus the linear system can be very poorly conditioned for
small stepsizes. However, the propagation of error to future time steps for this DAE
depends only on errors in the lower-index variables x1 and x2. Thus, it is much
more critical to get an accurate solution for these variables than for the higher-index
variable x3. In computation, we find that the linear system is solved quite accurately
(using Gaussian elimination (GE) with partial pivoting) for x1 and x2, and it is only
the variable x3 that is affected by the ill-conditioning. The standard condition number
cannot distinguish between the error in the two subspaces.
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Many other definitions of condition number have been proposed. References [6],
[7], [14], and [16] give some historical review. A precise analysis was given by Skeel
[15], leading to a componentwise definition of the condition of the linear system,

cond(A, x) =
‖ |A−1||A||x| ‖∞

‖x‖∞ ,(1.6)

where |A| = {|aij |}, and the condition number of A,
cond(A) = ‖|A−1||A|‖∞.(1.7)

This definition applies to componentwise relative perturbations. It can deal with
Example 1 easily and leads to a well-conditioned matrix A for that example. This
definition is also a special case of the componentwise analysis described in [6, p. 135].
Unfortunately, the cost to compute A−1 is large. In practice, the 1-norm of A−1 is
estimated [6, p. 290]. In [2], the concept of a componentwise condition number, which
yields a condition number for each component of the solution x, was proposed. Thus,
for Example 2 we can compute the condition number for x2 directly and obtain a better
error estimate. Example 3 could be handled by computing the component condition
number, but for larger DAE systems this could become awkward and expensive.

In this paper we will define a condition number that is applicable in even more
general situations. From our experience with solving DAE systems and optimal con-
trol problems, we believe that whether or not a solution is acceptable depends on
the requirements of the problem. In Example 2, if we are concerned only with the
accuracy of component x2, then the solution is unacceptable. The normwise condi-
tion number of the vector x cannot discern this. In Example 3, since we are mainly
concerned with the accuracy of x1 and x2 but not of x3, the solution is acceptable
although the standard condition number may be very high. This suggests for us to
define a condition number that can vary with different requirements. We will use
the concept of “derived function” introduced in section 2 to derive such a condition
number.

To estimate the condition number, it is not necessary to compute A−1 exactly.
Typically, one only wants to know the condition number within a factor of 10. Con-
dition estimators with O(n2) cost, based on the use of random vectors, have been
proposed in a number of papers [1], [3], [5], [9], [10], [11]. A detailed review can be
found in [6, Chap. 14]. Generally, these estimators yield poorer estimates than the
standard condition number but are cheaper to compute. In this paper we will also
propose a method that makes use of random vectors to perform error estimation.
Our method makes use of the idea and analysis for small sample statistical estimate
in [8] although we will not estimate A−1 directly. In [4], the complexity of computing
error bounds for linear systems is analyzed. The analysis reveals that O(n2) condi-
tion estimators cannot be free of counterexamples. In particular, our O(n2) condition
estimator has low-probability counterexamples which arise from some choices of the
random vectors.

The main contribution of this paper has two parts. First, we define a condition
number that resolves many of the problems with the standard condition number. It
reduces to the component condition number in some special cases and it can be used
to estimate the error in a subspace. A subspace condition number is proposed, which
helps to separate a well-conditioned subspace from an ill-conditioned system. Second,
we provide a means, using small sample statistical theory, of accurately and efficiently
computing this condition.



790 YANG CAO AND LINDA PETZOLD

This paper is organized as follows. In section 2 we introduce the concept of an
error estimate for a derived function. In section 3 we present our condition estimator
for general derived functions and apply it to some examples. In section 4, numerical
results are presented which compare this definition with the standard condition num-
ber, Skeel’s definition [15], and Matlab’s condition estimator (which uses Higham’s
modification of Hager’s method [6]). The numerical tests are based on randomly
generated dense or banded matrices and right-hand side vectors.

2. Estimating the error of a derived function. Given the linear system
(1.1), a derived function is a function g(x) of the solution. We are concerned with
the relative error in the derived function, ‖g(x) − g(x̃)‖/‖g(x)‖. But since the true
solution x can only be approximated by the numerical solution x̃, it is more practical
to compute ‖g(x)− g(x̃)‖/‖g(x̃)‖. Before we begin our discussion, we need to specify
the norm and what kind of perturbation we are concerned with. In the following, if
we do not state a particular norm, the vector norm can be any monotone norm, which
satisfies the requirement that if |x| ≤ |y|, then ‖x‖ ≤ ‖y‖. For example, the p-norm
and the ∞-norm meet this requirement. The matrix norm takes the operator norm.

Generally speaking, we cannot talk about errors without specifying some assump-
tion about the corresponding numerical methods or perturbations. A bad numerical
method will result in a large backward error even for a well-conditioned system. For
example, it is well known that Cramer’s rule gives a large backward error [6, p. 15].
GE without pivoting may lead to a large growth of perturbations for general matrices
as well. In this paper we do not want to dig into the details of the numerical methods.
Instead we will make some simple but reasonable assumptions about the size of the
perturbations. There are two major types of assumption: normwise and component-
wise. Normwise analysis assumes ‖∆A‖ ≤ ε‖E‖ and ‖∆b‖ ≤ ε‖f‖, while component-
wise analysis assumes |∆A| ≤ εE and |∆b| ≤ εf , where E and f are assumed to have
nonnegative entries. Different choices of E and f result in different error bounds. As
stated in [6, p. 134], the most common choice of tolerance is E = |A| and f = |b|.
This choice is satisfied by QR factorization [6, p. 369], where |∆A| ≤ f(n)εG|A| and
|∆b| ≤ f(n)εG|b|. For LU factorization, E = |L||U | should be used [6, p. 175]. Some
special classes of matrices have LU factorization with |L||U | = |A| or |L||U | ≤ 3|A|
[6, p. 184]. In this paper, we will present a componentwise analysis by taking E = |A|
and f = |b|.

Different derived functions lead to different condition numbers. When we choose
g(x) = x we will obtain the traditional condition number. When we choose g(x) = xi
we will obtain the component condition number. The derived function reflects the
requirements of the application. For example, in the application of condition estimate
for the linear system generated in a DAE solver, as in Example 3, the derived function
is defined via the projection of the solution onto the space of the lower index variables.
Thus we will refer to the corresponding error estimate as a subspace error estimate.
Usually we define the derived function as a linear function of the solution x. Of course
we could define a nonlinear derived function, but so far in our applications we have
needed only the linear one. Thus we will write the derived function as g(x) = Lx,
where L : Rn −→ Rk is a linear function. We assume rank(L) = k.

Consider the perturbed linear system

(A+∆A)x̃ = b+∆b,(2.1)

where |∆A| < ε|A|, |∆b| < ε|b|. We have
A(x− x̃) = ∆Ax̃−∆b,
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hence

x− x̃ = A−1(∆Ax̃−∆b),(2.2)

and

g(x)− g(x̃) = LA−1(∆Ax̃−∆b).(2.3)

Thus we have the estimate

‖g(x)− g(x̃)‖
‖g(x̃)‖ ≤ ‖|LA−1|(|∆A||x̃|+ |∆b|)‖

‖Lx̃‖
≤ ε

‖|LA−1|(|A||x̃|+ |b|)‖
‖Lx̃‖ ,

(2.4)

and we obtain the condition number

condL(A, x̃) =
‖|LA−1|(|A||x̃|+ |b|)‖

‖Lx̃‖ .(2.5)

Supposing that |b| ≤ |A||x|, and assuming that x is closely approximated by x̃, yields

condL(A, x̃) ≤ 2‖|LA−1||A||x̃|‖
‖Lx̃‖ .(2.6)

When we take g(x) = x, L is the identity operator, and this definition reduces to the
condition number introduced by Skeel [15]. When we take g(x) = xi, this definition
reduces to the component condition number defined in [2]. Thus the relative error in
the derived function is bounded by

‖g(x)− g(x̃)‖
‖g(x̃)‖ ≤ condL(A, x̃)ε.(2.7)

It is easy to generalize the properties of the standard condition number using this
definition. We remind the reader that (2.6) and (2.7) are approximate in that they
are based on the assumption that x is closely approximated by x̃.

For Example 3, we have

L =

[
1 0 0
0 1 0

]
and A−1 =




1
2 − 1

2
1
2

− 1
2

1
2

1
2

− 1
2h − 1

2h
1
2h


 .

Using (2.6), we have

condL(A, x) ≤
√
(|x1|+ |hx3|)2 + (|x2|+ |hx3|)2 + (|x1|+ |x2|)2√

x2
1 + x2

2

in the 2-norm. The subspace condition number is O(1) even in the case of inconsistent
initial conditions for the index-2 DAE (the index-2 variable x3 can be O(

1
h ) in this

case because it is approximating an impulse). This corresponds well with DAE theory
[12, p. 144].
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3. Condition estimate. Just changing the definition of the condition number
doesn’t give us much benefit since in practice we may not be able to afford to compute
A−1 or LA−1. The natural question is, How can we efficiently compute this condition
number? We will first give a method based on a scalar derived function, Lx = lTx,
where l ∈ Rn, and then extend the estimate for the case of a vector derived function.

3.1. Scalar derived function. For a scalar derived function g(x) = lTx, we
can efficiently compute the condition number by first computing the adjoint variable
λ which solves

ATλ = l(3.1)

so that λT = lTA−1. Assuming that we have the LU or QR decomposition of A, this
equation can be solved in O(n2) cost. Then the condition number becomes

condl(A, x) =
|λT |(|A||x|+ |b|)

|lTx| .(3.2)

It is the condition number in a particular direction, so we will call it a directional
condition number. When the direction is toward a single component, this becomes
the component condition number.

3.2. Vector derived function. A direct extension of the above defined error
estimate to the case of a vector derived function can be quite expensive to compute.
Thus we will estimate a measure of the vector error by making use of a scalar derived
function. To accomplish that, we introduce the small-sample statistical method for
estimating the 2-norm (details can be found in [8]). In the following, the norm is the
2-norm.

For any vector l ∈ Rn, if z is selected uniformly and randomly from the unit
sphere Sn−1 in n dimensions, the expected value of |lT z| is given by

E(|lT z|) = ‖l‖En,

where E1 = 1, E2 =
2
π , and for n > 2,

En =
1 · 3 · 5 · · · (n− 2)
2 · 4 · 6 · · · (n− 1) for n odd,

En =
2

π
· 2 · 4 · 6 · · · (n− 2)
1 · 3 · 5 · · · (n− 1) for n even.

En can be estimated by
√

2
π(n− 1

2 )
. Thus we use ξ = |lT z|

En
to estimate ‖l‖. The

estimate satisfies

Pr

(‖l‖
w

≤ ξ ≤ w‖l‖
)

≥ 1− 2

πw
+O

(
1

w2

)
,

where Pr() denotes the probability, and w > 0 is a real number. The bound does not
depend on the vector l. In condition number estimation, usually we are interested in
finding an estimate that is accurate to a factor of 10 (w = 10).
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For a more accurate estimate, we can use more orthogonal random vectors. Sup-
pose we have k orthogonal random vectors z1, z2, . . . , zk. Let

ξi =
|lT zi|
En

.

Then the estimate for ‖l‖ is given by

ξ(k) = Ek

√
ξ2
1 + · · ·+ ξ2

k.(3.3)

Usually, at most two or three random vectors are required in practice. The corre-
sponding probabilities satisfy [8]

Pr

(‖l‖
w

≤ ξ(2) ≤ w‖l‖
)

≈ 1− π

4w2
,

P r

(‖l‖
w

≤ ξ(3) ≤ w‖l‖
)

≈ 1− 32

3π2w3
.

We will use this tool to construct a subspace error estimate for the linear system. To

estimate ‖L(x−x̃)‖
‖Lx̃‖ , where L is a linear function from Rn to Rk, we select a vector

z uniformly and randomly from the unit sphere Sk−1. Let gz(x) = zTLx. Then

|gz(x)− gz(x̃)| = |zTL(x− x̃)|. Defining K1 =
|zTL(x−x̃)|
Ek‖Lx̃‖ , we have

Pr

(
1

w

‖L(x− x̃)‖
‖Lx̃‖ ≤ K1 ≤ w

‖L(x− x̃)‖
‖Lx̃‖

)
≈ 1− 2

πw
.

Taking λ to solve the adjoint equation

ATλ = LT z,(3.4)

we have from (2.3),

|zTL(x− x̃)| ≤ ε|λ|T (|A||x̃|+ |b|).
We define

e1 =
|λ|T (|A||x̃|+ |b|)

Ek‖Lx̃‖ ,

where λ solves (3.4). We have K1 ≤ e1ε. The condition estimate is given by e1.
The relative error is estimated by e1ε. When L = I, this differs from the traditional
relative error bound by a factor of Ek. Note that K1 approximates the relative error
with a high probability, and e1ε is an upper bound for K1. Thus e1ε is usually larger
than the relative error.

Numerical experiments show that this estimate, using one random vector, gives
a good result for most cases. But for some random vectors, it may produce a large
error. In this situation, using more random orthogonal vectors improves the result.
To keep the computational cost low, we use at most two or three random orthogonal
vectors. Given orthogonal vectors zi ∈ Rk, define

K2 =
E2

√
(zT1 L(x− x̃))2 + (zT2 L(x− x̃))2

Ek‖Lx̃‖ ,

K3 =
E3

√
(zT1 L(x− x̃))2 + (zT2 L(x− x̃))2 + (zT3 L(x− x̃))2

Ek‖Lx̃‖ .
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Then

Pr

(
1

w

‖L(x− x̃)‖
‖Lx̃‖ ≤ K2 ≤ w

‖L(x− x̃)‖
‖Lx̃‖

)
≈ 1− π

4w2
,

P r

(
1

w

‖L(x− x̃)‖
‖Lx̃‖ ≤ K3 ≤ w

‖L(x− x̃)‖
‖Lx̃‖

)
≈ 1− 32

3π2w3
.

For a condition estimate, we usually require the magnitude of the estimate to be
within a ratio of 10. Letting w = 10, the probability of an acceptable estimate for K1

is 93.6%, while for K2 it is 99.2% and for K3 it is 99.9%.
Let λi solve

ATλi = LT zi.

Defining

vi = |λi|T (|A||x̃|+ |b|),
we obtain

e2 =
E2

√
(v2

1 + v2
2)

Ek‖Lx̃‖(3.5)

and

e3 =
E3

√
(v2

1 + v2
2 + v2

3)

Ek‖Lx̃‖ .(3.6)

Thus K2 ≤ e2ε, K3 ≤ e3ε. e1, e2, and e3 are the corresponding condition estimates.
This method is especially useful for obtaining a subspace condition estimate. Let

L be a projection from Rn to Rk. The above method gives a relative error estimate
for the subspace of the solution under the projection.

To summarize, the algorithm for the subspace error estimate is given as follows.
We suggest using three random vectors for the estimate.

Subspace Error Estimate Algorithm. Suppose we have an LU or QR de-
composition of A and the numerical solution x̃. The condition number is estimated
as follows:

Step 1. Determine the subspace or the components for which one wants to estimate
the error. Let k be the dimension of the subspace and L be the projection from Rn to
the subspace.

Step 2. Randomly choose three orthogonal vectors z1, z2, z3 from the unit sphere
Sk−1. Solve (3.4) for the corresponding λ1, λ2, λ3.

Step 3. Compute

vi = |λT
i |(|A||x̃|+ |b|).

Then the subspace condition estimate is given by

e3 =
E3

√
(v2

1 + v2
2 + v2

3)

Ek‖Lx̃‖ ,(3.7)

and the subspace relative error estimate is given by e3ε.
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3.3. Examples. Here we demonstrate how the proposed method resolves the
problems in Examples 1–3 of section 1.

Example 4.

A =

[
1 0
0 δ

]
, b =

[
b1
b2

]
.

The solution is x̃ = (b1, b2/δ). Recall that, for this example, the solution has high rel-
ative accuracy for any right-hand side, assuming a relative perturbation. To compute
the error estimate, let the random vector be z, where ‖z‖2 = 1. Solving the adjoint
equation (3.4) yields λ = (z1, z2/δ)

T . Then the relative error is estimated using e1 by

2(|b1||z1|+ |b2||z2|/|δ|)
E2

√
b21 + b22/δ

2
ε ≤ 2ε

E2
.

Regardless of the random vector chosen, this method always yields a small condition
number. Of course, e2 will yield the exact condition number since the problem has
just two dimensions and we choose orthogonal random vectors.

Example 5.

A =

[
1 1 + δ

1− δ 1

]
, b =

[
1 + δ + δ2

1

]
.

Suppose our goal is an accurate x2. Then we let g(x) = x2. Since g(x) is a scalar
function, we do not need a random vector here. Solving the adjoint equation (3.1),
we have λ = 1

δ2 [−(1− δ), 1]T ≈ 1
δ2 [−1, 1]T . The relative error in x2 is estimated by

|λT |(|A||x̃|+ |b|)ε
|x̃2| ≈ 4

|δ|3 ε.

With a good numerical method like GE with partial pivoting (GEPP) or QR, ε is just
a multiple of the relative machine precision εmach for this two-dimensional problem.
For Matlab we get εmach ≈ 10−16. We can see from our estimate that when ε = 10−5,
the solution for x2 will have a relative error of 0.1 (the computed result yields an error
of 0.112). When ε = 10−4, the estimate predicts four digits of accuracy in x2. Thus,
the estimate accurately predicts the results obtained by Matlab (described in section
1), while the standard condition number underestimates the error.

Example 6.

A =


 1 0 −h
0 1 −h
1 1 0


 , b =


 b1

b2
b3


 .

For the subspace condition number, we choose a random vector z = [r1, r2, 0]
T of

norm 1. Solving the adjoint equation (3.4) yields λ = [12 (r1 − r2),
1
2 (r2 − r1),

1
2 (r1 +

r2)]
T . The condition is estimated using one random vector and (2.6) to be

|λ1|(|x1|+|hx3|+|x1−hx3|)+|λ2|(|x2|+|hx3|+|x2−hx3|)+|λ3|(|x1|+|x2|+|x1+x2|)
E3

√
x2
1+x2

2

≤ (|λ1|+|λ2|+|λ3|)(|x1|+|x2|+|hx3|)
E3

√
x2
1+x2

2

.

Thus the condition estimated is O(1), as we would expect from DAE theory [12,
p. 144]) for the condition of the low-index subspace.



796 YANG CAO AND LINDA PETZOLD

4. Numerical results. The numerical experiments were performed in Matlab
on a Linux computer. We chopped the data for a round-off error of 10−8 to avoid any
possibility that differences in the conclusions could be caused by different machine
precisions.

We compare our error estimate with Skeel’s condition estimate (1.6), the stan-
dard condition number, and the condition estimate provided by Matlab for randomly
generated data. We first generate the random matrix A. Then a real x is generated
randomly, and b is determined by b = Ax. We chop the data of A and b to get a
relative error of 10−8. Then we solve Ax̃ = b for x̃. We compare the estimates and

the actual relative error ‖x−x̃‖2

‖x̃‖2
. Skeel’s condition number and the standard condi-

tion number have been computed accurately without approximation of |A−1|. For
the relative error of x, our definition reduces to Skeel’s definition. But the statisti-
cal estimate used in our method is different from the estimate used in the suggested
implementation of Skeel’s method. Our estimate uses the small sample statistical
method and the adjoint equation to estimate ‖|A−1|(|Ax̃|+ |b|)‖ for the whole space,
or ‖|LA−1|(|Ax̃|+ |b|)‖ for some subspace, using several random orthogonal vectors,
while the suggested implementation of Skeel’s method approximates the matrix |A−1|
directly [6, section 14.5]. The latter is much more complicated and expensive and is
limited to matrices of a particular structure. For the three orthogonal random vec-
tors on the unit sphere, we first generate three random vectors r1, r2, r3 uniformly in
Rk([−1, 1]) = {x ∈ Rk|xi ∈ [−1, 1]} and then make them orthogonal by setting

z1 =
r1

‖r1‖ , z2 =
r2 − zT1 r2z1

‖r2 − zT1 r2z1‖
, z3 =

r3 − zT1 r3z1 − zT2 r3z2
‖r3 − zT1 r3z1 − zT2 r3z2‖

.

Note that although this is not exactly uniform on the unit sphere, it is cheaper to
generate, and from our practice we feel it works quite well.

4.1. Scalar function g. Our first numerical test is to estimate the relative error
for a scalar function. Here we let g(x) = 1

n

∑n
i=1 xi. Since g(x) is a scalar function,

we can use the directional condition estimate. Other definitions do not provide a
good estimate because they have not been designed to deal with this type of derived
function. The corresponding results are shown in Figures 4.1 and 4.2 and Table 4.1.
We show both the overestimate ratio estimate

real error and the underestimate ratio
real error
estimate .

It can be seen that the standard condition definition and Skeel’s definition result in a
much greater overestimate than our method.

4.2. Vector error estimate. Next we compared the relative error ‖x−x̃‖
‖x̃‖ with

the estimates for 10,000 randomly generated dense matrices A and vectors x of di-
mension 100. The results are shown in Figures 4.3 and 4.4. The underestimates
and overestimates for our method are displayed in Figure 4.3. Figure 4.4 shows the
overestimate ratio for Skeel’s definition, the standard condition number, and Mat-
lab’s estimator. Table 4.2 compares the mean and max value of those ratios for each
method. From the results, we can see that there is a potential for a substantial overes-
timate for all the definitions and estimators. Our estimator is, with high probability,
within a factor of 10 of the standard condition estimate, as shown in Figure 4.5. If we
take an overestimate larger than 100 as a bad estimate, in 10,000 random tests, our
method generates 142 bad estimates (1.42%), Skeel’s condition number generates 195
bad estimates (1.95%), the standard condition number generates 405 bad estimates
(4.05%), and the Matlab estimator generates 2124 bad estimates (21.24%).
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Fig. 4.1. The plot on the left shows real error
our estimate

, the amount by which our method underes-
timates the error of the mean function g(x), for 10,000 randomly generated dense matrices A and
vectors x of dimension 100. The plot on the right shows the amount of overestimate our estimate

real error
.
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Fig. 4.2. Overestimate of error of the mean function by Skeel’s definition (left) and by the
standard condition estimate (right) for 10,000 randomly generated dense matrices A and vectors x
of dimension 100. (Note that, since Skeel’s definition and the standard condition estimate are not
designed for the computation of the condition of a scalar derived function, for these definitions we
are using the estimate of the full vector.)

Table 4.1
Comparison of ratios of overestimate and underestimate of error of the mean function using

different condition estimates for dense matrices. For our method, the maximum of the overestimate
and the underestimate is shown.

Our method Skeel Standard Matlab

MEAN 12.48 3.58 × 104 4.65 × 104 1.16 × 105

MAX 2.75 × 104 4.85 × 107 5.54 × 107 1.22 × 108

4.3. Ill-conditioned matrices. Another group of experiments was done for the
(ill-conditioned) Hilbert matrix of dimension 10, where aij =

1
i+j . The results are

shown in Figures 4.6 and 4.7 for 10,000 randomly generated vectors x. Here we can
see that all the methods can give a substantial overestimate to the actual error. Our
method yields a result which is comparable to Skeel’s estimate and to the standard
condition estimate. For the number of overestimates by a factor of more than 100,
in 10,000 random tests our method generated 259 (2.59%), Skeel’s condition number
generated 628 (6.28%), the standard condition number generated 4056 (40.56%), and
Matlab’s estimator generated 7394 (73.94%).
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Fig. 4.3. Underestimate of vector error real error
our estimate

(left) and overestimate of vector error
our estimate
real error

(right) by our method for 10,000 randomly generated dense matrices A and vectors x
of dimension 100.
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Fig. 4.4. Overestimate of vector error by Skeel’s condition estimate (left), by the standard con-
dition estimate (middle), and by Matlab’s condition estimate (right) for 10,000 randomly generated
dense matrices A and vectors x of dimension 100.

Table 4.2
Comparison of ratios of overestimate and underestimate of vector error using different condition

estimates for dense matrices.

Our method Skeel Standard Matlab
MEAN 21 25 33 83
MAX 1500 1604 2432 6389
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Fig. 4.5. Underestimate of standard condition number standard condition number
our estimate

(left) and

overestimate of standard condition number our estimate
standard condition number

(right) by our method for
10,000 randomly generated dense matrices A and vectors x of dimension 100.
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Fig. 4.6. Underestimate (left) and overestimate (right) of the vector error by our method for
the Hilbert matrix of dimension 10 with 10,000 randomly generated vectors x.
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Fig. 4.7. Overestimate of the vector error by Skeel’s condition estimate (left), the standard con-
dition estimate (middle), and Matlab’s condition estimate (right) for the Hilbert matrix of dimension
10 with 10,000 randomly generated vectors x.

Table 4.3
Comparison of condition numbers for Example 3 in section 1.

Stepsize h Ours (full space) Skeel’s Standard Ours (subspace)

10−6 2.04 × 106 1.41 × 106 1.5 × 106 3.30
10−8 2.13 × 108 1.41 × 108 1.5 × 108 3.30
10−12 2.40 × 1012 1.41 × 1012 1.5 × 1012 3.30

4.4. DAE examples. We take Example 3 in section 1 as our first DAE exam-
ple. We choose different stepsizes h = 10−6, 10−8, 10−12 and random right-hand sides
b. The corresponding condition numbers are listed in Table 4.3. With the stepsize
decreasing, the condition number for the full solution space grows as O( 1

h ) for all these
definitions. But for the subspace of only the first two components, the subspace con-
dition number remains at 3.30. This indicates that this subspace is well-conditioned,
although the system is ill-conditioned in the full solution space.

Another DAE example comes from an application in mechanics. It is of interest
for the computation of the elliptic Fekete points [13]. The problem is of the form

M
dy

dt
= f(y(t)), y(0) = y0, y′(0) = y′0,(4.1)

with y, f ∈ R2N and 0 ≤ t ≤ tend. Here, tend = 1000, N = 20, and M is the mass
matrix given by

M =

(
I6N 0
0 0

)
,
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Table 4.4
Comparison of condition numbers for the Fekete problem.

Stepsize h Ours (full space) Skeel’s Standard Ours (subspace)

10−6 7.07 × 106 1.00 × 106 2.5 × 1011 24.37
10−8 5.93 × 108 1.00 × 108 3.44 × 1015 24.37
10−12 1.15 × 109 1.00 × 1012 1.42 × 1027 24.37

where I6N is the identity matrix of dimension 6N . The details of this problem can be
found in [13] and also on the website http://hilbert.dm.uniba.it/∼testset/descrip.htm.
Since we are concerned only with the linear system generated in the solution process,
we extract the linear system for different stepsizes h = 10−6, 10−8, 10−12 and ran-
domly generate the right-hand sides b. The subspace with the first 120 components is
what we are concerned with here. The numerical results are shown in Table 4.4. The
condition number of the full solution space grows when the stepsize decreases, while
the condition number for the subspace remains the same at 24.37. This subspace con-
dition number shows that the solution to the linear system can be computed safely
for the first 120 components.

5. Conclusion. In this paper we proposed a new definition of condition number
and a new method for error and condition estimation based on the adjoint equation
and the small-sample statistical method. This new definition can produce a subspace
error estimate, which is useful in some applications. For a vector measure of the error,
the new definition, estimated as outlined by the small-sample statistical method, has
low (3n2) cost (assuming direct solution of dense linear systems where the matrix
has already been factorized) and probability of 99.9% for the accuracy of the error
estimate to be within a factor of 10. The method easily allows for the use of different
derived functions (measures of the error) that may be relevant for different problems.
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