
An arbitrary Lagrangian Eulerian smoothed particle hydrodynamics
(ALE-SPH) method with a boundary volume fraction formulation for

fluid-structure interaction

Bruno Jacoba, Brian Drawertb, Tau-Mu Yic, Linda Petzolda,d

aDepartment of Mechanical Engineering, University of California-Santa Barbara, Santa Barbara, California, 93106, USA
bDepartment of Computer Science, University of North Carolina at Asheville, Asheville, North Carolina, 28804, USA

cDepartment of Molecular, Cellular, and Developmental Biology, University of California-Santa Barbara, Santa Barbara,
California 93106, USA

dDepartment of Computer Science, University of California-Santa Barbara, Santa Barbara, California, 93106, USA

Abstract

We present a new weakly-compressible smoothed particle hydrodynamics (SPH) method capable of modeling
non-slip fixed and moving wall boundary conditions. The formulation combines a boundary volume fraction
(BVF) wall approach with the transport-velocity SPH method. The resulting method, named SPH-BVF,
offers detection of arbitrarily shaped solid walls on-the-fly, with small computational overhead due to its
local formulation. This simple framework is capable of solving problems that are difficult or infeasible for
standard SPH, namely flows subject to large shear stresses or at moderate Reynolds numbers, and mass
transfer in deformable boundaries. In addition, the method extends the transport-velocity formulation
to reaction-diffusion transport of mass in Newtonian fluids and linear elastic solids, which is common in
biological structures. Taken together, the SPH-BVF method provides a good balance of simplicity and
versatility, while avoiding some of the standard obstacles associated with SPH: particle penetration at the
boundaries, tension instabilities and anisotropic particle alignments, that hamper SPH from being applied
to complex problems such as fluid-structure interaction in a biological system.

Keywords: Solid wall model, Transport-velocity, Smoothed particle hydrodynamics, Boundary condition,
Deforming boundaries

1. Introduction

Smoothed particle hydrodynamics (SPH) is a
meshless particle method based on a Lagrangian
formulation [1], proposed independently by Gin-
gold and Monaghan [2] and Lucy [3] as a method5

to simulate astrophysical problems. Since its de-
velopment, SPH has been used in a wide range of
applications, including colloidal suspensions [4, 5],
nanofluidics [6], blood flow [7, 8], multiphase flows
[9], polymer chains [10] and red blood cell deforma-10

tions [11].
In contrast to grid-based methods, SPH uses a

kernel estimation at Lagrangian points (particles)
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to approximate the partial differential equations
(PDEs) that govern the system of interest. When15

compared with standard mesh-based methods,such
as finite element (FEM), finite difference (FDM)
and finite volume (FVM), SPH offers attractive ad-
vantages. As a consequence of its Lagrangian de-
scription, advection is treated exactly, allowing the20

simulation of arbitrary free-shear flow in systems
with complex geometries without the need to use
an adaptive mesh or interface tracking [12, 13]. An-
other important feature of the method is its inher-
ent adaptivity, as particle attributes evolve accord-25

ing to their material time derivative [14]. More
recently, the development of multi-resolution SPH
brings the method closer to industrial applications
by adaptively increasing the resolution by means of
splitting particles in regions of interest, and coa-30

lescing particles in regions where lower resolutions
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suffices [15, 16, 17, 18, 19].
Despite all of these advantages, the treatment of

solid wall boundaries in SPH remains a challenge.
Recent studies [20, 21, 22, 23, 24, 25, 26, 27, 28,35

29, 30] have demonstrated that despite several im-
provements, the development of a robust, efficient
and accurate method capable of preventing parti-
cle penetration under no-slip and partial-slip con-
ditions remains an open problem. In fact, some40

consider it to be one of the grand challenges for the
advancement of SPH [31].

The work of Valizadeh and Monaghan [32] pro-
vides a comprehensive review of the available solid
wall models, comparing the performance of the45

most widely-used strategies and highlighting their
capabilities and drawbacks. They classify the dif-
ferent models of solid boundaries into three main
groups: (i) semi-analytical, (ii) ghost particles
and (iii) boundary force methods. In the semi-50

analytical approach [25], surface integrals must be
approximated using the SPH formalism. A limita-
tion of this class of methods is the complexity of
the algorithm, as many modifications are necessary
to help prevent particle penetration on the solid55

boundary. In the ghost particles approach [33], a
set of fictitious particles are created in the wall
in order to guarantee non-slip and prevent pene-
tration. Despite being conceptually attractive, the
treatment of complex geometries is not straightfor-60

ward. Similarly challenging, the computational al-
gorithm typically requires the creation/destruction
of particles at specific wall positions at each time
step, causing memory access overheads and addi-
tional communication in otherwise parallel tasks.65

These limitations make the class of boundary
force methods a simple and attractive alternative.
As a common feature, these methods use pre-
determined layers of particles to model boundaries.
The variants in this class differ in the way velocity70

and density are communicated between wall and
fluid particles. For example, in the method de-
veloped by Monaghan and Kajtar [23], a Lennard-
Jones boundary force is added to the momentum
equation for particles in the neighborhood of the75

walls, in a similar manner as the forces used in the
immersed boundary method [34]. This approach,
despite its simplicity, is effective for a wide range of
problems, provided that all the parameters of the
boundary force are calibrated correctly.80

In the work of Adami et al. [22], the pressure and
velocity of boundary particles are computed using
interpolation of the fluid field, thus implicitly en-

forcing the impermeability condition of rigid walls.
Unlike the method of Monaghan and Kajtar [23],85

this method does not require parameter calibration.
In fact, the detailed study of Valizadeh and Mon-
aghan [32] concluded that the method of Adami
et al. [22] is overall the best method available. More
recently, Khayyer et al. [35] obtained good results90

for an enhanced incompressible SPH method and a
pressure-based, physically-derived boundary condi-
tion. Similarly, Zhan et al. [36] obtained excellent
results and nearly quadratic convergence by using
stabilization techniques to achieve higher accuracy.95

However, both frameworks used the boundary con-
dition proposed by Adami et al. [22] in which there
is no mathematical guarantee that particle penetra-
tion is prevented.

Recently a new method, designed primarily for100

dissipative particle dynamics (DPD) systems, was
proposed by Li et al. [37]. This method introduces
an indicator variable, which measures the boundary
volume fraction (BVF) of particles near solid walls,
and employs a predictor-corrector integration to105

prevent particle penetration. As a result, the fluid
particles become autonomous to find wall surfaces
in arbitrarily shaped objects, based solely on the co-
ordinates of their neighboring particles. Thus, this
method prevents particle penetration with minimal110

computational overhead by using a local formula-
tion.

In this context we propose a new SPH formu-
lation combining the BVF wall treatment with
the transport-velocity discretization. The result-115

ing method, named SPH-BVF, is versatile, accurate
and allows the modeling of fixed and moving bound-
aries. In contrast to the method proposed by Adami
et al. [22], the impermeability is explicitly enforced
during the time integration, and no further correc-120

tion of the pressure field is required. Furthermore,
we improve the BVF method for the case of moving
boundaries by using weighted interpolations of the
solid particles to determine the wall velocity and
accelerations, resulting in an algorithm capable of125

dealing with deforming boundaries. Finally, we in-
troduce the reaction-diffusion equation in our for-
mulation, extending the usage of the method to con-
jugate mass transport problems in moving bound-
aries, enabling simulations where boundary defor-130

mations are caused by reaction-diffusion events.
This step is crucial in enabling SPH to simulate
certain biological systems in which enzymatic re-
actions trigger processes that modify the boundary
properties.135
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The main features of the SPH-BVF method in-
clude (a) algorithmic simplicity; (b) retaining the
locality and intrinsic parallelism of the SPH method
at the cost of a small overhead; (c) preventing the
three major problems in standard SPH methods:140

particle penetration at the boundaries, tension in-
stabilities and anisotropic structures. We demon-
strate these capabilities and validate the proposed
method using canonical examples and compare the
results with the literature. Finally, we test the145

new method on a biomechanical cell wall polar-
ization problem that incorporates multiple physics
(species transport, solid and fluid mechanics), and
thus could not be solved by existing SPH methods
and remains challenging for advanced commercial150

multiphysics FEM tools.
This paper is organized as follows: Section 2

briefly describes the transport-velocity SPH formu-
lation. Section 3 provides the additional equations
required for the SPH-BVF method and its algo-155

rithm. Sections 4 and 5 present validations, appli-
cations, and discussion of relevant results. Finally,
conclusions and future perspectives are discussed in
Section 6.

2. SPH formulation160

In this section we provide a brief overview of the
governing equations, the SPH discretizations and
the temporal integration method proposed.

2.1. Governing equations and transport-velocity
formulation165

The continuum mechanics equations for the con-
servation of mass, linear momentum and concentra-
tion of species in a Lagrangian reference frame are
given by

dρ

dt
= −ρ∇ · v, (1)

dv

dt
=

1

ρ
∇ · σ + FB, (2)

dC

dt
= ∇ · (α∇C) +R, (3)

where ρ, v, σ, FB, C, α and R denote the fluid170

density, velocity, Cauchy stress tensor, body force,
concentration, mass diffusivity and reaction term,
respectively. The d(·)/dt operator denotes the ma-
terial derivative [38].

One of the most relevant problems of standard,175

purely Lagrangian SPH discretizations of Eqs. (1)-
(3) is the onset of anisotropic particle structures
formed as the particles follow the Lagrangian tra-
jectories. This problem was first addressed by
Nestor et al. [39] by introducing the concept of par-180

ticle shifting, where a small perturbation is inserted
to the particle trajectories, reducing the formation
of anisotropic structures. Later, the work of Shad-
loo et al. [40] applied particle shifting to a weakly
compressible SPH formulation, obtaining improved185

results in fluid flow problems. More recent im-
provements include the usage of particle shifting in
free surface flows for incompressible SPH formula-
tions [41], and stabilized particle shifting techniques
[42]. Oger et al. [43] clarified that this issue is par-190

ticularly relevant in fluid flows in which there is
a natural tendency of particle alignment, such as
flows subject to stretching and shear stresses. A
similarly relevant problem is the so-called tensile
instability, a phenomenon that causes particles to195

clump when subject to a tension stress state [44],
being particularly relevant in fluid-structure inter-
actions, solids under large deformations and flows
under high Reynolds numbers. Incidentally, both
of these limiting issues are alleviated by using the200

transport-velocity formulation, proposed by Adami
et al. [22] for fluids and later extended to solid me-
chanics by Zhang et al. [45]. The transport-velocity
formulation consists of a particular type of Arbi-
trary Lagrangian Eulerian (ALE) formalism [43],205

where particles are advected by an arbitrary trans-
port velocity, specifically tuned so that the pressure
field is kept positive, thus avoiding the tensile in-
stability, while at the same time it causes a small
shift in the particle trajectories, avoiding the forma-210

tion of coherent structures of particles. For a de-
tailed numerical analysis of the transport-velocity
SPH formulation, we refer the reader to Litvinov
et al. [46].

The transport-velocity equations are obtained by215

rewriting the material derivative operator for a par-
ticle moving with a modified advection velocity ṽ
as

d̃(•)
dt

=
∂(•)
∂t

+ ṽ ·∇(•). (4)

The presence of the modified transport velocity,
ṽ, modifies the material derivative operator with220

two relative velocity terms, leading to the following
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identity

d(•)
dt

=
d̃(•)
dt

+∇ · [(•)(v − ṽ)]− (•)∇ · (v− ṽ), (5)

where, due to the weakly compressible approxima-
tion [12, 45], it is safe to assume that ∇·(v−ṽ) ≈ 0.
Thus, the transport-velocity formulation of the con-225

servation laws, Eqs. (1)-(3), yields

d̃ρ

dt
= −ρ∇ · v −∇ · [ρ(v − ṽ)] , (6)

d̃v

dt
=

1

ρ
∇σ + FB −∇ · [v(v − ṽ)] , (7)

d̃C

dt
= ∇ · (α∇C) +R−∇ · [C(v − ṽ)] . (8)

Equations (6)-(8) form the set of governing equa-
tions of the SPH-BVF formulation. Additional
conservation laws can be added as needed, using
the identity provided by Eq. (5). Notice that this230

formulation can be seen as a generic version of
SPH schemes for an arbitrary reference frame [43],
where ṽ is the referential velocity. For instance, if
ṽ = v, Eqs. (6)-(8) reduce to the classical, purely
Lagrangian formulation. In contrast, setting ṽ = 0235

results in a formulation for an inertial (Eulerian)
reference frame. In the following sections, we dis-
cuss the usage of ṽ and how this term is discretized.

2.2. SPH discretization

In SPH, the mapping between the primitive vari-
ables (mass, momentum and concentrations) and
the discrete particle system is done using two differ-
ent approximations: a radial basis function kernel
interpolation and a quadrature approximation. The
radial basis function kernel interpolation consists of
approximating a continuous function f : R3 7→ R,
defined at coordinates x in Ω ⊆ R3, by the integral
equation with a smoothing kernel function W with
compact support h

f(x) ≈
∫

Ω

f(x′)W (x− x′, h)dx′. (9)

The accuracy of the approximation in Eq. (9) de-240

pends on the choice of W . For the sake of simplic-
ity, we have adopted in this work the Lucy ker-
nel, proposed by Lucy [3], with xij = x − x′ and
ξ = ||xij ||2/h denoting a generalized coordinate

W (ξ) =

{
αD (1 + 3ξ) (1− ξ)3

, if 0 ≤ ξ ≤ 1,

0, otherwise,

(10)

and the spatial derivative

∇W =
x

x

dW

dξ
, (11)

where the normalization parameter αD depends on
the dimensionality of the problem:

αD =


5/4h, if 1D,

5/πh2, if 2D,

105/16πh3, if 3D.

(12)

For details on choosing W , the reader may refer
to the work of Xu and Deng [13]. The second ap-
proximation consists of rewriting the integral given
by Eq. (9) as a discrete sum. The domain Ω is then
discretized using N particles, each located at co-
ordinates xi. The kernel approximations of f and
∇f are given by

fi ≈
N∑
j=1

mj

ρj
fjWij , (13)

∇fi ≈
N∑
j=1

mj

ρj
(fj ± fi)∇Wij , (14)

where mj/ρj , 〈f〉i and 〈∇f〉i denote the number245

density (weight) of particle j, the kernel approxima-
tions of the field f(x) and its gradient at position
xi, respectively.

2.3. Stress description of solids and fluids

Equations (1)-(3) allow a common description of250

fluid and solid dynamics within the same frame-
work [45]. This facilitates the treatment of multi-
ple materials in complex physical problems, such as
biological systems and multiphase flows. Different
materials can then be modeled using different con-255

stitutive relations for the Cauchy stress tensor σ.
For validation purposes, we use two types of ma-
terials: linear elastic solids and Newtonian fluids.
Thus,

σ =

{
−PI + S, solids.

−PI + 2ηε, for fluids.
(15)
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where P , η are the pressure and viscosity, and260

S, ε, I denote the deviatoric stress, strain and
second-order identity tensors, respectively. Assum-
ing Hooke’s law, the Jaumann rate of the deviatoric
stress tensor S is given by [44]

dS

dt
= 2G

[
ε− 1

3
Tr(ε)I

]
+ S · ωT + ω · S, (16)

where G is the shear modulus and ω is the rota-265

tion tensor. The kernel approximations are used to
discretize the spatial derivatives and primitive vari-
ables in the governing equations, Eqs. (1)-(3). The
resulting equations are

dρi
dt

= ρi
∑
j

mj

ρj
∇Wij · vij (17)

−
∑
j

mj

ρj
∇Wij · [ρi(vi − ṽi) + ρj(vj − ṽj)] ,

dvi
dt

= −
∑
j

mj∇Wij · (18)

·

[(
σi
ρ2
i

+
σj
ρ2
j

)
−

(
Ai

ρ2
i

+
Aj

ρ2
j

)]
+
∑
j

mj
µij

ρiρj(x2
ij + εh2)

∇Wij · vij ,

dCi
dt

=
∑
j

mj
αij(Cj − Ci)
ρiρj(x2

ij + εh2)
∇Wij · xij (19)

−
∑
j

mj

ρj
∇Wij · [Ci(vi − ṽi) + Cj(vj − ṽj)] ,

dSi
dt

= 2G

[
εi −

1

3
Tr(εi)I

]
+ Si · ωTi (20)

+ωi · Si,

where the strain and rotation tensors for each par-270

ticle i in Eq. (20) are given by

εi =
∑
j

mj

2ρj

[
vij ⊗∇Wij + (vij ⊗∇Wij)

T
]
, (21)

ωi =
∑
j

mj

2ρj

[
vij ⊗∇Wij − (vij ⊗∇Wij)

T
]
, (22)

and the summations are performed over all neigh-
boring particles of particle i that are within the
compact support of W , and vij = vi − vj . The
term A = ρv(v − ṽ) denote the relative velocity275

tensor. The shear viscosity and mass diffusion co-
efficients are averaged as µij = 2µiµj/(µi+µj) and
αij = 2αiαj/(αi + αj). A small constant ε = 0.01
is added to the denominators of Eqs. (18)-(19) to
prevent singularities.280

The second summation in Eq. (18), introduced
by Morris et al. [47], improves the stability of the
numerical method by acting as a diffusive term,
while modeling the viscous force FV, in a similar
manner as the Von Neumann & Richtmyer’s artifi-285

cial viscosity term used in most standard SPH for-
mulations [2, 48, 49], and has been used even for
elastic solids [44]. In the present work, we have
adopted the artificial viscosity formulation, but it
is important to emphasize that the artificial viscos-290

ity term Eq.(18) is still an active area of research,
and to a certain extent and despite being widely
used in the classic SPH literature, its application
makes the method case-dependent. A promising al-
ternative to the artificial term consists in reformu-295

lating the SPH convolution integrals by introducing
only the sufficient amount of dissipation by means
of using a non-linear Riemann problem; this tech-
nique, named Godunov SPH (GSPH), is known for
achieving very low advection and angular momen-300

tum conservation errors and no excessive diffusion,
without the need for tuning artificial viscosity terms
[50, 51, 52].

The model described by Eqs. (17)-(19) is closed
by a relationship between the density and pressure305

field. For fluids, two different approaches are widely
used in the literature, namely: 1) treat the flow as
incompressible, either by solving a pressure-Poisson
equation to obtain a divergence-free velocity field
[53, 41], or by requiring as a kinematic constraint310

that the volume of the fluid particles is constant
[54]; or 2) treat it as weakly compressible, and im-
pose an equation of state [49, 55, 23, 22, 12, 13, 45].
We follow the weakly compressible formulation,
with an equation of state of the form315

P = P0

[(
ρ

ρ0

)γ
− 1

]
, (23)

where P0, ρ0 denote reference pressure and density,
respectively, and γ is the polytropic constant. It
is a common practice [23, 13] to select P0 = K =
ρ0c

2
0/γ, where c0 is the artificial speed of sound and

K is the compressibility modulus of the material. In320

order to limit density variations and prevent exces-
sive spurious pressure waves [12], we choose γ = 1.
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Here, c0 is chosen based on the desired Mach num-
ber, Ma, and the characteristic velocity of the prob-
lem Uc. For problems involving liquids, a typical325

choice is to use Ma = 0.1 to reduce compressibility
effects, and thus c0 = 10Uc. For solids, previous
works [44, 56, 45] have used the same formulation
(P0 = ρ0c

2
0/γ), in which the sound speed of the solid

is computed using the shear modulus G and Poisson330

ratio of the material, νp, as c0 =
√

2G(1− νp)/ρ0.
In addition, for solid particles, we suggest the

addition of an artificial stress term to Eq. (18), as
described by Monaghan [44], as we found that the
transport-velocity formulation was not capable of335

removing the tensile instability in solids completely
without introducing excessive particle distortion.

2.4. Defining the transport velocity

The transport-velocity formulation introduces
the velocity of the reference frame, ṽ, into Eqs. (6)-340

(8). This arbitrary velocity determines the nature
of the reference frame, adjusting the conservation
laws to an Eulerian, Lagrangian or any arbitrary
mode in between these descriptions, therefore pro-
viding a arbitrary Lagrangian Eulerian (ALE) for-345

malism to SPH [43].
We adopt the transport velocity correction term

[22] as our arbitrary velocity, which has the form of
a background pressure gradient

ṽ(t+ ∆t) = v(t) + ∆t

(
d̃v

dt
− 1

ρ
∇Pb

)
, (24)

where the background pressure gradient is dis-350

cretized as

fPB =

(
1

ρ
∇Pb

)
i

≈ Pb
∑
j

mj

ρ2
i

∇Wij (25)

and Pb is chosen as the reference pressure, P0. This
choice is justified by the additional benefit that this
term acts as a self-relaxation mechanism [46] in
the linear momentum equation by balancing the ac-355

tual hydrodynamic pressure gradient ∇P/ρ term,
therefore reducing the tension instability in the flow
and greatly improving the overall accuracy of the
method.

2.5. Switch correction for pressure and filter360

For fluid flows subject to large Reynolds numbers
or shear effects, it has been reported that the us-
age of the continuity equation, Eq. (17) may result

in errors and spurious pressure waves that deterio-
rate the accuracy of the numerical solution [57, 45].365

In order to overcome this issue, Adami et al. [12]
proposed the computation of the density via inter-
polation, which conserves mass exactly. Although
these two formulations are mathematically equiva-
lent [49], it has been shown that the usage of the370

continuity equation within an ALE framework re-
sults in smoother density fields [43]. However, ex-
periments reported by Sun et al. [58] have shown
that the pressure can still attain negative values,
causing instabilities and numerical cavitation.375

We propose the solution of the continuity equa-
tion, along with the usage of a pressure switch to
address the numerical cavitation problem, which
filters negative pressures. Both the filter and the
switch are used only for fluid particles, as nega-380

tive pressures are required for compressive stress in
solids. A similar procedure was proposed by Sun
et al. [58]. This simple correction is based on the
identity

∑∑∑
j

mj∇Wij ·

(
Pi
ρ2
i

+
Pj
ρ2
j

)
I = (26)

∑
j

mj∇Wij ·

(
Pj
ρ2
j

− Pi
ρ2
i

)
I + 2

Pi
ρ2
i

∑
j

mj∇Wij · I

and proceeds by dropping the second sum in385

Eq. (26) if the pressure is negative, i.e.,

(
1

ρ
∇P

)
i

=


∑
j

mj∇Wij · P+
ij I, if P+

ij ≥ 0

∑
j

mj∇Wij · P−ij I, else,

(27)

where the pairwise pressures P+
ij and P−ij are com-

puted as

P+
ij =

(
Pj
ρ2
j

+
Pi
ρ2
i

)
, (28)

P−ij =

(
Pj
ρ2
j

− Pi
ρ2
i

)
. (29)

Finally, in order to damp high-frequency pres-
sure waves and improve energy conservation, we390
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use a Shepard filter in the density field every Nf
timesteps [59]

ρi =

∑
jmjWij∑
j
mj

ρj
Wij

, (30)

where the optimal frequency for filtering, Nf = 20,
as reported by Colagrossi and Landrini [57], was
used.395

2.6. Temporal integration

Following the practice of several authors
[44, 60, 12], the integration of Eqs. (17)-(20) was
performed using a modified velocity-Verlet scheme.
For the density and concentration fields, we have400

adopted an explicit midpoint method. Specifically,
considering vi,xi, ρi, Ci,Si the unknowns of the
system, and fρ,fv, fC , fS the right-hand sides of
Eqs. (17)-(20), respectively, the proposed numeri-
cal integration is given by405

Step 1

(a) Initial half-steps

ρn+1/2 = ρn +
∆t

2
fn−1/2
ρ , (31)

vn+1/2 = vn +
∆t

2
fn−1/2
v , (32)

ṽn+1/2 = vn+1/2 +
∆t

2
f
n−1/2
PB , (33)

Cn+1/2 = Cn +
∆t

2
fnC , (34)

Sn+1/2 = Sn +
∆t

2
fnS . (35)

(b) Position update

xn+1 = xn + ∆t ṽn+1/2. (36)

Step 2

(a) Final half-steps

ρn+1 = ρn + ∆t fn+1/2
ρ , (37)

vn+1 = vn+1/2 +
∆t

2
fn+1/2
v (38)

Cn+1 = Cn + ∆t f
n+1/2
C , (39)

Sn+1 = Sn + ∆t f
n+1/2
S . (40)

Although the method has two steps, notice that
it requires the evaluation of the particle forces only410

once per time step. A necessary condition for sta-
bility, given by the Courant-Friedrichs-Lewy condi-
tion based on the artificial speed of sound c0, was
used to estimate a suitable time step ∆t for each
simulation [13]415

∆t ≤ C min

(
h

c0 + |Uc|
,
h2ρ

µ
,

√
h

g

)
, (41)

where g is the gravity acceleration, and a Courant
number C = 0.25 was adopted.

3. Wall treatment: boundary volume frac-
tion method

We start by considering a particle of fluid i, lo-420

cated at a weighted averaged distance d from the
wall. As depicted in Fig. 1, the region of influence
around particle i, denoted by Ω, has radius h. The
shaded region represents the solid wall. We denote
the intersection of wall and region Ω by S.425

Fig. 1. Schematic showing the influence domain Ω around
particle i, nearby wall and intersection between Ω and the
wall, denoted by S.

We assume that the curvature of the wall, κwall,
is far smaller than the curvature of Ω, κΩ. Follow-
ing Li et al. [37], we assign to particle i an extra
variable, denoted by φ. We define φ as the ratio
between the volumes of regions S and Ω, i.e., the430

boundary volume fraction (BVF), given by

φ :=
V S

V Ω
. (42)

Notice that, for d = 0, the particle i is located
exactly at the wall, and thus φ = 0.5. This allows
us to use the variable φ to act as an indicator func-
tion of how close a particle is from the solid wall.435

It is important to highlight that the boundary vol-
ume fraction interface cutoff of 0.5 makes sense only
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within a predictor-corrector temporal integration
scheme, as the theoretical value of φ = 0.5 at the
interface is never met due to numerical precision.440

Thus, the particle will have its trajectory corrected
(in the corrector step) only when it reaches the wall
(in the predictor step). Nevertheless, pairwise and
viscous effects of the wall particles remain in effect
within the cutoff of the kernel function adopted, as445

in other SPH methods.
Assuming that both the wall and the support do-

main Ω have sufficient particles, we can approxi-
mate the volumes of regions S and Ω in Eq. (42)
using the SPH formalism450

V Si =
∑
j∈S

mj

ρj
VjWij =

∑
j∈S

(
mj

ρj

)2

Wij , (43)

V Ω
i =

∑
j∈Ω

mj

ρj
VjWij =

∑
j∈Ω

(
mj

ρj

)2

Wij , (44)

where Ω is the total set of particles, and S the sub-
set of solid particles. Thus, the BVF of particle i,
φi, written in terms of SPH formalism is given by

φi =

∑
j∈S

(
mj

ρj

)2

Wij∑
j∈Ω

(
mj

ρj

)2

Wij

. (45)

Compared to the standard SPH algorithm, the
only major modification regarding the wall treat-455

ment in the SPH-BVF method is that the numeri-
cal integration of Eqs. (1)-(3) now includes an ad-
ditional constraint: the following correction is per-
formed in the velocity field of particle i if φi ≥ 0.5,
i.e., if particle i penetrates the wall, we correct the460

velocity of particle i by reassigning its velocity to
the value calculated using the bounce-back equa-
tion proposed by Li et al. [37]

vcorrected
i = 2vwall

i +∆tawall
i −vi+2 max(0,vi·eni )eni ,

(46)

where en = nw/nw denotes the unit normal vec-
tor pointing outward from the wall boundary, ∆t is465

the time step and vwall, awall are the local velocity
and acceleration of the boundary, respectively. This
equation results from the collision of two particles
of arbitrary masses as described in Lifshitz et al.
[61] in the limit case where one particle possesses470

much greater mass (m1 � m2) so that the inertial
effects on the larger particle are negligible compared
to the smaller particle bouncing-back. Because the
collision is considered elastic, the conservation of
energy is preserved. The normal vector for particle475

i, nwi , is given by the gradient of φi:

nwi =

∑
j∈S

(
mj

ρj

)2

∇Wij∑
j∈Ω

(
mj

ρj

)2

Wij

. (47)

Li et al. [37] suggest the approximation of the lo-
cal wall velocity and acceleration of moving bound-
aries, vwall

i , awall
i as the velocity of the nearest

wall particle. To increase the accuracy of this480

approximation, we propose the usage of a kernel-
interpolated velocity and acceleration of solid par-
ticles. Thus, for a fluid particle i, its neighbor solid
moves with

vwall
i =

∑
j∈S vj

(
mj

ρj

)2

Wij∑
j∈S

(
mj

ρj

)2

Wij

, (48)

awall
i =

∑
j∈S aj

(
mj

ρj

)2

Wij∑
j∈S

(
mj

ρj

)2

Wij

, (49)

where the summations in Eqs. (48)-(49) are over485

the solid wall particles in the support of particle i
(S).
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Algorithm 1 SPH-BVF method

Input: Given initial positions, velocities and con-
centrations of species for all particles i at time
t: xi,vi, Ci, and integration timestep ∆t.

Output: Positions, velocities and concentrations
of species for all particles i at time t+ ∆t.

1: Find forces, for all i:
2: for all i do
3: Compute SPH approximations, Eqs. (17)-

(19).
4: Compute φi, Eq. (45).
5: end for
6: Perform temporal integration, for all i:
7: for all i do
8: After the modified velocity-Verlet final in-

tegration step (Step 2), perform BVF correc-
tion:

9: if φi ≥ 0.5 then
10: vi ← 2vwall

i +∆tawall
i −vi+2 max(0,vi ·

eni )eni
11: end if
12: end for

Notice that the accuracy of the computation of
the normal vector and the BVF is strictly depen-
dent on having enough particles to accurately repre-490

sent the walls. Thus, thin walls, regions of large cur-
vature and large particle spacing among wall parti-
cles are some of the limitations of the BVF method.
In practice, we have found that three layers of parti-
cles are typically enough to obtain accurate results,495

while slightly increasing the computational load of
the method. However, the overall computational
cost for the present method must have the same or-
der of magnitude as standard SPH, since the only
algorithmic addition in SPH-BVF is computing the500

normals and the additional BVF field φi in Eq. (47),
which can be performed in parallel with the evalua-
tion of the pairwise forces, with the advantage that
fluid particle penetration is explicitly avoided. A
review of the algorithm is provided in Algorithm 1.505

3.1. Implementation

The SPH-BVF method summarized in Algo-
rithm 1 was implemented in a stable version of the
open-source Large-scale Atomic/Molecular Mas-
sively Parallel Simulator (LAMMPS) [62] (v.22 Aug510

2018). Originally developed as a molecular dy-
namics code, LAMMPS can also be used as a li-
brary to develop new particle-based methods. The
code features an efficient particle neighbor search

algorithm based on Verlet lists. Our source code,515

along with instructions to reproduce the valida-
tion cases and the motivation problem are avail-
able at the Github page: https://github.com/

briandrawert/SPH-BVF/, under a GPL v2.0 li-
cense.520

4. Validation

In this section we validate the SPH-BVF method
using several canonical examples.

First, a Poiseuille flow simulation is used to val-
idate and verify the convergence of the fluid flow525

solver and the BVF boundary conditions. In addi-
tion, the new method is tested for different kernels.
In our second example we validate our method with
the Taylor-Green vortex flow problem and compare
the results with the standard SPH method, show-530

ing that the SPH-BVF method resolves the veloc-
ity decay accurately, without excessive diffusion.
Next, a lid-driven cavity flow is used to validate the
fluid flow solver and the BVF wall boundary con-
ditions, which further validates our method over535

a wider range of Reynolds numbers and demon-
strates that fluid particles do not penetrate through
the walls. We validate the strong coupling of fluid
flow and mass transport with a natural convection
flow, emphasizing the elimination of tensile insta-540

bilities and particle alignments, and also demon-
strating our method on curved walls. In our fifth
example, we validate SPH-BVF for solid mechanics
with an oscillating cantilever beam. This problem
demonstrates the use of our method on a moving545

solid under tension, and further shows the elimina-
tion of tensile instability. Finally, we compare SPH-
BVF with a finite element method using a fluid-
structure interaction problem. This example also
demonstrates our method in the context of sponge550

zones and flux boundary conditions.

4.1. Wall boundary condition validation: Poiseuille
flow

We validate the proposed wall boundary con-
dition method with a laminar, two dimensional555

Poiseuille flow in a closed channel as performed by
Ferrand et al. [63]. The flow is driven by a con-
stant volume force of magnitude 0.8 [ms−2], and
periodic boundary conditions are imposed in the
streamwise (x)-direction. The channel width is as-560

sumed to be W = 1 [m], where a fluid with viscosity
ν = 10−1 [m2s−1] flows with a resulting Reynolds

9

https://github.com/briandrawert/SPH-BVF/
https://github.com/briandrawert/SPH-BVF/
https://github.com/briandrawert/SPH-BVF/


number Re = 10. We have considered five differ-
ent particle refinements, with Ny = 20, 40, 80, 160
and 320 particles in the cross-stream (y)-direction.565

In addition to the standard Lucy kernel given by
Eq. (10), we have performed convergence studies
using the cubic spline kernel [44] and the Wendland
quintic kernel [64]. In all cases, the kernel cutoff is
set to h = 3∆p, which for a support of diameter570

2h results in approximately 28 neighbors, and ∆p
is the particle spacing.

For a fully-developed, steady-state flow, the ana-
lytical velocity profile of the flow in the streamwise
direction, va

x, is given by575

va
x(y) = 4Re ν

y

W 2

(
1− y

W

)
, (50)

Based on these levels of particle refinement, and
using the analytical solution given by Eq. (50), we
have performed a convergence study, taking as an
error metric the L2 norm of the global error [63, 65]

L2 error =

√
1

Nf

∑
i∈fluid

(
va
x(yi)− vsph

x,i

)2

, (51)

where Nf refers to the total number of fluid parti-580

cles used in the L2 error summation.
The errors obtained from the convergence study

are provided in Table 1. The streamwise veloc-
ity profile of the flow is shown in Fig. 2-(a) for
all the refinement levels. As reported in Ferrand585

et al. [63], we noticed that the error of the proposed
BVF boundary condition has a non-constant slope,
oscillating between first and second order conver-
gence, as is observed under the Lennard-Jones and
fictitious particles boundary conditions. This be-590

havior is depicted in Fig. 2-(b). This result is ex-
pected because no kernel correction technique was
enforced near the boundary, which also justifies the
slower convergence behavior of the shear rate near
the wall, as depicted in Fig. 2-(c). In terms of accu-595

racy, the Lucy kernel performed better than both
the cubic spline and Wendland kernels. We found
the Wendland kernel produced more organized par-
ticles, but that did not translate into a higher con-
vergence order. Thus, based on the superior accu-600

racy and simplicity, we have opted to use the Lucy
kernel hereafter.

4.2. Analytical solution validation: 2D Taylor-
Green vortex

The Taylor-Green flow is a closed form solution of605

the incompressible Navier-Stokes equations, and is

Fig. 2. Results the SPH-BVF method and using Lucy
kernel: (a) Streamwise profiles of a fully-developed,
steady-state Poiseuille flow in a periodic channel, for
Ny = 20, 40, 80, 160 and 320 particles in the cross-stream
direction. (b) Convergence graph showing the L2 error
versus the refinement. (c) Comparison of shear rate in the
lower part (0 ≤ y ≤ 0.5) of the channel.

widely used to validate fluid flow solvers. It consists
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Table 1
Estimated errors and convergence rate of Poiseuille flow for

different kernels.

Kernel Ny L2 Errora Converg.
rate, p

Lucy 20 3.425 ×10−2 -
Lucy 40 6.598 ×10−3 2.376
Lucy 80 4.601 ×10−3 0.520
Lucy 160 1.505 ×10−3 1.612
Lucy 320 9.340 ×10−4 0.688

Cubic spline 20 2.169 ×10−2 -
Cubic spline 40 1.690 ×10−2 0.360
Cubic spline 80 9.512 ×10−3 0.828
Cubic spline 160 5.786 ×10−3 0.718
Cubic spline 320 6.620 ×10−4 -0.194

Wendland quintic 20 3.153 ×10−2 -
Wendland quintic 40 2.864 ×10−2 0.138
Wendland quintic 80 7.022 ×10−3 2.028
Wendland quintic 160 1.408 ×10−2 -1.003
Wendland quintic 320 1.206 ×10−2 0.223

a Error computed at steady-state, t = 100.

of the decaying of a vortex due to viscous effects of
the fluid, and is given by the following analytical
velocity fields [12]610

va
x(x∗, y∗, t∗) = −Uebt

∗
cos(2πx∗) sin(2πy∗), (52)

va
y(x∗, y∗, t∗) = Uebt

∗
sin(2πx∗) cos(2πy∗), (53)

where b is the decay rate of the velocity field and U
is the maximum initial velocity. We use Eqs. 52-53
to estimate the accuracy of the SPH-BVF method.
In our simulations, we assume a Reynolds number
Re = UL/ν = 100, a maximum velocity U = 1, a615

decay rate b = −8π2/Re and a domain of length
L = 1. The boundary conditions are periodic in
both directions, with x∗, y∗ ∈ [0, 1]× [0, 1]. The ini-
tial conditions are obtained by setting the dimen-
sionless time t∗ = tU/L = 0 in Eqs. 52-53. The unit620

length domain is discretized using three levels of
equally-spaced particle refinements: N = 502, 1002

and 2002. For each simulation, the relative error of
the numerical solution is measured over time using
the L∞ norm, given by625

L∞(t∗) =

∣∣∣∣maxi(||vi(t∗)||)− Uebt
∗

Uebt∗

∣∣∣∣. (54)

Figure 3 shows snapshots of the particles at di-
mensionless times t∗ = 0.1, 0.5 for the case of
N = 502. The top figures (a,b) show the re-
sults for the standard SPH, and the bottom fig-
ures (c,d) correspond to results from the present630

method (SPH-BVF). In (a,b), it is possible to visu-
alize the anisotropic particle alignment caused by
tensile instability. This alignment causes excessive
diffusion, leading to a fast decay of the velocity
field. In contrast, the results obtained by the SPH-635

BVF method (c,d) dramatically reduce the particle
alignments and tensile instabilities, thus preserv-
ing the velocity decay. Remarkably, we found that
the SPH-BVF method was able to prevent tensile
instabilities even in the case of an initial regular lat-640

tice particle distribution. No significant differences
were observed for other arrangements of particles
(data not shown), including randomly shifted ar-
rangements. Conversely, in the work of Adami et
al. [12], it was found that the original transport-645

velocity formulation was sensitive to the initial par-
ticle distribution. We believe that our method does
not suffer from this sensitivity, thus resulting in a
more accurate velocity decay.

The velocity decay is shown in Fig. 4. We com-650

pare our results with the exact solution Uebt
∗

and
plot the maximum velocity for all three particle re-
finements (N = 502, 1002, 2002). Following [12],
we also compare our method with standard SPH,
showing that the latter fails to predict the exact655

decay. In contrast, the SPH-BVF method accu-
rately predicts the decay, even for the coarser re-
finement (N = 502). Compared to [12], the SPH-
BVF method appears to not suffer from the shifted
profile obtained by the original transport-velocity660

formulation.

In addition to the velocity decay, the temporal
evolution of the L∞ norm, Eq. (52), is shown in
Fig. 5. The relative error of the maximum velocity,
L∞, is ≈ 2% for all tested cases. This result is com-665

parable to the best results obtained by [12] (non-
regular initial particle distribution, N = 2002).
Remarkably, the SPH-BVF method was able to
achieve excellent results even at the lowest resolu-
tion (N = 502, equally spaced, regular lattice par-670

ticle distribution).

4.3. Fluid mechanics validation: lid-driven cavity
flow

The lid-driven cavity flow is a classical model
problem, and is considered a challenging problem675
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Fig. 3. Contour plots of the norm of the velocity vector
showing particle arrangements in 2D Taylor-Green vortex
simulations at two time points: (a) Standard SPH,
t∗ = 0.1, (b) Standard SPH, t∗ = 0.5, (c) SPH-BVF
(present method), t∗ = 0.1, (d) SPH-BVF (present
method), t∗ = 0.5.
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Fig. 4. Temporal evolution of the decay of the maximum
velocity (semi-log scale) in 2D Taylor-Green vortex
simulations for three particle refinements (N) that are
compared to the exact analytical solution and standard
SPH. Inset shows an expanded view of a section of the
graph.

to be solved using SPH [22]. We validate the pro-
posed method using the high-resolution finite dif-
ference numerical experiment carried out by Ghia
et al. [66]. It consists of a square cavity of side L,
filled with a Newtonian fluid of kinematic viscosity680

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1.94
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1.99

2

2.01

2.02
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Fig. 5. Temporal evolution of the relative error of the
maximum velocity (L∞ norm) in the Taylor-Green
simulations for three particle refinements (N).

ν = µ/ρ. Gravity effects are considered negligible.
In Fig. 6(a), the schematic of the lid-driven cavity
flow is presented.

Fig. 6. (a) Schematic of lid-driven cavity flow. Isocontours
of velocity magnitude for (b) Re = 100, (c) Re = 1000 and
(d) Re = 10000 at steady-state.

The flow, initially at rest, is induced by shear as
the lid of the cavity starts moving at uniform ve-685

locity v0. The governing equations are nondimen-
sionalized, in order to validate our results with the
reference. The dimensionless groups are given by
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xo = L, (55)

to = xo/vo, (56)

Po = ρov
2
o , (57)

where ρo is a reference density, considered here as
unity. Using these groups, Eqs. (1)-(2) can be writ-690

ten as

dρ∗

dt∗
= −ρ∗∇∗ · v∗, (58)

dv∗

dt∗
= −∇∗p∗ +

1

Re
∇∗2v∗, (59)

where Re = v0L/ν denotes the Reynolds number
with respect to the characteristic length L. The
walls of the cavity are modeled using three layers of
fixed solid particles, so that near-wall fluid particles695

are guaranteed to have enough support for accurate
φi computations.

To test the convergence of the method, simula-
tions were performed using three levels of particle
refinement (N = 502, 1002, 2002 particles) for each700

Reynolds regime (Re = 100, 1000, 10000), resulting
in a total of nine simulations. In all cases, we have
used the Lucy kernel, with cutoff h = 2.6∆p. We
assumed that steady-state was reached once the to-
tal kinetic energy of the system was constant over705

time within a 10−3 tolerance.
An overview of the flow dynamics on the lid-

driven cavity is provided in Figs 9(b)-(c), showing
the isocontours of the flow velocity magnitude for
each Reynolds flow regime using N = 2002 par-710

ticles. Figure 7 shows the vertical and horizontal
velocity profiles for all three levels of particle refine-
ment. For Re = 100, the method provides results
comparable to the reference, even for the smallest
particle refinement, N = 502. For Re = 1000,715

the SPH-BVF results converge to the reference val-
ues. Notice that for N = 2002 particles, the re-
sults are very close to those of the reference, even
though Ghia et al. [66] used a higher resolution
(2572 mesh). For Re = 10000, it is possible to infer720

the convergence to the reference solution as the re-
finement level increases. Nevertheless, as observed
by Adami et al. [12], a deviation from the reference
data is observed, which can be justified by the re-
quirement of a higher refinement level and by the725

lack of turbulence modeling. For Re > 10000, the
flow does not converge to a steady-state [66].

Figure 8 shows the streamlines in the cavity for
Re = 1000, revealing the two main structures of the
flow: the left and right corner vortices. In his work,730

Ghia et al. [66] reported approximated heights of
0.15 and 0.35 for the left and right corner vortices,
respectively (c.f. Fig. 8). Similarly, the expected
values for the widths are approximately 0.20 (left)
and 0.30 (right). The sizes of the vortices obtained735

by our simulations agree with the reference, show-
ing that the SPH-BVF method was able to accu-
rately predict these vortices, therefore validating
the wall boundary formulation.

4.4. Convective transport validation: natural con-740

vection

We validate the coupling of advection-diffusion
using a coupling force, based on the Oberbeck-
Boussinesq approximation [67], in the context of
the transport-velocity formulation. To the authors’745

best knowledge, this is the first time an ALE for-
mulation of SPH has been used to simulate con-
vection. A classical test case widely used in the
literature is the natural convection over a cylinder
immersed in a square cavity. A complete descrip-750

tion of the problem is given in Fig. 9. The sys-
tem consists of a square enclosure, filled with fluid
at rest. The wall boundaries of the cavity and in
the interface between the cylinder and the fluid are
modeled with non-moving SPH particles to enforce755

the no-slip boundary condition. Initially, the fluid
is free of solute, i.e., C(x, 0) = 0. At t > 0, the
wall concentrations of solute in the circular cylin-
der and at the enclosure walls are set to CC and
CE , respectively. Since CE > CC , mass transfer760

begins to occur, and the system is treated as a bi-
nary mixture. The solute diffuses in the fluid over
time, leading to mass stratification.

The Oberbeck-Boussinesq approximation is used
to describe the mass transport phenomena, such765

that a driven body force is proportional to the vari-
ation of concentration C, gravity acceleration g and
coefficient of mass expansion β. In this case,the
body force in Eq. 2 takes the form

FB = gβ∆C êy, (60)

where ∆C = C − Cref, Cref is a reference concen-770

tration and êy is the y-direction component of the
standard Cartesian basis, (êx, êy, êz).

The problem was addressed in previous works as
natural convection of heat [68, 69, 70, 71], and has
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Fig. 7. (a), (c) Vertical and (b), (d) horizontal velocity profiles for Re = 100, Re = 1000 and Re = 10000 compared with the
reference results of Ghia et al. [66].

Fig. 8. Streamlines and patterns of the corner vortices in
the cavity for Re = 1000, obtained with the SPH-BVF
method.

been tested in many different geometries [69, 72,775

73, 74]. In order to validate results with the work
of Moukalled and Acharya [68], the equations are
rendered dimensionless, using the reference groups
proposed by Gray and Giorgini [67]

xo = L, (61)

vo =
√
gβL∆C, (62)

to = xo/vo, (63)

∆Co = CC − CE , (64)

Po = ρov
2
o , (65)

where ρo is a reference density, considered here as780

unity. Using these groups, Eqs. (1)-(3) are rewrit-
ten as

dρ∗

dt∗
= −ρ∗∇∗ · v∗, (66)

dv∗

dt∗
= −∇∗P ∗ +

√
Sc

Ra
∇∗2v∗ + C∗êy, (67)

dC∗

dt∗
=

1√
RaSc

∇∗2C∗, (68)

where Sc = ν/α and Ra = gβ∆CL3/νκ denote

the Schmidt and mass transfer Rayleigh numbers,
respectively.785

Simulations were performed for Ra = 104, 105

and 106. The Schmidt number was taken to be
equal to 0.7, and the cylinder diameter asD = 0.2L.
For all the cases, the same number of particles N
and same initial conditions were provided. The790

initial setup consists of N = 2002 equally-spaced
particles distributed in a squared domain of length
L = 1. In all cases, we have used the Lucy kernel,
with cutoff h = 2.6∆p. Boundary conditions are
imposed using three layers of boundary particles in795

the walls. The cylinder at the center of the cavity
is considered a boundary. Dirichlet boundary con-
ditions are imposed by directly setting the concen-
tration of boundary particles. As in the cavity flow,
we assumed that steady-state was reached once the800

total kinetic energy of the system was constant over
time within a 10−3 tolerance.

Profiles of the dimensionless concentration, C∗,
and y-velocity component, v∗y , are shown in
Figs. 10a-10b. Results were compared with the nu-805

merical simulation of Moukalled and Acharya [68].
Since Moukalled and Acharya [68] use a different
normalization for the velocity, the dimensionless ve-
locity v∗ obtained from the solution of Eq. (67)
must be re-scaled, by multiplying v∗ by

√
Ra/Sc.810

As depicted in Figs. 10a-10b, satisfactory re-
sults were obtained for all of the Ra regimes. The
method was also capable of capturing the strati-
fication of the concentration profiles between the
wall and the cylinder surface at Re = 105 and the815

concentration inversion that occurs at Ra = 106,
which causes the flow to slow down in the interval
0.65 . x∗ . 0.85.

A comparison between the mean velocity fields
obtained using the present method and standard820

SPH for Ra = 106 is shown in Fig. 11. While
the results obtained by the standard SPH method
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Fig. 9. (a) Schematic of natural convection in a cylinder inside a square enclosure. (b) Isocontours of the dimensionless
concentration field C for Ra = 104, (c) Ra = 105 and (d) Ra = 106 at steady-state.
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Fig. 10. (a) Profiles of dimensionless concentration C∗ and
(b) y-velocity v∗y profiles along the horizontal centerline of

the cavity, for Ra = 104, 105 and 106, at steady-state.

have serious particle voids, penetration in the walls
and in the cylinder, clumping and alignments, the
SPH-BVF method mitigated all of these problems,825

while improving stability. The time step required
for a stable simulation with SPH-BVF (O(10−4))
was two orders of magnitude larger than the one

Fig. 11. Comparison of mean velocity fields at time t∗ = 4,
for the natural convection problem solved using (a)
SPH-BVF method and (b) standard SPH [2] method,
showing that the proposed method prevents particle
penetration and mitigates tensile instability and anisotropic
particle alignment.

required in practice using standard SPH, as the
soundspeed must be increased to help mitigate the830

tension instability.

4.5. Solid mechanics validation: oscillating can-
tilever beam

We validate the solid mechanics part of the
method with the test case of an oscillating can-835

tilever beam. The problem consists of a thin plate
of length L and thickness H, fixed on one edge and
free on the other edges, as shown in Fig. 12.

Fig. 12. Schematic of the oscillating cantilever beam. The
beam, initially at rest, is subject to the initial condition
given by Eq. (70).

The plate, initially at rest, is set to oscillate at
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one of its fundamental modes, namely at kL =840

1.875 [56]. For different modes, other wavenum-
bers k can be found using the eigensolutions of the
Euler-Bernoulli beam equations, given by

cos(kL) cosh(kL) = −1. (69)

For the mode kL = 1.875, the resulting initial
velocity profile is perpendicular to the plate and is845

given by

v0
y(x) = V0c0

F (x)

F (L)
, (70)

where V0 is the magnitude of the velocity, c0 is the
soundspeed of the material and F is a force that
varies along the length of the plate (x-direction)

F (x) = [cos(kL) + cosh(kL)][cosh(kx)− cos(kx)] (71)

+[sin(kL)− sinh(kL)][sinh(kx)− sin(kx)].

In order to allow a direct comparison with the850

previous results of Zhang et al. [45], we set the plate
properties using a Poisson ratio ν = 0.3975, density
ρ = 1×103[kg/m3] and Young’s modulus E = 2.0×
106[Pa]. We have performed simulations for initial
velocity amplitudes V0 = 1×10−3, 1×10−2 and 3×855

10−2[m/s]. The artificial stress coefficient [44] is set
to 0.2. In all cases, we have used the Lucy kernel,
with cutoff h = 3.0∆p. The fixed support of the
plate is constructed with stationary solid particles.
For geometrical consistency, thickness of the upper860

and lower parts of the support were set to T = H/2.

Figure 13-(a) shows a convergence study based on
the y-position of the centerline point of the beam at
the tip (x = L). Results are in good agreement with
previous studies [56, 45], and no numerical fracture865

is observed in the regions of maximum tension, as
shown in Figure 13-(b), demonstrating that the ten-
sion instability was controlled and allowed large de-
formations of the beam.

A quantitative comparison with the analytical so-870

lution of a flat plate [61] for various velocity ampli-
tudes V0 and a relative error convergence analysis
are shown in Table 2. The present method achieved
relative errors of less than 1% for Ny = 30 and all
values of V0 compared to the 13% errors reported875

by Zhang et al. [45].

Fig. 13. (a) Plots of the position of the centerline point at
the tip of the beam (y = 0, x = L) for the case of
V0 = 3 × 10−2, illustrating the convergence of the SPH
solid mechanics formulation. (b) Contour plots of total
stress field σxx at t = 0.07[s], for the case of V0 = 3 × 10−2

and Ny = 30.

4.6. Comparison with FEM: fluid-structure inter-
action

As a final comparison, we demonstrate the ability
of the SPH-BVF method to perform simulations880

of fluid-structure interaction (FSI) problems. The
problem, depicted in Fig. 14, consists of a horizontal
microchannel flow with a narrow vertical rod as an
obstacle. A uniform fluid flow is introduced in the
channel entry. In the region near the obstacle, the885

flow is induced into a narrow path in the upper part
of the channel, and as a consequence it imposes a
force on the structure’s walls. The rod, made of a
deformable material, bends under the applied load,
reaching a steady state.890

The wall boundary condition treatment in the
SPH-BVF simulations follows the previous valida-
tion examples, with wall boundary conditions im-
posed using three layers of boundary particles in
the walls. To model the inlet and outlet bound-895

aries, we adopt the following strategy: as the fluid
leaves the channel, it is re-inserted back at the inlet
after it passes through a sponge zone, which acts
as a non-reflective boundary condition [75] to the
flow and re-align the velocity profile. This strategy900
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Table 2
Relative errors for oscillating cantilever beam for various velocity amplitudes V0 and particle refinements.

V0 ∆p Ny
First period

(present work)
First period
(analyticala)

Relative error (%)

1 ×10−3[m/s] 0.2/10[m] 10 2.747 ×10−1[s] 2.540 ×10−1[s] 8.150
1 ×10−3[m/s] 0.2/20[m] 20 2.605 ×10−1[s] 2.540 ×10−1[s] 2.559
1 ×10−3[m/s] 0.2/30[m] 30 2.539 ×10−1[s] 2.540 ×10−1[s] -0.039

1 ×10−2[m/s] 0.2/10[m] 10 2.757 ×10−1[s] 2.540 ×10−1[s] 8.543
1 ×10−2[m/s] 0.2/20[m] 20 2.618 ×10−1[s] 2.540 ×10−1[s] 3.071
1 ×10−2[m/s] 0.2/30[m] 30 2.546 ×10−1[s] 2.540 ×10−1[s] 0.236

3 ×10−2[m/s] 0.2/10[m] 10 2.756 ×10−1[s] 2.540 ×10−1[s] 8.504
3 ×10−2[m/s] 0.2/20[m] 20 2.635 ×10−1[s] 2.540 ×10−1[s] 3.740
3 ×10−2[m/s] 0.2/30[m] 30 2.556 ×10−1[s] 2.540 ×10−1[s] 0.623

a Based on Zhang et al. [45], Lifshitz et al. [61]

makes the computation less intensive as there is no
need to destruct particles as they leave the domain,
or to create new ones at the inlet, as doing so would
require re-creating the particle neighboring list ev-
ery time step. For details on the implementation905

of the sponge zone, we refer the reader to Drawert
et al. [76].

Since the problem has no analytic solution,
we compare our numerical simulation with high-
resolution FEM using the FSI package in Comsol910

Multiphysics (v.5.3). The physical parameters for
both FEM and SPH-BVF simulations are given in
Table 3.

Sponge

Zone

Fig. 14. Schematic of the FSI problem. Water enters in a
2D microchannel, filled with water at rest, with uniform
velocity vin. An elastic rod located at the middle of the
channel and fixed at the lower wall, constraints the fluid
flow, causing a deformation in the rod.

The SPH-BVF simulation was performed using
30, 000 fluid particles (representing the water) and915

500 solid particles (representing the rod). The FEM

Table 3
Physical parameters adopted in the FSI simulation.

Parameter Value Description

Hchannel 100 [µm] channel height
Lchannel 300 [µm] channel width
Hrod 50 [µm] rod height
Lrod 100 [µm] horizonta position (rod)
δrod 5 [µm] rod thickness
E 2× 105 [Pa] Young modulus (rod)
νp 0.33 Poisson ratio (rod)
ρf 1000 [kg/m3] fluid density
ρrod 7850 [kg/m3] rod density
µf 10−3 [Pa s] viscosity of fluid
vin 3.33× 10−2 [m/s] inlet fluid velocity

solution was obtained using second-order shape
functions in a mesh of approximately 12,000 ele-
ments. We assumed that steady-state was reached
once the kinetic energy of the fluid flow was con-920

stant over time within a 10−3 tolerance.

Contour plots of the streamwise (vx) and cross-
stream (vy) velocity components at steady-state are
shown in Figs. 15-(a) and (b). Is possible to see the
bending of the beam to the right, as a consequence925

of the flow, as well as boundary layer in the near-
wall regions of the channel. To validate the velocity
profiles, a probe was placed along the y-centerline
of the channel.

Figures 15-(c) and (d) shows the velocity pro-930

files of the channel at the probe, and a comparison
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with the FEM result. It is important to highlight
that the comparison of velocity profiles in FEM and
SPH-BVF agree in magnitude, demonstrating that
the formulation for the non-reflexive boundary con-935

dition is satisfactory, as well as in phase, which
demonstrates that the point of maximum deflection
obtained in both FEM and SPH-BVF solutions are
very close. However, notice that the stream-wise
velocity vx drops at the end of the channel, due to940

the presence of the sponge zone. Further investiga-
tions in non-reflective boundary conditions in SPH
are required to improve these results.

5. Application: polarized yeast cell under-
going mating projection growth945

To further demonstrate the capability of the pro-
posed method, we apply SPH-BVF to a biome-
chanics problem that poses a challenge for clas-
sic SPH as well as mesh-based methods because
it involves deforming boundaries under pressure,950

fluid-structure interaction, particle non-penetration
and a conjugate transport mechanism (diffusion of
chemical species that alters the mechanical prop-
erties of the material). The first attempt to simu-
late the mechanics of biological cells was performed955

by [77, 78], using an SPH-DEM hybrid method to
study the mechanical response of plant cells under
compression. The model, however, is purely me-
chanical, and therefore the reaction-diffusion dy-
namics of species in the cell wall are not considered.960

The motivating problem is the growth of the mat-
ing projection in a yeast cell (S. cerevisiae) re-
sponding to mating pheromone in the extracellu-
lar fluid [79]. The key structure is the cell wall,
which defines the shape of the cell while provid-965

ing the mechanical integrity necessary to withstand
the large internal turgor pressure [80]. As depicted
in Fig. 16, under the isotropic turgor pressure, po-
larized growth occurs via localized softening of the
cell wall by the enzymatic digestion of the polymer970

crosslinks, inducing expansion at the tip. A me-
chanical feedback pathway delivers new wall ma-
terial to this growing region by vesicular transport,
leading to expansion of the mating projection at the
area targeted by the wall-modifying enzyme [81].975

This problem demonstrates our method on curved
and dynamically changing boundaries representing
the cell wall. Importantly, the interior fluid, the cy-
toplasm, does not penetrate the cell wall even while
under sufficient pressure to cause the wall to change980

shape.

5.1. Simplified model of yeast mating projection

Yeast mating projection growth is a classic exam-
ple of cell polarization, and has been investigated
experimentally [82, 83, 84] and through mathemat-985

ical modeling [85, 86, 87]. Existing models have fo-
cused primarily on the reaction-diffusion dynamics
of the signal transduction system. However, more
recent work has highlighted the complex interplay
between the biochemical dynamics within the mat-990

ing projection and the mechanical forces acting on
the cell wall to determine the shape of the cell [81].
It is important to note that the properties of biolog-
ical materials involved are not well-characterized.
For example, recent studies [88, 89] showed that995

cytoplasm can assume different properties, chang-
ing from a viscous fluid to an elastic solid, and can
be considered compressible or incompressible, de-
pending on the state of tension, biological process
involved and external perturbations. Given that1000

the SPH-BVF method is currently limited to linear
elastic solids and Newtonian fluids, we assume that
the cytoplasm is a compressible fluid, and that the
cell wall is a linear elastic material characterized
by a shear modulus. Finally, the extracellular fluid1005

around the cell possesses the rheological properties
of water.

For simplicity, we employ the following approxi-
mation of the coupling between the mechanical and
biochemical systems. In the model, cell wall mod-1010

ifying enzymes, whose concentration is denoted by
the variable c, decrease the shear modulus of the
cell wall according to the following linear equation:
G(c) = G0(1− cR), in which R is a parameter rep-
resenting wall degrading enzymatic activity, and G01015

is the reference shear modulus of the non-polarized
wall region. The modifying enzymes are able to dif-
fuse in the wall with a diffusion constant given by
κc.

Even under these simplifying assumptions, the1020

model is still complex enough that advanced
computer-aided engineering (CAE) tools have diffi-
culty simulating the coupled problem. For example,
COMSOL (v.5.3a) is not capable of simulating dy-
namic mechanical properties coupled with diffusive1025

transport in a moving mesh, and hence no direct
comparison could be made.

5.2. Results

To demonstrate that SPH-BVF can simulate
yeast mating projection growth, we chose to vary1030
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Fig. 15. Top: contour plots of the (a) streamwise vx and (b) cross-stream vy velocity fields at steady-state. The beam has
deformed slightly to the right. Bottom: comparison of dimensionless velocity profiles (c) v∗x and (d) v∗y for a probe located at
the y-centerline of the channel, as depicted in the velocity profiles. Variables were rendered dimensionless for scaling
purposes, as v∗x = vx/vin and x∗ = x/Lchannel.

Fig. 16. Schematic of yeast cell projection growth model.
Cell wall modifying enzymes localized to region in red
cause the softening of the cell wall. The internal turgor
pressure pushes and deforms the cell wall at this weakened
section, creating a mating projection. D is the diameter of
the cell, H is the height of the enzyme region, and δ is the
thickness of the cell wall.

the diffusion coefficient κc of the wall-modifying en-
zymes using two different values. The other param-
eters were kept constant with the enzyme initially
distributed in a region of width H = δ/2, where δ is
the cell wall thickness. The initial enzyme concen-1035

tration was set to be c = 1 [mol/m3] in this region,

and to c = 0 [mol/m3] in the rest of the cell wall.
The enzyme affects the shear modulus of the cell
wall according to the linear relationship described
above as it diffuses from its initial site. A list of the1040

physical parameters used in the simplified model is
provided in Table 4, and a reference table with each
case is detailed in Table 5.

Figure 17 shows snapshots of the two simulations
(cases I and II) at the two diffusion values. In-1045

terestingly, the larger diffusion constant produced
a longer, laterally concave projection, whereas the
smaller diffusion constant preserved its laterally
convex shape. One can compare the simulations to
time-lapse microscopy images obtained by expos-1050

ing yeast cells to the mating pheromone α-factor.
The cells contain the secretion marker Fus1-GFP
which indicates the presumptive location where the
wall-modifying enzymes are deposited on the cell
wall [90]. Qualitatively speaking, the simulations1055

were able to capture the general shape changes dur-
ing projection growth, even though some level of
particle alignment is observed near the boundary
of the cells. One promising way of alleviating this
effect is to use an optimal particle arrangement [91],1060

which directly ensures the isotropy of the particle
distribution, even without parameter tuning. Re-
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Table 4
Physical parameters used in the cell polarization simulation.

Parameter Value Description

δ 2.5 [µm] cell wall thickness
D 10 [µm] diameter of the cell
H 1.25 [µm] height of enzyme region
E 106 [Pa] Young modulus of cell wall
G0 3.58× 105 [Pa] reference shear modulus of cell wall
νp 0.3975 Poisson ratio of cell wall
Kf 5× 105 [Pa] bulk modulus of extracellular fluid
Kc 5× 105 [Pa] bulk modulus of cytoplasm
ρf 1000 [kg/m3] density of extracellular fluid
ρc 1500 [kg/m3] density of cytoplasm
ρw 1100 [kg/m3] density of cell wall
µf 10−3 [Pa s] dynamic viscosity of fluid
µc 10−3 [Pa s] dynamic viscosity of cytoplasm
R 0.99[m3/mol] rate of enzymatic softening

Table 5
Two cases simulated with parameter values and number of particles.

Case number Mass diffusivity (κc) Number of particles (N)

I 10−13 [m2/s] 840 (wall), 716 (cytoplasm)
II 10−12 [m2/s] 840 (wall), 716 (cytoplasm)

gardless, this example demonstrates the potential
of the SPH-BVF method to simulate complex bi-
ological processes including both biochemical and1065

physical spatial dynamics, involving fluid-structure
interactions and materials with time-varying me-
chanical properties without inducing particle pene-
tration or excessive tension instability.

6. Conclusion1070

We introduce a unified framework to simulate
solid and fluid mechanics with convective reaction-
diffusion transport in SPH. The method, named
SPH-BVF, provides a new local wall boundary con-
dition treatment for SPH, which allows particles to1075

become autonomous to detect solid neighbors. The
boundary volume fraction (BVF) approach intro-
duces only a small computational overhead, while
explicitly preventing fluid penetration through solid
boundaries. In addition, SPH-BVF provides good1080

accuracy and improved stability, and due to its
ALE formulation, prevents tension instabilities and
anisotropic particle alignments.

We have implemented our method within the
LAMMPS [62] package. LAMMPS is a software1085

package for simulation of classical molecular dy-
namics problems and is extensible to other particle-
based methods. We have implemented the SPH-
BVF method as a user module in LAMMPS. The
complete code, along with all of the validations,1090

post-processing routines and the application prob-
lem are also available in our source, under the
GPL v2.0 license, which is the same license as the
LAMMPS software package. For ease of replica-
tion of our results, we have packaged the solver1095

and our examples as a Docker container https://

hub.docker.com/r/briandrawert/sph_bvf/. Di-
rections on how to use this container and the
full source code are found on Github: https://

github.com/briandrawert/SPH-BVF/.1100

While addressing some problems encountered
by standard SPH, our method also possesses cer-
tain limitations. Simulations require approximately
three layers of particles to have sufficient support
within the kernel integration area to accurately es-1105

timate the boundary volume fraction. As a re-
sult, systems with very thin walls may require finer
discretization and more particles, which can lead
to higher computational costs. One promising ap-
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Fig. 17. Simulations and experiments showing yeast
mating projection growth over time. Cases I (left column,
κc = 10−13 [m2/s]), II (right column, κc = 10−12 [m2/s]),
and microscopy images of a spa2∆ cell responding to 1 µM
mating pheromone α-factor (central column). Particles are
colored by the concentration c of wall-modifying enzymes.
Rows A, B and C indicate times of 2000, 3000 and 4000
seconds, respectively, for the simulations, and 30, 60, and
90 minutes for the experiments. Cells contain the secretion
marker protein Fus1-GFP (green) to indicate where
wall-modifying enzymes are transported. A broad tip
protrudes from both simulations and experiments. Despite
high internal turgor pressure and deformation, SPH-BVF is
able to model the deforming boundaries without particle
penetration or tension instability. Scale bar = 2 µm.

proach to overcome this issue in the future is the us-1110

age of an immersed boundary method to represent
slender bodies [92, 93]. We also note that the pro-
posed BVF boundary condition has a non-constant
order of convergence (between first and second or-
der), which is similar to the Lennard-Jones bound-1115

ary condition using ghost particles.

One promising domain for SPH-BVF is in simu-
lating biophysical systems. Specifically, we envision
its application in the modeling of cell dynamics, as
well as in other applications, such as intercellular1120

junction formation, cell morphogenesis and blood
flow simulations in tissues coupled to inter- and
intra-cellular processes, in which conjugate trans-
port, materials with dynamic mechanical properties
and boundary deformation are relevant.1125
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Theoretical analysis of the no-slip boundary condition
enforcement in SPH methods, Progress of theoretical1230

physics 125 (2011) 1091–1121.
[25] M. Ferrand, D. R. Laurence, B. D. Rogers, D. Vio-

leau, C. Kassiotis, Unified semi-analytical wall bound-
ary conditions for inviscid, laminar or turbulent flows
in the meshless SPH method, International Journal for1235

Numerical Methods in Fluids 71 (2012) 446–472.
[26] A. Colagrossi, B. Bouscasse, M. Antuono, S. Marrone,

Particle packing algorithm for SPH schemes, Computer
Physics Communications 183 (2012) 1641–1653.

[27] M. Ferrand, D. Laurence, B. D. Rogers, D. Violeau,1240

C. Kassiotis, Unified semi-analytical wall boundary
conditions for inviscid, laminar or turbulent flows in
the meshless SPH method, International Journal for
Numerical Methods in Fluids 71 (2013) 446–472.

[28] F. Bierbrauer, P. C. Bollada, T. N. Phillips, A consis-1245

tent reflected image particle approach to the treatment
of boundary conditions in smoothed particle hydrody-
namics, Computer Methods in Applied Mechanics and
Engineering 198 (2009) 3400–3410.

[29] A. Amicarelli, G. Agate, R. Guandalini, A 3d fully la-1250

grangian smoothed particle hydrodynamics model with
both volume and surface discrete elements, Interna-
tional journal for numerical methods in engineering 95
(2013) 419–450.

[30] A. Colagrossi, M. Antuono, A. Souto-Iglesias,1255
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