
Decision Tree Organization for GUI Generation

Andrew Strelzoff
University of California Santa Barbara

Department of Computer Science
Santa Barbara, California 93106

strelz@engineering.ucsb.edu

Linda Petzold
University of California Santa Barbara

Department of Computer Science
Santa Barbara, California 93106
petzold@engineering.ucsb.edu

Abstract

An application’s decision tree is a state machine which
the user traverses, filling in input and making decisions, to
reach a runnable state. In previous work we showed how
a decision tree can be derived from an application’s code
by static semantic analysis [9]. This decision tree can be
translated directly to a graphic user interface [GUI], us-
ing XML-to-GUI technology, but the resulting user interface
has numerous redundancies and artifacts of the code from
which it was derived. In this paper we describe an expert
systems approach which produces a user interface that has
a more natural organization which approaches the look and
feel of an interface produced by hand.

Keywords

automated software engineering, user interface require-
ments, reverse engineering, scientific computing, XML
technology, expert systems

1. Introduction

Automated Graphic User Interface [GUI] generation and
maintenance is an important problem that has extensive ap-
plications for many genres of programming, including sci-
entific computing. The problem is to enable relatively in-
experienced interface programmers to generate and main-
tain sophisticated GUI’s. Many physical scientists and en-
gineers develop their own applications. These applications
would be much easier to learn and use with a GUI front end.
The developers of scientific applications typically lack the
time and expertise necessary to produce and maintain high
quality GUI’s. A key step in the generation of a GUI is the
derivation of the user interface requirements for the under-
lying application.

The derivation by hand of user interface requirements
for complex scientific computing applications by hand is a

non-trivial problem. The MAUI software developed at San-
dia National Laboratories [3] takes an XML description of
an application’s user interface requirements and generates a
GUI skeleton which is a useful platform for further devel-
opment. As part of the MAUI project a senior postdoctoral
researcher was given the task of producing user interface re-
quirements for a medium-sized numeric package. This task
required 6 months [2].

In previous work [9] we developed a reverse engineer-
ing process which derived user interface requirements for
complex scientific computing applications. The output from
this process was XML encoded to facilitate translation to a
GUI using MAUI or another XML-to-GUI technology. The
problem with this work was that although the resulting GUI
was valid it did not have the natural organization of a GUI
built by hand.

The problem is to develop a process which mimics the
organizational tasks a human programmer performs when
building a user interface. Our approach involves a sub-topic
within the field of expert systems, the construction of de-
cision tables. This area of research developed out of cir-
cuit design where it was desirable to build logically circuits
with as few logical gates as possible. The Karnaugh map
graphical method was developed for small problems [1].
We use the Quine-McCluskey method which was developed
for larger problems [7]. We then follow the procedure out-
lined in Vanthienen and Wets [10] for producing optimal
decision trees from decision tables to automatically orga-
nize the user requirements. The result, when translated to
XML and then to a GUI, has more of the look and feel of an
interface constructed “by hand”.

In the next section we examine the process of producing
and refining user interface requirements in more detail, but
first we introduce our target application. DASSL: Differ-
ential Algebraic System Software [8] is a well-known soft-
ware package developed by Petzold in 1982 to solve Dif-
ferential Algebraic Equations [DAEs]. DAEs are, roughly
speaking, systems of ordinary differential equations cou-
pled with constraints. These systems arise naturally in the



simulation of a wide range of problems in science and engi-
neering [4]. The DASSL package has evolved into DASPK
[5] and then DASPK3.0 [6]. Over the years a great deal of
functionality has been added, first for solving much larger
systems of DAEs [5], and later for sensitivity analysis [6].

2. Methodology

Our method for generating well organized XML-
encoded user interface requirements has 6 steps.

1. (I) Characterization: Every variable and subroutine
is characterized by tracing usage throughout the pro-
gram.

2. (II) Graph Representation and Coloring: The pro-
gram is transformed into a directed graph. Each node
in the program graph is determined to be in one of
the following classes:

�
Decision Point, Requirements

Block, Computational Block � .

3. (III) Removal of Extraneous Information: All com-
putational blocks, loops and backjumps are removed.
Error detection jumps are also removed. The result is
a decision tree composed of decision points and user
requirement blocks.

4. (IV) Organizing the Decision Tree: Each path
through the decision tree is recorded as a logical ex-
pression. These expressions are reduced using the
Quine-McCluskey algorithm. The reduced decision ta-
ble is then turned into an optimized decision tree using
the Vanthienen-Wets procedure.

5. (V) Constructing the Decision Point Diagram: The
leafs of the decision tree are annotated with runnable
states to form a decision point diagram [DPD].

6. (VI) Generating an XML Description: The decision
diagram is then translated into XML.

Steps one through three are fully described in [9] so we will
only briefly outline them here.

2.1 Characterization

Our approach is to find program branches which are con-
trolled by user input. These are decision points. User in-
put can be determined by tracing variable usage. Variables
which are used but never initialized (or at most initialized
very early, perhaps as a default value) must be user input.
Variables which then appear only in control statements are
assumed to be control variables. This set of branches in
which control variables appear are control points.

We should note at this point that we are dealing with
FORTRAN77 which was selected as a starting point be-
cause it is still important in the scientific computing com-
munity and because it is relatively simple to parse. Exten-
sion of this work to more complex languages such as C is
discussed further in the the last section.

2.2 Graph Representation and Coloring

The next step is produce a network representation of
the application. The procedure is similar to Basic Block
derivation, which is a common compiler procedure. A Ba-
sic Block is a sequence of consecutive statements in which
flow of control enters at the beginning and leafs at the end
without the possibility of branching except at the end. The
network is usually not a tree but it does have a root: the
beginning of the primary subroutine and one leaf: the exe-
cution end-point of the primary subroutine.

After the derivation of the Basic Blocks we need to color
the resulting network. Blocks which contain decision points
are designated as decision blocks. Blocks which contain
user input but which do not involve control variables are
requirements blocks (the user must provide some data or
subroutines if the branch which includes the requirement
block is to be taken). All other blocks are computational
blocks.

2.3 Removal of Extraneous Information

In this step all of the computational blocks are removed.
When a block is removed, all parents of the block are con-
nected with the removed block’s child blocks.

The type of applications under consideration are not in-
teractive, therefore the control variables are usually set early
in the program and never changed. Thus, loops and back-
jumps which are effectively acting as loops will not figure
in the solution and are removed.

Error jumps which take program flow either to the end of
the program or to a diagnostic subroutine which then exits
the program are also removed. As a result many branches
will now have only one outgoing path.

The last block in the program is always the END state-
ment. This is removed, with the result that we now have
a tree-like network with a starting root and one or more
leafs. We call this network a decision tree although it is
not a proper tree since there may be joins where differing
user options share the same code.

2.4 Organizing the Decision Tree

We begin by collecting paths from the starting point
down to each leaf. There may be more than one path if there
is a “join” where differing options share the same code. On



each path we collect all the branch statements and require-
ments blocks traversed as logical implicants. The set of all
these logical statements is then submitted to the Quinne-
McCluskey algorithm.

The Quinne-McCluskey algorithm generates all prime
implicants. Given a logical expression ���������	��
	������ � , a
prime implicant of � is a product term ������������
	��������� which
implies � , and which has the property that if any variables
are removed from � the resulting expression will not imply
� . The second step is to extract the minimum number of
prime terms which form a cover for the original expression.
This is accomplished in two steps. First all essential prime
implicants are accepted. A essential prime implicant is one
which covers terms not covered by any other prime impli-
cant. This implies that the remaining terms are all covered
by more then one prime implicant. For each remaining term
the algorithm choses the “eclipsing” prime implicant. A im-
plicant eclipses another implicant if it covers its terms. The
result is a minimal cover of prime implicants which forms a
minimal equivalent logical expression.

In the process we are describing result is a much reduced
set of non-redundant requirements for each possible deci-
sion path. These results are collected in a “contracted” de-
cision table.

There are three possible ways to construct a new decision
tree from the contracted decision table as outlined in [10].

1. Naive Balanced:The decision table is transformed into
a tree from left to right, with each column resulting in
a new leaf. The result is a balanced tree.

2. Minimal Node Balanced:This procedure results in a
tree with the fewest number of leafs.

3. Optimal Unbalanced:This procedure minimizes the
average height of the resulting tree meaning the user
will traverse the fewest possible states in the interface
to reach a runnable state.

2.5 Constructing the Decision Point Diagram

The next operation is to add runnable states to the de-
cision tree. The result is a decision point diagram [DPD].
DPDs are typically in one of the following forms.

1. Simple. No decision points were found so the simplest
possible DPD is a default requirements block with an
attached runnable state.

2. Tree or “Connected Forest”. The most common pat-
tern for a DPD of a complex application is a decision
tree or a forest of decision trees connected only at the
root default requirements.

3. Complex Network. Scientific computing applications
are often nested or combined to form larger more com-
plex applications. For example, the software package
DASPK is sometimes used to generate consistent ini-
tial conditions and then restarted to solve the problem.
This results in a DPD which takes the user through
a decision tree to set up the initial conditions for the
problem and then a second decision tree to set up the
software to solve the problem.

Numeric software modules can be combined in extraordi-
narily complex ways. For now we concentrate on straight-
forward tree-like DPDs and relatively simple combinations
like the example of restarting DASPK given above.

2.6 Generating an XML Description

The MAUI [3] software an XML-to-GUI engine for sci-
entific computing has been developed at Sandia National
Laboratories. Translating a DPD to MAUI-XML is rela-
tively simple. Each decision point becomes a MAUI class,
with the elements of the requirements block leading to that
decision as member variables. Subsequent decisions are
sub-classes of previous decisions. A simple example is
given in figure 1. The MAUI-XML to generate the GUI
in figure 1 begins as follows:

<Maui RootClass="DDASPK">
<Class type="DDASPK">
<Fields>
<Double label="T" name="T"/>
<Double label="TOUT" name="TOUT"/>
<Double label="TSTOP" name="TSTOP"/>

</Fields>
</Class>
<Class type="INFO1" base="DDASPK">
<Fields>
<Int label="INFO(1)" name="INFO1"/>

</Fields>
</Class>
<Class type="INFO7" base="INFO1" label="INFO7">
<Fields>
<Int label="INFO(7)" name="INFO7" default="0"/>

</Fields>
</Class>
<Class type="INFO16" base="INFO1" label="INFO16">
<Fields>
<Int label="INFO(16)" name="INFO16" />
<Double label="DDAWTS" name="DDAWTS"/>
<Double label="DINVWT" name="DINVWT"/>
<Int label="NEQ" name="NEQ"/>

</Fields>
</Class>
<Class type="INFO4" base="INFO16" label="INFO4">
<Fields>
<Int label="INFO(4)" name="INFO4"/>

</Fields>
</Class>

Using the extensibility features of MAUI the input sub-
routines can be composed, compiled and run from within
the MAUI environment.



3 Case Study

In the next section we outline the derivation of user
interface requirements for one of our target applications,
DASPK.

Figure 1. Maui GUI skeleton for central sec-
tion of DASPK

4. Discussion

The remaining work for this research is to determine
which of the three methods of decision tree organization (or
some combination or other novel method of organization)
produces the GUI with the most “look and feel” of one pro-
duced by hand.

We would also like to produce an extensive case study
showing the advantages of the method chosen for one of
our target codes.

5. Acknowledgments

This work was supported by grants: NSF/ITR ACI-
0086061, NSF/KDI ATM-9873133, and DOE DE-FG03-
00ER 25430.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms. Addison Wesley, 1974.

[2] B. Boggs. Conversation with Maui research team. San-
dia/Livermore, 2002.

[3] P. Boggs, L. Lehoucq, K. Long, A. Rothfuss,
E. Walsh, and R. Whiteside. A Maui user’s guide.
http://csmr.ca.sandia.gov/projects/maui/docs/MauiTutorial/.

[4] K. Brenan, S. Campbell, and L. Petzold. The Numerical
Solution of Initial Value Problems in Differential-Algebraic
Equations. 2nd Edition, SIAM, Philadelphia, 1996.

[5] P. Brown, A. Hindmarsh, and L. R. Petzold. Using krylov
methods in the solution of large-scale differential-algebraic.
SIAM J. Sci. Comp., 15:1467–1488, 1994.

[6] S. Li and L. Petzold. Design of new Daspk
for sensitivity analysis. Technical Report 1999-
28, University of California Santa Barbara, 1999.
www.cs.ucsb.edu/research/trcs/abstracts/1999-28.shtml.

[7] E. J. McCluskey. Minimization of boolean functions. Bell
Syst. Tech J, 1956.

[8] L. Petzold. A description of Dassl: A differential/algebraic
c system solver. Technical Report SAND82-8637, Sandia
National Lab, 1982.

[9] A. Strelzoff and L. Petzold. Deriving user interface require-
ments from densely interleaved
scientific computing applications. IEEE, 15th Automated
Software Engineering Conference, 2003.

[10] J. Vanthienen and G. Wets. From decision tables to expert
system shells. Data and Knowledge Engineering, 1997.


