COOPT - A Software Package for Optimal
Control of Large-Scale Differential-Algebraic
Equation Systems *

Radu Serban?! and Linda R. Petzold 2

Department of Mechanical and Environmental Engineering University of
California, Santa Barbara, CA 93106

Abstract

This paper describes the functionality and implementation of coopPT. This soft-
ware package implements a direct method with modified multiple shooting type
techniques for solving optimal control problems of large-scale differential-algebraic
equation (DAE) systems. The basic approach in cOOPT is to divide the original
time interval into multiple shooting intervals, with the DAEs solved numerically on
the subintervals at each optimization iteration. Continuity constraints are imposed
across the subintervals. The resulting optimization problem is solved by sparse se-
quential quadratic programming (SQP) methods. Partial derivative matrices needed
for the optimization are generated by DAE sensitivity software. The sensitivity
equations to be solved are generated via automatic differentiation.

COOPT has been successfully used in solving optimal control problems arising from
a wide variety of applications, such as chemical vapor deposition of superconducting
thin films, spacecraft trajectory design and contingency/recovery problems, and
computation of cell traction forces in tissue engineering.

Key words: DAE, optimal control, ...

* This research was supported in part by NSF KDI ATM-9873133, NSF-ARPA PC
239415, NSF CCR 98-96198, and DOE DE-FG03-98ER25354.

! Email: radu@engineering.ucsb.edu

2 Email: petzold@engineering.ucsb.edu

Preprint submitted to Mathematics and Computers in Simulation 19 June 2000

1 Introduction

We consider the differential-algebraic equation (DAE) system

F(t,x,x',p,u(t)) =0 1)

X(tl) = X1
where the DAE is index one (see [5]) and the initial conditions have been
chosen so that they are consistent (so that the constraints of the DAE are
satisfied). The control parameters p and the vector-valued control function
u(t) must be determined such that the scalar objective function

/ "Gt x (1), p, u(t)) dt

t1

is minimized and some additional inequality constraints
G(t,x(t), p,u(t)) > 0

are satisfied. The optimal control function u*(¢) is assumed to be continuous.
In many applications, the DAE system is large-scale, that is the dimension
N, of x may be large. In some of our applications [11] N, ~ 1000, but even
larger problems can be considered. However, the dimensions of the parameters
p and of the representation of the control function u(¢) are assumed here to
be much smaller. To represent u(¢) in a low-dimensional vector space, we use
piecewise polynomials on [¢1, tmax], their coefficients being determined by the
optimization. For ease of presentation we can therefore assume that the vector
p contains both the parameters and these coefficients (we let M denote the
combined number of these values) and discard the control function u(¢) in the
remainder of this section. Also, we consider that the initial states are fixed
and therefore discard the dependency of x; on r. Hence the problem is given
by

F(t,x,x',p) =0, x(t1) = xq, (2a)

/ e Y(t,x(t),p)dt is minimized, (2b)
t1

g(t,x(t),p) = 0. (2¢)

There are a number of well-known methods for direct discretization of this
optimal control problem (2), for the case that the DAEs can be reduced to or-
dinary differential equations (ODEs) in standard form [3]. The single shooting
method solves the ODEs (2a) over the interval [t1, tmax], With the set of con-
trols generated at each iteration by the optimization algorithm. However, it is
well-known that single shooting can suffer from a lack of stability and robust-
ness [1]. Moreover, for this method it is more difficult to maintain additional

constraints and to ensure that the iterates are physical or computable. The
finite-difference method or collocation method discretizes the ODEs over the
interval [t1, tmax]- The ODE solutions at each discrete time and the set of con-
trols are generated at each iteration by the optimization algorithm. Although
this method is more robust and stable than the single shooting method, it
requires the solution of an optimization problem which for a large-scale ODE
system is enormous, and it does not allow for the use of adaptive ODE or (in
the case that the ODE system is the result of semi-discretization of PDEs)
PDE software.

We thus consider the multiple-shooting method for the discretization of (2).
In this method, the time interval [t1, tmax] is divided into subintervals [t;, ;1]
(1 = 1,...,Nps), and the differential equations (2a) are solved over each
subinterval, where additional intermediate variables X, are introduced. On
each subinterval we denote the solution at time ¢ of (2a) with initial value X;
at ti by X(t, ti: Xi; p)

Continuity between subintervals is achieved via the continuity constraints
Ci(Xis1,Xi, p) = Xip1 — x(tiga, 4, X4, p) = 0.

For the DAE solution to be defined on each multiple shooting subinterval, it
must be provided with a set of initial values which are consistent (that is,
the initial values must satisfy any algebraic constraints in the DAE). This is
not generally the case with initial values provided by methods like sequen-
tial quadratic programming (SQP) because these methods are not feasible
(in other words, intermediate solutions generated by the optimizer do not
necessarily satisfy constraints in the optimization problem although the final
solution does). To begin each interval with a consistent set of initial values,
we first project the intermediate solution generated by SNOPT onto the con-
straints, and then solve the DAE system over the subinterval. In the case
of index-1 problems with well-defined algebraic variables and constraints, this
means that we perturb the intermediate initial values of the algebraic variables
so that they satisfy the constraints at the beginning of each multiple shooting
subinterval. The additional constraints (2c¢) are required to be satisfied at the
boundaries of the shooting intervals

Following common practice, we write
t
®(t) = | ¥(r,x(),p)dr, (3)
1

which satisfies ®'(t) = ¢(¢,x(t), p), ®(¢1) = 0. This introduces another equa-
tion and variable into the differential system (2a). The discretized optimal

control problem becomes

subject to the constraints

Ci(Xit1,Xi,p) =0, (ba)
C3(Xi,p) > 0. (5b)

This problem can be solved by an optimization code. We use the solver
SNOPT [7], which incorporates an SQP method. The SQP methods require a
gradient and Jacobian matrix that are the derivatives of the objective function
and constraints with respect to the optimization variables. We compute these
derivatives via highly efficient DAE sensitivity software DASPK3.0 [8]. The
sensitivity equations to be solved by DASPK3.0 are generated via the automatic
differentiation software ADIFOR [4].

This basic multiple-shooting type of strategy can work very well for small-
to-moderate size ODE systems, and has an additional advantage that it is
inherently parallel. However, for large-scale ODE and DAE systems there is
a problem because the computational complexity grows rapidly with the di-
mension of the ODE system. The difficulty lies in the computation of the
derivatives of the continuity constraints (5a) with respect to the variables X;.
The work to compute the derivative matrix 0x(t)/0X; is of order O(NZ2), and
for the problems under consideration IV, can be very large (for example, for
an ODE system obtained from the semi-discretization of a PDE system, N,
is the product of the number of PDEs and the number of spatial grid points).
In contrast, the computational work for the single shooting method is of order
O(N,N,) although the method is not as stable, robust or parallelizable.

We reduce the computational complexity of the multiple shooting method for
this type of problem by modifying the method to make use of the structure of
the continuity constraints to reduce the number of sensitivity solutions which
are needed to compute the derivatives. To do this, we recast the continuity
constraints in a form where only the matrix-vector products (0x(t)/0X;)w;
are needed, rather than the entire matrix 0x(t)/0X;. The matrix-vector prod-
ucts are directional derivatives; each can be computed via a single sensitivity
analysis. The number of vectors w; such that the directional sensitivities are
needed is small, of order O(N,). Thus the complexity of the modified multi-
ple shooting computation is reduced to O(NV,;N,), roughly the same as that
of single shooting. Unfortunately, the reduction in computational complexity
comes at a price: the stability of the modified multiple shooting algorithm
suffers from the same limitations as single shooting. However, for many PDE
systems, including the applications described here, this is not an issue, and
the modified method is more robust for nonlinear problems. This is due to the

k=1 k=2 k=3 - - - k k+1 : : : ' k=N
At

Fig. 1. Control subintervals within a shooting interval

fact that optimal control is usually considered for problems which are already
simulated and are thus stable from the left. Further details on the algorithm
can be found in [6].

In the context of the SQP method, the use of modified multiple shooting in-
volves a transformation of the constraint Jacobian. The affected rows are those
associated with the continuity constraints and any path constraints applied
within the shooting intervals. Path constraints enforced at the shooting points
(and other constraints involving only discretized states) are not transformed.
The transformation is cast almost entirely at the user level and requires mini-
mal changes to the optimization software, which is important because software
in this area is constantly being modified and improved. Gill et al. ([6]) have
shown that the modified quadratic subproblem yields a descent direction for
the /1 penalty function. DAOPT is a modification to the SNOPT optimization
code that uses a merit function based on an ¢; penalty function.

2 Description

In this section we describe in more detail the basic structure and implementa-
tion of coopT. We start by describing the control parameterization adopted
in cOOPT. In Section 2.2 we discuss the optimization constraints of the dis-
cretized optimal control problem (4) with emphasis on the constraints impos-
ing state and control continuity at the multiple shooting interfaces. Section
2.3 describes the solution of the state and sensitivity equations, while Section
2.4 presents a simple method for computing the sensitivity of the solution of
the optimal control problem with respect to perturbations in equality and/or
inequality constraints.

2.1 Control Parameterization

On each multiple shooting interval, each control u;, 7 = 1,2, ..., N, is repre-
sented as a piecewise polynomial of order /V,. Each multiple shooting interval
is subdivided into N, control intervals (see Fig. 1). The control u; is then pa-
rameterized by a minimum number of parameters that ensure continuity of the

control and of its derivative; i.e., u; € C'. Consider the multiple shooting inter-
val [i,7+1]. The length of each control subinterval is then At; = (¢;41 —1t;)/N,.
Let k be such that k-At; < t—t; < (k+1)-At;. Consider the order N, polyno-
mial approximation of control u; at ¢, using the nondimensionalized variable

#=(t—t;— k- At;)/At; € 0,1)

Nq
u;(t) = UG + UV + S g
=2
(6)
At - ul(t) = U + Z Urthagerat k=0,1,2,.., N,

Imposing the conditions u; € C!, the parameters Ujl-ffl’o and U]l-fjl’l must
satisfy the following recursive relations:

Nq
E+1,0 _ 77k,0 k1 kg
Ui " =U + Uiy +> Uy
=2

Nq
k+1,1 k,1 k,
Ui ' =Uji + > qUsf k=1,2,..., N,
=2
By induction, we can see that

U U kU 4 S Z[q (k — k1) + 1]Ukba
k1=1g=2
(8)
k Ng
Ui =0+ 20 Y Uy k=0,1,2,.., N,

k1=1q=2

The piece-wise polynomial approximation of u; in the shooting interval [¢, i+1]
can thus be represented by the following 2 + N (N, — 1) parameters:

710

s

1,1
Uy
1,2 2,2 k2 k41,2 Ne,2
Ui Uy Uiiw U, Uji
1,3 2,3 k,3 k+1,3 Ne¢,3
Ui Ui - Ui Ujs e Ui
1,N, 2,N, k,N, k+1,N, Ne,N,
Ui Uy Ui ™ Uj, Uji

The total number of control parameters is then Ny, N, (2 + N (N, — 1)).

Such a parameterization of the control has two advantages over the approach in
which an order IV, polynomial is used to represent the control on each control
subinterval [k, k + 1], with C' control continuity enforced by the optimiza-
tion algorithm. First, a reduced number of parameters is required, N,,s N, (2 +
N¢(N, — 1)) vs. NysNyN:(N, + 1), which means that fewer sensitivity equa-
tions must be solved. Using a separate polynomial of order N, for each control
subinterval introduces discontinuities in the sensitivities with respect to pa-
rameters U;-f;o and therefore, a consistent initial condition computation must
be performed at the beginning of each control subinterval. With the current
control parameterization the integration can be carried out over the entire
multiple shooting interval without restarts at the beginning of each control
subinterval.

2.2 Optimization Constraints

In a multiple shooting type method, continuity of states and controls at the
multiple shooting points must be enforced. We impose C° conditions on the
states (including the additional state for the cost function) and C' condi-
tions on the controls. These conditions result in nonlinear state continuity
constraints and linear control continuity constraints.

The complete set of constraints in the discretized optimal control problem (4)
is then obtained by collecting the user-defined constraints, the state continuity
constraints, the control continuity constraints, and some additional control

constraints (see Section 2.2.3).

2.2.1 State Continuity Constraints

The state equations (1) are solved on each multiple shooting interval [t;, t;11],
i=1,2,..., Nys. We denote the solution at time ¢ of (1) with initial value X;
at t; by x(t, t;, X;, p, u). Continuity of states between subintervals is achieved
via the nonlinear constraints

Ci = Xip1 — x(tig1, 4, X5, p,u) =0
where C; € RM*1 =12 ... Ny,

(9)
We denote by

X = {X3, X3, ..., Xn, .41} € RVms(Natl)
the vector of discretized states and by

U= {Ula U2, ceey UN } c RNmSNu(2+NC(Nq—1))

the vector of control parameters, with U; representing the parameterization
of all controls on the interval [t;,%;11]. Note that the states X; € RN=*1 at
t = t; are excluded from the array X. Next, we collect the constraints (9) into
the array

C, Xy — x(tg, 11, X1, p, Uy)
C, X3 — x(t3, 2, X2, p, Us)
C(p,X,U) = = =0
C; Xiy1 = xX(tiy1, ti, X4, p, Uy)
CNms _XNms+1 - X(tNms+1’ tNms’ X‘Nms’ p’ UNms)_
(10)

The Jacobian of these constraints with respect to the vector of optimization
parameters [p, X, U] is

J =1[3,,3x,Ju] (11)

where

—0x(t3)/0p
Ip = (12)
—3x(ti+1)/8p
| —0%X(t s +1) /0P
[1 0 0 0o o 0 0
ax(t3)
e I 0--- 0 0--- 0 0
Ox(t4)
0 -ZWy... o o0-- 0 0
Jx = : oo : : : : (13)
0 0 0. -y 0 0
0 0 O0--- 0O O0--- _%ﬁsﬂ) 1|
[ax(t2) 1
o an 0 0 0
ox(t3)
0 -2 ... o ... 0
Ju = (14)
0 o --- _%&) 0
0 o --- 0o --- _%ﬁsﬂ)_

In the previous equations, we have used the simplified notation x(t;11) =
X(ti+1atiaxiap)Ui)'

The computational complexity of the basic multiple shooting method results
mainly from computation of the derivative matrix Jx. For problems where N,
is large, the time to compute this Jacobian is prohibitive. To overcome this
problem, we first note that, as Eq. (13) shows, the Jacobian Jx is nonsingular.
The matrix Jx' can be used to transform the state continuity constraints (9)
so that the number of sensitivities is reduced.

Multiplying the constraints C and the Jacobian J to the left by Jx', we obtain

modified constraints and a modified Jacobian

C =Jx'C, (15)

J = [3%13,, 35T, I Ju] = [P, 1, 1), (16)

The important feature of this modified Jacobian is that the sensitivities asso-
ciated with the identity block need not be computed. The modified constraints
(15) are the solution of the system JxC = C, while the remaining two blocks
in the modified Jacobian are solutions of the matrix systems J <P = Jp and
JxU=17J u, respectively. The modified constraints C and the matrices P and
U can be computed iteratively, Plock by block, outside the optimization code.

Indeed, to compute the matrix C, we partition it into N,,, vertical blocks. We
find that

~ - liy1) o :
Cl = Cl, Cz = Cz + %Ci—la 1= 2, 3, ceey Nms- (17)

With a similar partition for P we get

~ 8x(t2) ~ 6x(ti+1) 8x(ti+1) ~ .
P, =- Pz = — PZ', 3 = 2,3, ---,Nms-
LT T op op | ox, v
(18)
With a block-lower triangular partition of the matrix U we have that
U, = ﬁUHJ, j=1,2,0i—1
. aXZ .
(19)
O, - _9xltin)
1,0 aU,

for i =1,2,..., Nus. Note that the matrix-matrix product %{;”Pi_l can be
computed directly via N, sensitivity solves. This shows that the computation
of P requires Np(2 % Ny — 1) sensitivities. Recalling that each of the matrices
IAJ,-,]- has 2+ N.(IN; — 1) columns, a similar argument proves that computation
of U requires A Npns(Npns + 1)[2 4+ N.(N, — 1)]. Therefore, when N, < N, and
N, < N,, the total number of sensitivity solves is substantially less than the
number of sensitivities required to compute the Jacobian of Eq. (11).

The only complication of this procedure is that J is not the Jacobian of C. As
a result, the augmented Lagrangian merit function used by SNOPT cannot be
used in this situation. However, Gill et. al. ([6]) have shown that the modified
problem yields a descent direction for a merit function based on the /; penalty
function. This modification of the optimization algorithm is implemented in
DAOPT.

10

In Section 2.3 we present in more detail how the sensitivity equations are
formed and solved.

2.2.2 Control Continuity Constraints

Continuity conditions on u; and v} (j = 1,..., N,) at t;, 1 = 2,..., N, result
in the following 2(NV,,s — 1)V, linear constraints on the control parameters:

Ng

C

CLi= UL + No- U + 30 S la(Ne — K) + 1JU% — UL,
N (20)
Ne At;
C2=U3 + 3> qUulf - thl Ujila, i=1,2,..., Nps
k=1q¢=2 i
The Jacobian entries of these constraints are

80;71- ' 80},1- o 80},1- B . 80},1- B

anl,,iO =1 UL, = N aU]I-f;q =q(N. — k) + 1; 8U1,2r1 =-

OC’% _0 8Cj2,i . 8Cj2,i — 802 B Atiﬂ

ouiY 7 oouy T auit T aU, At 21)
1=1,2,..., Nps
j=12,...,N,
q=2,3,..., N,

k=1,2,...,N,.

Note that both sSNOPT and DAOPT are such that, if the linear constraints of
the optimization problem are initially feasible, all subsequent iterates satisfy
the linear constraints. Since the control continuity constraints (20) are linear

in the control parameters U ;q, it follows that u; € C' everywhere in [t1, taz]-

2.2.3 Additional Control Constraints

Because of the control parameterization scheme that we employ, user-defined
bounds on controls and first derivatives of controls can be directly applied only
at the beginning of each multiple shooting interval (where they can be directly
converted into bounds on the control parameters Ujl,’io and Ujl,’il). To enforce
the user-defined bounds at all control points, we add 2 - N, linear constraints
for each control, on each shooting interval 4. If bl,, and bu, are the user-defined
upper and lower bounds for control 5 and bl and bu, are the upper and lower

11

bounds defined for the control derivative, then we impose

N(l
bl, <US +US + 3 U < bu,
=2
qu (22)
At; - bly <UR + 37 qURT < Aty - buy k=1,2,.. N.,.
q=2

Like the control continuity constraints of Section 2.2.2, these additional linear
constraints are satisfied at all optimization iterates, thus ensuring physically
meaningful values of the controls at all times.

2.3 Solution of State and Sensitivity Equations

We obtain values and Jacobians of the nonlinear state continuity constraints
of Section 2.2.1 by solving the following state and sensitivity equations:

F(t,x,x',p,u(t)) =0 (23)
OF OF ,
F F F
0 OF , OF 0 (25)

8—xs+@s —f—%—

8_F +8_F’_|_8_F_
3XS ax’s oUu

A central observation behind the modified multiple shooting approach is that
(24) has no forcing term. As a consequence, if s; is the j-th column of the
solution of (24) with initial condition s;(¢;) = e; then any linear combination
of these columns is also a solution of (24), with initial condition given by the
coefficients of the linear combination. For a given parameter «, we say that
computing x,(t) represents one sensitivity computation. Thus, computation
of the modified constraint € requires only one sensitivity calculation. The
modified Jacobian P can be obtained with only 2- N, sensitivity computations,
while each block ﬂil’ig in the Jacobian U requires only 2+ N,(NN,—1) sensitivity
computations. When the dimension of the state vector x is large, this approach
substantially reduces the number of sensitivity computations required by a
conventional multiple shooting approach.

0. (26)

On the first multiple shooting interval (i = 1), we have to solve N, + 1 state
equations and (N, + 1){1 + N, + N,[2 + N.(N, — 1)|} sensitivity equations.

12

Table 1
State and sensitivity equations

Dimension | Initial Eq. | Final Result
1=1
1| N, +1 X1 23 | x(t2) C; = Xy — x(t9)
2| N;+1 0 24 |0 never used
3| Ny(N,+1) | 0 25 | i) Py = -2k
4| () 0 26 | 2xlt2) U1, = -2
i>1
1| N, +1 X; 23 | x(tis1) Ci = Xip1 — x(tis1)
2| Ny +1 i 24 6x§§g)&, Ci=Ci+ %ﬂ?l)éi—l
3| Ny(N,+1) | 0 25 | 2w
4| (1) 0 26 %{f{l) Ui = —%{}J{l)
5| Np(Ng +1) | =Py 24 —6x§§f1)f’i71 P, = —‘9"%;',“) + 6x§§g1)f’z>1
~Ui_11 —%ﬂrl)ﬁi—m U1 = %}l{:l)ﬁi—l,l
6| (1) _ﬂi—l,Q 24 _%;J)ﬂi—lﬂ ﬂi,Z = %ﬂl)ﬂi—m
~Ui-1,i-1 —%{lfl)ﬂi—l,i—l Ui = %}i{:)ﬂi—l,i—l

(T) Nu(2 + Nc(Nq - 1))(Nw + 1)
(1) (@ =)Nu(2 4 Ne(Ng — 1)) (N + 1)

On each of the following multiple shooting intervals (¢ > 1) the number of
equations to be solved is (N, +1){2+ 2N, +iN,[2 + N (N, — 1)]}. Collecting
the states and all their sensitivities into a vector v, we can split this vector
into 6 parts. Table 1 lists the state and sensitivity equations that are solved
on each multiple shooting interval. The additional variable corresponding to
the cost function (3) is inserted in the vector of model states at a position
specified by the user. This option is provided to preserve the possible band
structure of the model equations’ Jacobian. If the banded Jacobian option is
not used, the additional state can be positioned anywhere between states 1
and N,.

If no explicit bounds are defined for the model states at t = ty,,,+1 = timqer and
if they are not part of the cost function or of the user constraints, it is more
efficient not to include them among the optimization variables. This not only
leads to an optimization problem with fewer variables, but also results in N,

13

V-
-

Fig. 2. Sensitivities of the control with respect to coefficients of the parameterization
(for N, = 5, N, = 2). (0): du/0U0 (1): Ou/OU (2): Ou/OU? (3): Ou/OU>? (4):
ou/OU>? (5): Ou/OU? (6): Ou/OU?

fewer nonlinear state continuity constraints. However, even in this case, the
additional variable corresponding to the cost function at ¢,,,, is still added to
the optimization variables, to obtain a linear cost function in the discretized
nonlinear programming problem (4).

Although we consider additional control subintervals inside each multiple
shooting interval, the control parameterization employed (see Section 2.1) as-
sures C' continuity of the controls inside each shooting interval. Thus the
integration can be carried out without restarts. This can be seen best in Fig.
2 which shows that sensitivities of the control u with respect to the coefficients
of the parameterization are also C! continuous. Moreover, the optimization al-
gorithm implemented in SNOPT/DAOPT satisfies the linear constraints at all
iterates. The controls and their derivatives are therefore within the prescribed
bounds at any control subdivision.

DASPK3.0 ([8]) is a software package for solving DAE initial value problems. It
uses variable-order variable-step backward differentiation formulas. The linear
systems that arise at each time step are solved with either dense or banded
direct linear system methods, or with preconditioned Krylov iterative meth-
ods. In addition to solving the DAE (23), DASPK3.0 implements several highly
efficient algorithms for performing sensitivity analysis. During integration on
a given shooting interval ¢, DASPK3.0 requires computation of the residual of
the state and sensitivity equations (23)-(26), as well as computation of the Ja-
cobian with respect to the states and their derivatives. The subroutine cNsys
calls the user-defined routines cUsysM and cUsysC to evaluate the residual of
the state equations and the right side of the additional equation (3), respec-
tively, at a given time ¢, for given values of the parameters p, states x, state

14

Direct | Solver Iterative |Solver

Coopt

[| e | [Ok | | apedn |
¢

Band Dense
‘chacand‘ ‘chachns‘ ‘ cNresB ‘ ‘ cNpjacB ‘ ‘ cNpsolB ‘
oo]
A D | F O R

User
subroutines

Fig. 3. Subroutines called by DASPK3.0

derivatives x’, and controls u; i.e.,
F =F(t,x,x,p,u). (27)

The subroutine cNsys is preprocessed through ADIFOR to generate the fol-
lowing two subroutines (see Fig. 3): (a) g_cNsys to evaluate

F=—%x+_—%X+_—p+—1u (28)

X Y
for given values of the seed vectors X, X', p, and @; and (b) j_cNsys to evaluate
J=——-X+_=X (29)

for given values of the seed matrices X, X'.

2.3.1 Residual Computation

The equations that must be solved on a given shooting interval 7 can be
partitioned into six parts, corresponding to the similar partition of the vector
v. We evaluate each part of the residual by repeatedly calling g_cNsys with
convenient seed vectors. As an example, consider the fourth part of the residual
(see Table 1). The subroutine g_cNsys must be called N, (2 + N.(N, — 1))
times to evaluate the residual (26) for each control parameter in the interval
i. Comparing (26) and (28) it follows that p = 0. The seed vector X is set to
that part of the vector v that contains the sensitivities with respect to the
current control parameter. The seed vector X' is set to the corresponding part

15

in v'. For each control j = 1,---,N,, the initialization of the seed vector u
follows from

k Ny
wit) = (U2 + k- UG+ S S [g(k — k1) + 1]US

kl=1q=2

1,1 k Nq k1
Uiz + > > aU*

k1=1q=2

+

Nq
k+1
£+ Upi e,
q=2

where we have used (6) and (8).

Therefore, to compute the residual of the sensitivity equations with respect

to the control parameter Ujl’ ,io the only nonzero component of 4 is %; = 1. To
compute the residual of the sensitivity equations with respect to Ujl,;l, we set
u; = k +t*. To compute the residual of the sensitivity equations with respect
to UFY k1 =1,...,k, ¢ =2,..., N, we set @; = q(k — k1) + 1 + gt*. Finally,
to compute the residual of the sensitivity equations with respect to Ujl-f ;L L
qg=2,...,Ng, we set 4; =t*7.

2.8.2 Jacobian Computation

If a direct linear system solution method is selected, DASPK3.0 also requires
Jacobians of (23) with respect to x and x’. Depending on the banded Jacobian
user option, the ADIFOR-generated subroutine j_cNsys is called with different
arguments to obtain either a dense or a banded Jacobian. If the Jacobian is
not banded, subroutine j_cNsys is called with the following seed matrices:

_ _ 1
X = INm+17 X' = E : INm+17 (30)

while if the Jacobian is banded, j_cNsys is called with the following seed
matrices:

|1, _
X = . X = : (31)
0 b |o

where w is the Jacobian bandwidth and & is the current integration step size.

2.3.8 Integration Tolerances

The accuracy of the states and sensitivities computed by DASPK3.0 is specified
by the error tolerances rtol and atol. There are three methods of specifying
these values in COOPT.

16

The simplest use is to take both rtol and atol to be scalars. These user defined
values will then be used for all variables, both state and sensitivity.

A second option is to solve the state and sensitivity equations with different
tolerances. The values rtol, and atol, are used for all state variables and rtol,
and atols are used for all sensitivity variables.

As a third option, the user can provide a subroutine which specifies rtol and
atol values for each of the state variables and for the cost function variable.
In addition, order of magnitude information for the states, parameters, and
controls must be provided. Error tolerances for the sensitivity variables are
computed as follows:

e For all sensitivity variables, the relative tolerance rtol is set to the rtol
tolerance of the corresponding state variable.

e For sensitivities with respect to parameters p the absolute tolerance atol is
computed by dividing the atol tolerance of the corresponding state variable
by the estimate provided for that parameter.

e For variables that represent linear combinations of sensitivities with re-
spect to initial conditions (see Table 1), the absolute error tolerance atol
is computed as a weighted sum of corresponding atol tolerances for the
state variables divided by estimates of the states. The weights are the co-
efficients of the linear combinations. Let [a;, ag, ..., ay,] be the absolute tol-
erances for the state variables x € R™> and consider the array s = g—;f ,
where £ € RN=. Then the absolute tolerances used in computing s is set to
[a1, ag, ..., an,] SN |&/%;|, where Z; is an estimate for z;.

2.4 Sensitivity of the Optimal Solution

In many optimal control problems, obtaining an optimal solution is not the
only goal. The influence of problem parameters on the optimal solution (the
so called sensitivity of the optimal solution) is also of interest. Sensitivity in-
formation provides a first-order approximation of the behavior of the optimal
solution when parameters are not at their optimal values or when constraints
are slightly violated. In cOOPT, we make use of the Sensitivity Theorem (see
[2]) for nonlinear programming problems with equality and/or inequality con-
straints:

Theorem 2.1. Let f, h, and g be twice continuously differentiable and con-
sider the family of problems

minimize f(x) (32)
subject to h(z) =u, g¢g(z) <wv,

parameterized by the vectors u € R™ and v € R". Assume that for (u,v) =

17

(0,0) this problem has a local minimum x*, which is regular and which to-
gether with its associated Lagrange multiplier vectors X* and u*, satisfies the
second order sufficiency conditions. Then there exists an open sphere S cen-
tered at (u,v) = (0,0) such that for every (u,v) € S there is an z(u,v) € R"
and Au,v) € R™, u(u,v) € R", which are a local minimum and associ-
ated Lagrange multiplier vectors of problem (32). Furthermore, x(-), A(:), and
u(+) are continuously differentiable in S and we have z(0,0) = z*, A(0,0) =
A%, 1(0,0) = p*. In addition, for all (u,v) € S, there holds

Vup(u: ’U) = _/\(u7 U):
va(u’ ’U) = _N(U” U):

where p(u,v) is the optimal cost parameterized by (u,v),

p(u,’U) = f(x(u’v))

The desired sensitivities are thus directly obtained from the Lagrange mul-
tipliers computed during the solution of the optimization problem. Although
the above method gives only sensitivities of the optimal solution with respect
to constraint perturbation, other sensitivities can also be obtained with minor
changes in the problem set-up. Consider the case where sensitivity of the opti-
mal solution with respect to some problem parameter is desired. The solution
is to add that parameter among the optimization variables and add an equal-
ity constraint to keep the parameter to its nominal value. At the optimum
solution, the Lagrange multiplier associated with this additional constraint
yields the desired sensitivity.

3 A Simple Example

To run a problem in COOPT the user must supply subroutines that

e specify flags for the optimizer and the integrator;

e specify the initial guess and the bounds on the parameters p and the controls
u;

e evaluate the additional constraints (5b) and their Jacobians;

e evaluate the residual of the model equations (2a);

e evaluate the integrand of the additional differential equation (3).

To illustrate the use of COOPT consider the 1-D heat equation

or 0%z
%~ o)

18

0 ! ! ! ! ! ! ! ! ! J
0 0.2 0.4 0.6 0.8 1.2 14 16 1.8 2

1
t(s)
Fig. 4. Optimization results for the heat problem. Solid line z§(t). Dashed line 7(%)

defined on the region ¢ > 0, 0 < y < 1 with boundary conditions at z(¢,0)
and z(t,1), and initial conditions at x(0,0).

We discretize the spatial derivative via the method of lines (MOL) using fi-
nite differences and convert the PDE into an index-1 DAE. Taking a uniform
spatial grid y; = (j + 1)Ay, 1 < j < N, and using centered differences, we
obtain the DAE in the variables z,(t) = z(¢, ;)

x1 —xz(t,0) =0
;o Tj1— 2%+ T .
— =0 =2,.,N—-1 4

zy —z(t,1) =0

Imposing z(t,0) = z(¢,1) = u as the control, we can formulate an optimal
control problem to find u such that, for some k, 2 < k < N—1, the temperature
xy, follows a predefined path 7(¢).

Consider N =11, k = 6, and 7(t) defined as in Fig. 4. A user defined subrou-
tine (cUinit) is used to specify problem specific dimensions and flags. The
significant values for this problem are

Ny =9 The number of differential variables is N — 2

Nyg =2 There are 2 algebraic variables

1 There is one control function

Ny=3 Cubic approximation of the control
N,,s =10 There are 10 shooting intervals
N, = There is 1 control interval per shooting interval

Additional flags specify that states at ¢,,4; are not part of the optimization
variables and that the additional differential equation (3) is inserted in the

19

last position in the DAE system.

Indices of the two algebraic variables are set through the user subroutine
cUvars as 1 and 11. Integration tolerances are defined in the subroutine
cUinit as rtol, = 1078, atol, = 1075, rtol, = 10~*, and atol, = 1073.

As initial guess (user subroutine cUguess) we set z; = 2.0, j = 1,..., N at
all shooting intervals and u = 2.0 everywhere. We impose zero lower bounds
for both states and controls and we fix the control at ¢ = 0 by specifying
blUO(1) = bulU0(1) = 2.0 (user subroutine cUbounds).

The state equations are specified through the user subroutine sysM:

dx = 1.0d0/(Nx-1)
dx2 = dx*dx
£f(1) = X(1) - U(1)
do ix = 2,Nx-1
f(ix) = Xdot(ix) - (X(ix-1)-2.0d0*X(ix)+X(ix+1))/dx2
enddo
f(Nx) = X(Nx) - U(1)

The right side of the additional equation (3) is specified in the user subroutine
sysC:

tt = 2.0d0

wwW 1.0d0

if(£.GT.0.2 .AND. t.LT.0.4) then
tt = 2.0d0+2.0d0*(t-0.2)/0.2

endif

if(t.GE.0.4 .AND. t.LE.1.0) then
tt = 4.0d40

endif

if(t.GT.1.0 .AND. t.LT.1.2) then
tt = 4.0d0-1.0d0*(t-1.0)/0.2

endif
if(t.GE.1.2) then

tt = 3.0d0
endif

fc = wwx (X(6)-tt)*(X(6)-tt)

Optimization settings are passed to the optimizer through an SNOPT specifi-
cation file. For this particular problem we have used a feasibility tolerance of
10~° and an optimality tolerance of 5-1073. With the above settings, COOPT
converged to the optimal solution in 12 major iterations. The cost function
corresponding to the initial guess was 3.928 and was reduced to 9.600 - 1073.
Figure 4 shows the temperature g obtained with the optimal control as com-

20

pared to the desired function 7(t).

4 Conclusions

In this paper we have presented the most important features of coopT. The
software package includes more options than the ones described here, such as
options to include initial conditions among the optimization variables, objec-
tive functions dependent on the final state, and the possibility to optimize
over the final time. A complete description of all the options supported by
COOPT is given in [12].

COOPT has been used successfully in a variety of applications with very differ-
ent problem specifications and requirements. In a first application ([11]), the
algorithm was demonstrated for a stagnation-flow type reactor configuration.
The equations describing chemically reacting stagnation flows were written in
a transient compressible similarity form. After discretizing the spatial deriva-
tives on a finite-volume mesh, the system becomes a set of DAEs. Dynamic
optimization was then used to control the film stoichiometry during imposed
transients in the chemical vapor deposition of multicomponent superconduct-
ing thin films.

In [13], cOOPT has been applied to the problem of trajectory design and orbit
insertion in the circular restricted three-body problem. The algorithm was
employed to design a continous trajectory from the Earth-Moon system to
the periodic halo orbit around the libration point L, of the Sun-Earth system.
Optimal values for maneuver times and magnitudes were computed to correct
for possible errors in injection velocity, while minimizing fuel consumption.

As a third application of COOPT we cite the work of Xu et.al. ([14]) where
cooOPT was used to identify time dependent parameters in models of confined
compression of collagen for tissue engineering. By defining the objective func-
tion to be the sum of the squared error between the model prediction and
experimental result, COOPT was used to regress time varying parameters in
the model.

References

[1] U. M. AscHER, R. M. M. MATTHEL], AND R. D. RUSSELL, Numerical
Solution of Boundary Value Problems for Ordinary Differential Equations,
Society for Industrial and Applied Mathematics (SIAM) Publications,
Philadelphia, PA, 1995. ISBN 0-89871-354-4.

21

[2] D.R. BERTSEKAS, Nonlinear Programming, Athena Scientific, Belmont, Ma,
1995

[3] J.T. BETTS, Survey of Numerical Methods for Trajectory Optimization, Journal
of Guidance Control and Dynamics, Vol. 21(2), pp. 193-207, 1998.

[4] C. BiscHOF, A. CARLE, G. CORLISS, A. GRIEWANK, AND P. HOVLAND,
ADIFOR—generating derivative codes from Fortran programs, Scientific
Programming, 1 (1992), pp. 11-29.

[5] K. E. BRENAN, S. L. CAMPBELL, AND L. R. PETZOLD, Numerical Solution of
Initial- Value Problems in Differential-Algebraic Equations, STAM Publications,
Philadelphia, second ed., 1995. ISBN 0-89871-353-6.

[6] P.E. G, L. O. JAY, M. W. LEONARD, L. R. PETZOLD AND V. SHARMA,
An SQP Method for the Optimal Control of Large-Scale Dynamical Systems, J.
Comp. Appl. Math, to appear.

[7] P.E. GiLL, W. MURRAY, AND M. A. SAUNDERS, SNOPT: An SQP Algorithm
for Large-Scale Constrained Optimization, Numerical Analysis Report 97-2,
Department of Mathematics, University of California, San Diego, La Jolla, CA,
1997.

[8] S. L1 AND L.R. PETZOLD, Design of New DASPK for Sensitivity Analysis,
UCSB Department of Computer Science Technical Report, 1999.

[9] T. MALY AND L. R. PETZOLD, Numerical methods and software for sensitivity
analysis of differential-algebraic systems, Applied Numerical Mathematics 20

(1996), pp. 57-79.

[10] L.R. PETZOLD, J. B. ROSEN, P. E. GILL, L. O. JAY AND K. PARK, Numerical
Optimal Control of Parabolic PDEs using DASOPT, Large Scale Optimization
with Applications, Part II: Optimal Design and Control, Eds. L. Biegler, T.
Coleman, A. Conn and F. Santosa, IMA Volumes in Mathematics and its
Applications, Vol. 93, (1997), pp. 271-300.

[11] L. RAJA, R. KEE, R. SERBAN, AND L.R. PETZOLD, Dynamic Optimization
of Chemically Reacting Stagnation Flows, 1998 Electrochemical Society
Conference, Boston, Ma.

[12] R. SERBAN, COOPT - Control and Optimization of Dynamic Systems - Users’
Guide, UCSB, Department of Mechanical and Environmental Engineering,
Report UCSB-ME-99-1,1999.

[13] R. SErRBAN, W.S. KoonN, M.W. Lo, J.E. MARSDEN, L.R. PETZOLD, S.D.
Ross, AND R.S. WILSON, Halo Orbit Mission Correction Maneuvers Using
Optimal Control, submitted to Automatica, 1999.

[14] J. Xu, J.J. HEYs, V.H. BAROCAS, AND T.W. RANDOLPH, Permeability and
Diffusion in Vitreous Humor: Implications for Drug Delivery, submitted to
Pharmaceutical Research, 1999.

22

