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1 Preliminaries

1.1 Method Description
We consider the differential-algebraic equation (DAE) system

F(t) x’ XI’ p’ u(t)) = 0

x(t1,r) = x1(1)

1)

where the DAE is index one (see [5] or [1]) and the initial conditions have been chosen so that they are
consistent (so that the constraints of the DAE are satisfied). The control parameters p and the vector-
valued control function u(t) must be determined such that the objective function

tmax
/ U(t,x(t),p,u(t))dt is minimized
t1

and some additional inequality constraints
G(t,x(t),p,u(t)) > 0

are satisfied. The optimal control function u*(¢) is assumed to be continuous. In our application the
DAE system is large-scale. Thus, the dimension N, of x is large. However, the dimension of the control
parameters and of the representation of the control function u(¢) is much smaller. To represent u(t) in a
low-dimensional vector space, we use piecewise polynomials on [t1, tmax], their coefficients being determined
by the optimization. For ease of presentation we can therefore assume that the vector p contains both the
parameters and these coefficients (we let M denote the combined number of these values) and discard the
control function u(t) in the remainder of this section. Also, we consider that the initial states are fixed and
therefore discard the dependency of x; on r. Hence we consider

F(t,X, Xlap) = 05 X(tl) = X1, (23‘)
trmax
/ P(t,x(t),p) dt is minimized, (2b)
t1
g(t,x(t), p) > 0. (20)

There are a number of well-known methods for direct discretization of this optimal control problem (2),
for the case that the DAEs can be reduced to ordinary differential equations (ODEs) in standard form. The
single shooting method solves the ODEs (2a) over the interval [t1, tmax], with the set of controls generated at
each iteration by the optimization algorithm. However, it is well-known that single shooting can suffer from
a lack of stability and robustness [2]. Moreover, for this method it is more difficult to maintain additional
constraints and to ensure that the iterates are physical or computable. The finite-difference method or
collocation method discretizes the ODEs over the interval [t1,tmax] with the ODE solutions at each discrete
time and the set of controls generated at each iteration by the optimization algorithm. Although this method
is more robust and stable than the single shooting method, it requires the solution of an optimization problem
which for a large-scale ODE system is enormous, and it does not allow for the use of adaptive ODE or (in
the case that the ODE system is the result of semi-discretization of PDEs) PDE software.

We thus consider the multiple-shooting method for the discretization of (2). In this method, the time
interval [t1,tmax] is divided into subintervals [tiis, titz41] (itz = 1,..., Ny,), and the differential equations
(2a) are solved over each subinterval, where additional intermediate variables X;;, are introduced. On each
subinterval we denote the solution at time ¢ of (2a) with initial value X, at tiy by x(¢, tite, Xite, P)-

Continuity between subintervals is achieved via the continuity constraints

C* (Xitgt1, Xitz, P) = Xitot1 — X(titwt1, titz, Xitz, P) = 0.

For the DAE solution to be defined on each multiple shooting subinterval, it must be provided with a set
of initial values which are consistent (that is, the initial values must satisfy any algebraic constraints in the
DAE). This is not generally the case with initial values provided by methods like SQP because these methods



are not feasible (in other words, intermediate solutions generated by the optimizer do not necessarily satisfy
constraints in the optimization problem although the final solution does). To begin each interval with a
consistent set of initial values, we first project the intermediate solution generated by SNOPT onto the
constraints, and then solve the DAE system over the subinterval. In the case of index-1 problems with
well-defined algebraic variables and constraints such as the problem considered in this paper, this means
that we perturb the intermediate initial values of the algebraic variables so that they satisfy the constraints
at the beginning of each multiple shooting subinterval.
The additional constraints (2c) are required to be satisfied at the boundaries of the shooting intervals

Ci* (Xitz) = gltite: Xita: P) 2 0.

Following common practice, we write

t
o(t) = v x(1), p) dr, (3)

which satisfies ®'(t) = (¢, x(¢t),p), ®(t1) = 0. This introduces another equation and variable into the
differential system (2a). The discretized optimal control problem becomes

i P (tmax 4
x2,~~r~ryl)1(rllvm,p ( a) ()

subject to the constraints

Ci* (Xitg+1, XitzsP) = O, (5a)
C¥ (Xjta,p) > 0. (5b)

This problem can be solved by an optimization code. We use the solver SNOPT [7], which incorpo-
rates a sequential quadratic programming (SQP) method (see [9]). The SQP methods require a gradient
and Jacobian matrix that are the derivatives of the objective function and constraints with respect to the
optimization variables. We compute these derivatives via differential-algebraic equation (DAE) sensitivity
software DASPK3.0 [12]. The sensitivity equations to be solved by DASPK3.0 are generated via the automatic
differentiation software ADIFOR [3]. Our basic algorithms and software for the optimal control of dynamical
systems are described in detail in [11].

This basic multiple-shooting type of strategy can work very well for small-to-moderate size ODE systems,
and has an additional advantage that it is inherently parallel. However, for large-scale ODE and DAE
systems there is a problem because the computational complexity grows rapidly with the dimension of the
ODE system. The difficulty lies in the computation of the derivatives of the continuity constraints with
respect to the variables X;;,. The work to compute the derivative matrix 8x(t)/0X;, is of order O(N2),
and for the problems under consideration N, can be very large (for example, for an ODE system obtained
from the semi-discretization of a PDE system, NN, is the product of the number of PDEs and the number of
spatial grid points). In contrast, the computational work for the single shooting method is of order O(N, N,)
although the method is not as stable, robust or parallelizable.

We reduce the computational complexity of the multiple shooting method for this type of problem by
modifying the method to make use of the structure of the continuity constraints to reduce the number of
sensitivity solutions which are needed to compute the derivatives. To do this, we recast the continuity
constraints in a form where only the matrix-vector products (0x(t)/0Xis;)W; are needed, rather than the
entire matrix 0x(t)/0X;t,. The matrix-vector products are directional derivatives; each can be computed
via a single sensitivity analysis. The number of vectors w; such that the directional sensitivities are needed
is small, of order O(N,). Thus the complexity of the modified multiple shooting computation is reduced
to O(N;Np), roughly the same as that of single shooting. Unfortunately, the reduction in computational
complexity comes at a price: the stability of the modified multiple shooting algorithm suffers from the
same limitations as single shooting. However, for many dissipative PDE systems including the application
described here, this is not an issue, and the modified method is more robust for nonlinear problems.

In the context of the SQP method, the use of modified multiple shooting involves a transformation of
the constraint Jacobian. The affected rows are those associated with the continuity constraints and any
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Figure 1: Description of the multiple shooting method

path constraints applied within the shooting intervals. Path constraints enforced at the shooting points (and
other constraints involving only discretized states) are not transformed. The transformation is cast almost
entirely at the user level and requires minimal changes to the optimization software, which is important
because software in this area is constantly being modified and improved. Gill et.al. ([6]) have shown
that the modified quadratic subproblem yields a descent direction for the ¢; penalty function. DAOPT is a
modification to the SNOPT optimization code that uses a merit function based on an ¢; penalty function.

The main features of the multiple shooting method are shown in Fig. 1. Details of the modified multiple
shooting method are given in [6].
1.2 Installation
The file coopt.tar unpacks into a directory named coopt. This directory contains:

e Makefile: Top level makefile.

e Main.f: The main program. Sets integer and real work spaces and calls the driver subroutine.

e src: Contains the source files for COOPT.

e templates: Contains templates for user files.

e daspk: Contains the source for the DASPK3.0 library.

e snopt: Contains the source for the SNOPT library.

e daopt: Contains the source for the DAOPT library.

e 1libs: Contains the DASPK3.0, SNOPT, and DAOPT libraries.

e example: Contains user files for the heat example (Section 4)
To build the DASPK3.0 library use the following command in the directory coopt/daspk:

% make 1lib

This will compile the DASPK3.0 source files, create the library 1ibdaspk.a, and move it to coopt/1libs. To
build the sSNOPT library use the following command in the directory coopt/snopt:



% make 1lib

This will compile the SNOPT source files, create the library libsnopt.a, and move it to coopt/libs. To
build the DAOPT library use the following command in the directory coopt/daopt:

% make 1lib

This will compile the DAOPT source files, create the library 1ibdaopt.a, and move it to coopt/libs.



2 Setting Up a New Problem

In this section we discuss the main steps that you have to take in order to create and run a new problem
with coopT. For more information on SNOPT, DASPK3.0, and ADIFOR consult the following references:

o User’s Guide for SNOPT 5.3: A Fortran Package for Large-Scale Nonlinear Programming, P.E. Gill,
W. Murray, and A. Saunders

e Design of New DASPK for Sensitivity Analysis, S. Li and L.R. Petzold
e ADIFOR 2.0 Users’ Guide - Revision D, C. Bischof, A. Carle, P. Hovland, P. Khademi, and A. Mauer

For details on code structure and implementation see Section 3.

2.1 User Subroutines

To generate a new problem, first create a subdirectory in coopt that will contain all problem specific files.
You are free to choose any name for the user subdirectory, as long as it does not conflict with existing
directories in coopt. In the following discussions, we assume that your files will be placed in the directory
coopt/myproblem. Templates of all user files are provided in coopt/templates. The file names, as well as
the subroutine names are fixed. To prevent possible conflicts with user-defined names, subroutine names in
CcoOoPT start with cU (user defined subroutine) and with cN (COOPT internal subroutines).

The user Fortran files and subroutines are listed in Table 1. In addition to these Fortran files, you must
also create an ADIFOR script file and two ADIFOR composition files.

2.1.1 File Initial.f
The file Initial.f contains the following subroutines:

1. Name cUnames
Purpose Specifies the SNOPT/DAOPT specification file, output directory, and problem name.
Template

SUBROUTINE cUnames (SpecName,QutDir,ProbName)
IMPLICIT NONE

CHARACTER*256 SpecName, OutDir

CHARACTER*8 ProbName

RETURN
END

Arguments

SpecName - Name of the optimizer specification file

OutDir - Name of the output directory

ProbName - Problem name

Note

These names are used to generate output file names (see Section 2.3)

2. Name cUspace
Purpose Sets integer and real user array dimensions.
Template

SUBROUTINE cUspace(leniu,lenru)
IMPLICIT NONE
INTEGER leniu, lenru

RETURN
END



Arguments
leniu - Length of integer user array
lenru - Length of real user array

. Name cUinit
Purpose Sets problem dimensions and flags and integer and real problem data.
Template

SUBROUTINE cUinit(idim, iflag,
& idata, rdata,
& iuser, leniu, ruser, lenru)

IMPLICIT NONE

INTEGER idim(20),iflag(30), idata(15), leniu,iuser(leniu),lenru
DOUBLE PRECISION rdata(50),ruser(lenru)

RETURN
END

Arguments

idim - Array of problem dimensions
iflag - Array of solution flags

idata - Array of integer problem data
rdata - Array of real problem data
iuser - Integer user array

leniu - Dimension of integer user array
ruser - Real user array

lenru - Dimension of real user array
Note

For a desription of the idim, iflag, and idata arrays, see Tables 2, 3, and 4.

. Name cUvars
Purpose Specifies the algebraic variables and equations.
Template

SUBROUTINE cUvars(Nxa, ivars, ieqs, iuser, leniu, ruser, lenru)
IMPLICIT NONE

INTEGER Nxa, ivars(Nxa), ieqs(Nxa), leniu, iuser(leniu),lenru
DOUBLE PRECISION ruser (lenru)

RETURN
END

Arguments

Nxa - Number of algebraic variables

ivars - Indices of the algebraic variables

iegs - Indices of the index-2 algebraic equations

iuser - Integer user array

leniu - Dimension of integer user array

ruser - Real user array

lenru - Dimension of real user array

Note

The information about algebraic variables and equations is required only for consistent initial condition
computations at the beginning of the multiple shooting intervals. The array ivars needs to be set
only if the model equations represent a DAE of index 1 or 2. The array ieqs needs to be set only if
the model equations represent a DAE of index 2.



5. Name cUtime
Purpose Returns times at the multiple shooting points.
Template

SUBROUTINE cUtime(Ntx, tx,
& iuser, leniu, ruser, lenru)

IMPLICIT NONE

INTEGER Ntx, leniu, iuser(leniu), lenru
DOUBLE PRECISION tx(Ntx+1), ruser(lenru)

RETURN
END

Arguments

Ntx - Number of multiple shooting intervals
tx - Time at multiple shooting points
iuser - Integer user array

leniu - Dimension of integer user array
ruser - Real user array

lenru - Dimension of real user array

6. Name cUguess
Purpose Sets initial guesses for parameters, ’initial parameters’, states, and controls.
Template

SUBROUTINE cUguess(Np, Nr, Nx, Nu,
& guessP, guessR, guessX, guessU,
& iuser, leniu, ruser, lenru)

IMPLICIT DOUBLE PRECISION (A-H, 0-Z), INTEGER (I-N)

INTEGER Np, Nr, Nx, Nu, leniu, iuser(leniu), lenru

DOUBLE PRECISION guessP(*), guessR(*), guessX(x), guessU(x)
DOUBLE PRECISION ruser (lenru)

RETURN
END

Arguments

Np - Number of parameters

Nr - Number of ’initial’ parameters

Nx - Number of model states

Nu - Dimension of control

guessP - Initial guess for parameters
guessR - Initial guess for ’initial’ parameters
guessX - Initial guess for states

guessU - Initial guess for controls
iuser - Integer user array

leniu - Dimension of integer user array
ruser - Real user array

lenru - Dimension of real user array

7. Name cUbounds
Purpose Returns lower and upper bounds for parameters, ’initial’ parameters, controls, control deriva-
tives, initial controls, states, and final states.
Template

10



SUBROUTINE cUbounds(Np, Nr, Nx, Nu,
blP, buP, blR, buR,
blXf, buXf, blX, buX,
b1lU0, buUO, blUf, buUf, blU, bul,
blU0dot, bulUOdot, blUdot, bulUdot,
iuser, leniu, ruser, lenru)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z), INTEGER (I-N)
INTEGER Np, Nr, Nx, Nu, leniu, lenru, iuser(leniu)
DOUBLE PRECISION ruser (lenru)
DOUBLE PRECISION blP(Np), buP (Np)
DOUBLE PRECISION blR(Nr), buR (Nr)
DOUBLE PRECISION blUO(Nu), buU0 (Nu)
DOUBLE PRECISION blUf (Nu), buUf (Nu)
DOUBLE PRECISION blU(Nu), buU (Nu)
DOUBLE PRECISION blUOdot (Nu) ,buUOdot (Nu)
DOUBLE PRECISION blUdot(Nu), buUdot (Nu)
DOUBLE PRECISION blX(Nx), buX (Nx)
DOUBLE PRECISION blXf(Nx), buXf (Nx)

ISR SRS

RETURN
END

Arguments

Np - Number of parameters

Nr - Number of ’initial’ parameters

Nx - Number of model states

Nu - Dimension of control

blP - Lower bounds for parameters

buP - Upper bounds for parameters

blR - Lower bounds for ’initial’ parameters

buR - Upper bounds for ’initial’ parameters

blUO - Lower bounds for controls at initial time

buU0 - Upper bounds for controls at initial time

blUf - Lower bounds for controls at final time

buUf - Upper bounds for controls at final time

blU - Lower bounds for controls

buU - Upper bounds for controls

blUOdot - Lower bounds for control time derivatives at initial time
buU0dot - Upper bounds for control time derivatives at initial time
blUdot - Lower bounds for control time derivatives
buUdot - Upper bounds for control time derivatives
blX - Lower bounds for states

buX - Upper bounds for states

b1Xf - Lower bounds for final states

buXf - Upper bounds for final states

iuser - Integer user array

leniu - Dimension of integer user array

ruser - Real user array

lenru - Dimension of real user array

Note

A lower bound of —10%° and an upper bound of 1
which bounds are not defined by the user.

020 are automatically assigned to all variables for

. Name cUtol
Purpose Specifies tolerances for state variables and order of magnitude information for states, param-

11



eters, and controls.
Template

SUBROUTINE cUtol(Nx,Np,Nr,Nu,
& estX,estCF,estP,estR,estU,
& rtolX,rtolCF,atolX,atolCF)
IMPLICIT NONE
INTEGER Nx, Np, Nr, Nu
DOUBLE PRECISION estX(Nx), estCF
DOUBLE PRECISION estP(Np), estR(Nr), estU(Nu)
DOUBLE PRECISION rtolX(Nx), rtolCF
DOUBLE PRECISION atolX(Nx), atolCF

RETURN
END

Arguments

Nx - Number of model states

Np - Number of parameters

Nr - Number of ’initial’ parameters

Nu - Number of controls

estX - Estimates of the order of magnitude of the model states

estCF - Estimate of the order of magnitude of the cost function

estP - Estimates of the order of magnitude of the parameters p

estR - Estimates of the order of magnitude of the ’initial’ parameters r

estU - Estimates of the order of magnitude of the controls

rtolX - Array of relative error tolerances for the model state variables

rtolCF - Relative error tolerance for the additional variable associated with the cost function
atolX - Array of absolute error tolerances for the model state variables

atolCF - Absolute error tolerance for the additional variable associated with the cost function
Note

This subroutine is called only if i flag(5) = 2.

All entries in estX, estP, estR, and estU, as well as estCF must be positive non-zero real numbers.

2.1.2 File Constraints.f
The file Constraints.f contains the following subroutines:

1. Name cUprxfLcon
Purpose Returns bounds (if mode = 0) or Jacobians (if mode = 1) of user-defined linear constraints
on parameters p, r, and final states x(tn,,+1)-
Template

SUBROUTINE cUprxflLcon(mode, Np, Nr, Nx, Nflprxf,
& glpr_p, glpr_r, glpr_xf,
& bl, bu,
& iuser, ruser)
IMPLICIT NONE
INTEGER Np, Nr, Nx, Nflprxf, iuser(*)
DOUBLE PRECISION ruser(x),
& glpr_p(Nflprxf, Np), glpr_r(Nflprxf, Nr),
&  glpr_xf (Nflprxf,Nx)

RETURN
END

12



Arguments

mode - Job flag

Np - Number of parameters

Nr - Number of ’initial’ parameters

Nx - Number of model states

Nflprxf - Number of linear constraints on p, r, and x(tn,,+1)
glpr_p - Jacobian with respect to p

glpr.r - Jacobian with respect to r

glpr_xf - Jacobian with respect to x(tn,, +1)
bl - Array of lower bounds

bu - Array of upper bounds

iuser - Integer user array

ruser - Real user array

. Name cUzuLcon

Purpose Returns bounds (if mode = 0) or Jacobians (if mode = 1) of user-defined linear constraints
on states x, controls u, and parameters p.

Template

SUBROUTINE cUxulcon(mode, Np, Nx, Nu, Nflxu,
& gLxu_p, glxu_x, glxu_u,
& bl, bu,
& iuser, ruser)

IMPLICIT NONE

INTEGER Np, Nx, Nu, Nflxu, iuser(*)

DOUBLE PRECISION ruser(x),
& gLxu_p(Nflxu, Np), gLxu_x(Nflxu, Nx), gLxu_u(Nflxu, Nu)

RETURN
END

Arguments

mode - Job flag

Np - Number of parameters

Nx - Number of model states

Nu - Dimension of control

Nflxu - Number of linear constraints on x, u, and p
gLxu p - Jacobian with respect to p
gLxu_x - Jacobian with respect to x
glxu_u - Jacobian with respect to u
bl - Array of lower bounds

bu - Array of upper bounds

iuser - Integer user array

ruser - Real user array

. Name cUuLcon

Purpose Returns bounds (if mode = 0) or Jacobians (if mode = 1) of user-defined linear constraints
on controls u and parameters p.

Template

SUBROUTINE cUuLcon(mode, Np, Nu, Nflu,
& gLlu_p, glu_u,
& bl, bu,
& iuser, ruser)

IMPLICIT NONE

13



INTEGER Np, Nu, Nflu, iuser(x)
DOUBLE PRECISION ruser(x),
& gLu_p(Nflu, Np), glu_u(Nflu, Nu)

RETURN
END

Arguments

mode - Job flag

Np - Number of parameters

Nu - Dimension of control

Nflu - Number of linear constraints on u, and p
gLu_p - Jacobian with respect to p

gLu_u - Jacobian with respect to u

bl - Array of lower bounds

bu - Array of upper bounds

iuser - Integer user array

ruser - Real user array

Note These constraints are enforced both at multiple shooting grid points and at control parameteri-
zation grid points inside shooting intervals.

. Name cUprxfNLcon

Purpose Returns value and Jacobians of user-defined nonlinear constraints on parameters p, r, and
x(tNtz"l‘l)'

Template

SUBROUTINE cUprxfNLcon(Np, Nr, Nx, P, R, Xf, Nfnprxf,
& fNpr, gNpr_p, gNpr_r, gNpr_xf,
& iuser, ruser)
IMPLICIT NONE
INTEGER Np, Nr, Nx, Nfnprxf, iuser(*)
DOUBLE PRECISION P(x), R(*), X(x*),
fNpr (Nfnprxf),
gNpr_p (Nfnprxf, Np), gNpr_r(Nfnprxf, Nr),
gNpr_xf (Nfnprxf, Nx),
ruser (k)

IS S S

RETURN
END

Arguments

Np - Number of parameters

Nr - Number of ’initial’ parameters

Nx - Number of model states

P - Parameters

R - 'Initial’ parameters

Xf - Final states

Nfnpr - Number of nonlinear constraints on p, r and x(tn,, +1)
fNpr - Constraint value

gNpr_p - Jacobian with respect to p

gNpr_r - Jacobian with respect to r

gNpr_xf - Jacobian with respect to x(tn,,+1)
iuser - Integer user array

ruser - Real user array

14



5. Name cUxuNLcon
Purpose Returns value and Jacobians of user-defined nonlinear constraints on states x, controls u,
and parameters p.
Template

SUBROUTINE cUxuNLcon(Np, Nx, Nu, T, P, X, U, Nfnxu,

& fNxu, gNxu_p, gNxu_x, gNxu_u,

& iuser, ruser)

IMPLICIT NONE

INTEGER Np, Nx, Nu, Nfnxu, iuser(*)

DOUBLE PRECISION T, P(*), X(x), U(x),
fNxu(Nfnxu),
gNxu_p(Nfnxu, Np), gNxu_x(Nfnxu, Nx),
gNxu_u(Nfnxu, Nu),

X

ruser (*)

RETURN
END

Arguments

Np - Number of parameters

Nx - Number of model states

Nu - Dimension of control

T - Current time

P - Parameters

X - Model states

U - Controls

Nfnxu - Number of nonlinear constraints on x, u, and p
fNxu - Constraint value

gNxu_p - Jacobian with respect to p
gNxu_x - Jacobian with respect to x
gNxu_u - Jacobian with respect to u
iuser - Integer user array

ruser - Real user array

6. Name cUuNLcon
Purpose Returns value and Jacobians of user-defined nonlinear constraints on controls u and param-
eters p.
Template

SUBROUTINE cUuNLcon(Np, Nu, T, P, U, Nfnu,
&  fNu, gNu_p, gNu_u,
& iuser, ruser)

IMPLICIT NONE

INTEGER Np, Nu, Nfnu, iuser(x)

DOUBLE PRECISION T, P(%), U(x),
&  fNu(Nfnu),
& gNu_p(Nfnu, Np), gNu_u(Nfnu, Nu),
& ruser(x)

RETURN
END

Arguments
Np - Number of parameters
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Nu - Dimension of control

T - Current time

P - Parameters

U - Controls

Nfnu - Number of nonlinear constraints on u and p
fNu - Constraint value

gNu_p - Jacobian with respect to p

gNu_u - Jacobian with respect to u

iuser - Integer user array

ruser - Real user array

Note These constraints are enforced both at multiple shooting grid points and at control parameteri-
zation grid points inside shooting intervals.

2.1.3 File Objective.f

Name cUprxfNLobj
Purpose Evaluates the value and gradient of the nonlinear part in the objective function.
Template

SUBROUTINE cUprxfNLobj(Np, Nr, Nx,
& P, R, Xf,
& fNpr, gNpr_p, gNpr_r, gNpr_xf,
& iuser, ruser)

IMPLICIT NONE

INTEGER Np, Nr, Nx, iuser(*)

DOUBLE PRECISION P(x), R(*), Xf(x),
& £fNpr, gNpr_p(Np), gNpr_r(Nr), gNpr_xf(Nx),
& ruser(x)

RETURN
END

Arguments

Np - Number of parameters

Nr - Number of ’initial’ parameters

Nx - Number of model states

P - Parameters

R - 'Initial’ parameters

Xf - Final states

fNpr - Objective value

gNpr_p - Jacobian with respect to p

gNpr_r - Jacobian with respect to r

gNpr xf - Jacobian with respect to x(tn,,+1)
iuser - Integer user array

ruser - Real user array

Note - This subroutine is called only if i,;.; = 1 (see Table 3). In this case, the final states must be part of
the optimization variables (i.e.; i¢ = 1).

2.1.4 File setX0.f

Name cUsetX0
Purpose Returns inital values for the model states, for given values of the ’initial’ parameters r.
Template

SUBROUTINE cUsetX0(Nx,Nr,R,X0,iuser,ruser)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z), INTEGER (I-N)
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INTEGER Nr, Nx, iuser(x)
DOUBLE PRECISION R(Nr), XO0(Nx), ruser(*)

RETURN
END

Arguments

Nx - Number of model states

Nr - Number of ’initial’ parameters

R - Array of ’initial’ parameters

X0 - Initial states

iuser - Integer user array

ruser - Real user array

Note

This subroutine is processed through ADIFOR to generate the file s_setX0.

2.1.5 File Krylov.f

The file Krylov.f contains the subroutines cUpsol and cUpjac that are used if the Kryolv iterative method
is selected (iflag(6)). For a detailed description of these two subroutines, see the DASPK3.0 documentation.
If a direct method is selected then these subroutines must be treated as dummy subroutines. In this case
you can use the file coopt/templates/Krylov.f.

2.1.6 File sysM.f

Name cUsysM

Purpose Returns the residual of the state equations (1) at a given time, for given values of the problem
parameters, controls, derivative of controls, states, and derivative of states.

Template

SUBROUTINE cUsysM(Nx, Np, Nu,
& t, X, Xdot, P, U, Ud, F, cj,
& iuser, ruser)

IMPLICIT NONE

INTEGER Nx, Np, Nu

DOUBLE PRECISION t, X(Nx), Xdot(Nx)
DOUBLE PRECISION P(Np), U(Nu), Ud(Nu)
DOUBLE PRECISION F(Nx), cj

INTEGER iuser (*)

DOUBLE PRECISION ruser (*)

RETURN
END

Arguments

Nx - Number of model states

Np - Number of parameters

Nu - Dimension of control

t - Current time

X - Model states

Xdot - Model state derivatives

P - Array of parameters

U - Value of control at current time

Ud - Value of first control derivative at current time
F - Array of residuals of the model equations
cj - Reciprocal of integration time step
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iuser - Integer user array

ruser - Real user array

Note

This subroutine is processed through ADIFOR (together with the file sysC.f) to generate the files g_sysM
and j_sysM.

2.1.7 File sysC.f

Name cUsysC

Purpose Returns the right side of the additional equation (3) corresponding to the cost function, for given
values of the problem parameters, controls, derivative of controls, states, and derivative of states.
Template

SUBROUTINE cUsysC(Nx, Np, Nu,
& t, X, Xdot, P, U, Ud, Fc,
& iuser, ruser)

IMPLICIT NONE

INTEGER Nx, Np, Nu

DOUBLE PRECISION t, X(Nx), Xdot(Nx)
DOUBLE PRECISION P(Np), U(Nu), Ud(Nu)
DOUBLE PRECISION Fc

INTEGER iuser (x)

DOUBLE PRECISION ruser(*)

RETURN
END

Arguments

Nx - Number of model states

Np - Number of parameters

Nu - Dimension of control

t - Current time

X - Model states

Xdot - Model state derivatives

P - Array of parameters

U - Value of control at current time

Ud - Value of first control derivative at current time
Fc - Right side of Eq. 3

iuser - Integer user array

ruser - Real user array

Note

This subroutine is processed through ADIFOR (together with the file sysM.f) to generate the files g_sysC
and j_sysC.

2.1.8 File Output.f

The file Qutput.f contains the following subroutines:

1. Name cUoutState
Purpose Allows the user to output initial and final simulation results in different files and using a
different format than the default provided by COOPT.
Template

SUBROUTINE cUoutState(whichRun,whichTime,t,Nx,v)

IMPLICIT NONE
INTEGER whichRun, whichTime,Nx
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DOUBLE PRECISION t,v(Nx+1)

RETURN
END

Arguments

whichRun - Specifies if this is initial run (—1) or final run (1)

whichTime - Specifies the integration time. A value of —1 means that this is the first call to cUoutState
with ¢ = t1, while a value of 1 means that this call is at ¢ = t;,42. A value of 0 indicates a call at an
intermediate time.

t - Current time

Nx - Number of model states

v - Integration variables (contains the model states in the first Nz positions and the additional quadra-
ture variable in the last position.

. Name cUoutSensi

Purpose Allows the user to output results of a sensitivity solve in a different file and using a different
format than the default provided by COOPT.

Template

SUBROUTINE cUoutSensi(whichRun,whichTime,t,Nx,Np,Nr,Nuul,
& V,V_p,v_r,v_uu)

IMPLICIT NONE

INTEGER whichRun, whichTime,Nx,Np,Nr,Nuul

DOUBLE PRECISION t

DOUBLE PRECISION v(Nx+1)

DOUBLE PRECISION v_p(Nx+1,Np), v_r(Nx+1,Nr), v_uu(Nx+1,Nuul)

RETURN
END

Arguments

whichRun - Specifies if this is initial run (—1) or final run (1)

whichTime - Specifies the integration time. A value of —1 means that this is the first call to cUoutState
with ¢ = t1, while a value of 1 means that this call is at ¢ = ¢,,,4,- A value of 0 indicates a call at an
intermediate time.

t - Current time

Nx - Number of model states

Np - Number of parameters

Nr - Number of ’initial’ parameters

Nuul - Number of control parameters used to parameterize the control in the current shooting interval
v - Integration variables (contains the model states in the first Nz positions and the additional quadra-
ture variable in the last position.

v_p - sensitivities with respect to parameters p

v_r - sensitivities with respect to parameters r

v_uu - sensitivities with respect to control parameters UU

Note The first Nz rows of v_p, v_r, and v_uu contain sensitivities of the model states, while the last
row contains sensitivities of the additional variable.

2.1.9 ADIFOR Script File (AdiScript)

In order to generate the integration Jacobian and the sensitivity equation residuals, we need partial derivative
matrices of the model equations. In COOPT, these matrices are obtained using the automatic differentiation
tool ADIFOR. The script file AdiScript is provided in coopt/templates. You can copy it into your example
directory (coopt/myproblem) and modify it to suit your problem. Normally, you should not change any
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of the ADIFOR preprocessor options in this file. All problem-dependent information is contained in the
composition files. For more information on ADIFOR, see the ADIFOR 2.0 Users’ Guide. For more details on
how the ADIFOR generated subroutines are called from COOPT see Section 3.

The synopsis of AdiScript is

AdiScript [-h|-H] [-al-A] Nx [-gl-G] [-s|-S1 [-jl-J] Nx

with the following options supported:

-h Print command synopsis
-g Generate ADIFOR files for residual computation
-8 Generate ADIFOR files for computing Xg

-j Nx  Generate ADIFOR files for Jacobian computation

-a Nx Generate all ADIFOR files
Note The argument to the option j or a must agree with the banded Jacobian option selected through
info(32) in cUinit (file Initial.f). If you have set info(32) = 0, then call AdiScript with an argument
of at least Nz + 1; if info(32) = 1, then call AdiScript with an argument of at least ML + MU + 1, where
ML is the lower band and MU is the upper band of the Jacobian.

2.1.10 ADIFOR Composition Files (setX0.cmp and system. cmp)

The ADIFOR composition files specify all files that need to be processed at the same time through ADIFOR.
You must include all files containing subroutines that are called from the top subroutines (sys and setX0).
If your top subroutines do not call any other routine, you can simply use the composition files provided in
coopt/templates.

2.2 Compiling and Running the Problem

At this point you should have a directory cooopt/myproblem which contains the following Fortran files:
Initial.f,Constraints.f,ShowResults.f,setX0.f, sysM.f, and sysC.f, the ADIFOR script file AdiScript,
and the ADIFOR composition files setX0.cmp and system. cmp.

The next step is to invoke ADIFOR to automatically generate derivative computation subroutines. Before
running the ADIFOR script check that

e The composition files list all the Fortran files containing subroutines that are called from the top
subroutines (setX0 and sys)

e The variable names in the script file are the same as the arguments in the top subroutines
e The ADIFOR preprocessor options listed in Table 5 are unchanged

Running the ADIFOR script file will create a set of Fortran files in the ADIFOR output directory (the default
directory is coopt/myproblem/AD output) which you must copy into your directory.
Next, modify the makefile coopt/myproblem/Makefile to list all user files, and create the executable by

typing
% make coopt USER=myproblem

in the coopt directory. The executable file coopt will be created in coopt/myproblem.

2.3 Output Files

A problem definition file, specifying problem dimensions and user selected flags is generated as {OutDir}/{Prob}.def.
The SNOPT/DAOPT output file is generated as {OutDir}/{Prob}.out. The following two files contain the
optimal values of the parameters p* and r* and the time history of the optimal control u*:

e {OutDir}/{Prob}.param- Optimal parameters
This file contains three sections specifying the optimal parameters p, the optimal ’initial’ parameters
r, and the optimal control parameters.
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e {OutDir}/{Prob}.con - Optimal control
Each line of this file contains N, + 1 values for the time and controls.

If the i flag(1) = 1 then initial and final simulations (that is simulations with the initial guess of parameters
and controls and with the optimal parameters and controls, respectively) are performed. In this case the
user has the option of requiring automatic output (by setting iflag() = 0 in which case the following two
result files are generated:

e {OutDir}/{Prob}.init - Simulation results with initial control
Each line of this file contains Ny, + 2 values, corresponding to the integration time, model states, and
additional cost function variable.

e {OutDir}/{Prob}.final - Simulation results with optimal control
Each line of this file contains Ny, + 2 values, corresponding to the integration time, model states, and
additional cost function variable.

Additionaly, if iflag(l) = 1 and iflag() = 1 then the user has control on the names and format of the
data files containing initial and final simulation results. These two simulations are run using DASPK3.0’s
intermediate output mode with control being given to the user subroutine cUoutState after each successful
integration step.

2.4 Minimum Time Problems

In this section we consider the case in which the simulation length is one of the optimization parameters.

In order to solve such a problem in COOPT, you have to specify which optimization parameter p is the
final simulation time. This is done by setting the flag i;¢ in the user subroutine cUinit (see Table 3). To
specify the dependency of your model on the final time (i.e. p;,;) you must scale the time by this parameter
in both sysM and sysC. That is, you have to rewrite your model equations in terms of the scaled time
T= t/p’itf .

However, if you already have the files sysM and sysC written in terms of the ’real’ time ¢, rescaling the
time in the model equations can be done with minimal changes. First, note that the integration will be
performed over 7 =t/p € [0, 1], where p = p;,,. As a consequence, all time derivatives scale as

d ddr 1d
=222 ©)
dt drdt pdr

Therefore, assuming that i;y = 1, the modified sysM subroutine will be

SUBROUTINE sysM(Nx, Np, Nu,
& TAU, X, Xdot, P, U, Ud, F, cj,
& iuser, ruser)

IMPLICIT NONE

INTEGER Nx, Np, Nu

DOUBLE PRECISION TAU, X(Nx), Xdot(Nx)
DOUBLE PRECISION P(Np), U(Nu), Ud(Nu)
DOUBLE PRECISION F(Nx), cj

INTEGER iuser (%)

DOUBLE PRECISION ruser (*)

DOUBLE PRECISION TIME

INTEGER i
TIME = P(1)*TAU
do i = 1,Nx
Xdot (i) = Xdot(i)/P(1)
enddo
do i = 1,Nu

Ud(i) = Ud(i)/P(1)
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enddo

User inserts here evaluation of F

Qa0

do i = 1,Nx

Xdot (i) = Xdot(i)*P(1)
enddo
do i = 1,Nu

Ud(i) = Ud(i)*P(1)
enddo

RETURN
END

Note that the time derivatives must be reconverted to derivatives with respect to 7, as the subroutine
sysM is not supposed to alter X' or u'.

A similar treatment must be applied to the subroutine sysC. However, since this routine returns only the
right side of Eq. 3, the final result must be multiplied by p. The modified subroutine sysC becomes

SUBROUTINE cUsysC(Nx, Np, Nu,
& TAU, X, Xdot, P, U, Ud, Fc,
& iuser, ruser)

IMPLICIT NONE

INTEGER Nx, Np, Nu

DOUBLE PRECISION TAU, X(Nx), Xdot(Nx)
DOUBLE PRECISION P(Np), U(Nu), Ud(Nu)
DOUBLE PRECISION Fc

INTEGER iuser (*)

DOUBLE PRECISION ruser (*)

DOUBLE PRECISION TIME

INTEGER i

TIME = P(1)*TAU
do i 1,Nx

Xdot (i) = Xdot(i)/P(1)
enddo
do i = 1,Nu

Ud(i) = Ud(i)/P(1)
enddo

User inserts here evaluation of Fc

Qo

Fc = FcxP(1)

do i = 1,Nx

Xdot (i) = Xdot(i)*P(1)
enddo
do i =1,Nu

Ud(i) = Ud(i)*P(1)
enddo

RETURN
END
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Table 1: User files and subroutines

| File | Subroutine | Description
Initial.f cUnames Set the specification, output directory, and problem names
cUspace Specify integer and real user space requests
cUinit Specify problem dimensions and flags for the optimization and the
integration
cUvars Specify the algebraic variables
cUguess Provides initial guess for problem parameters, states at multiple
shooting points, and controls
cUbounds Specify bounds on the optimization variables
cUtol Specifiy integration tolerances
Constraints.f | cUprxfLcon Set the Jacobian of the linear constraints involving parameters p,
r and final states Xy
cUxuLcon Set the Jacobian of the linear constraints involving parameters p,
states X, and controls u
cUuLcon Set the Jacobian of the linear constraints involving parameters p
and controls u
cUprxfNLcon Set the value and Jacobian of the nonlinear constraints involving
parameters p, r and final states Xy
cUxuNLcon Set the value and Jacobian of the nonlinear constraints involving
parameters p, states X, and controls u
cUuNLcon Set the value and Jacobian of the nonlinear constraints involving
parameters p and controls u
Objective.f cUprxfNLobj Evaluates the value and gradient of the nonlinear part of the ob-
jective function
Krylov.f cUpsol?
cUpjac?
setX0.f setX0P Set initial states Xg, for given parameters r
sysM.f sysM¢ Evaluates the residual of the model equations
sysC.f sysC® Evaluates the right side of the cost function equation

aThese subroutines are called only if the Krylov iterative solver option is selected.

PThis subroutine is processed through ADIFOR to obtain s$setX0. Only the ADIFOR generated routine is
called in COOPT.

¢This subroutines are processed through ADIFOR (together with the subroutine sys) to obtain g$sys and
j$sys. Only the ADIFOR generated routines are called in COOPT.
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Table 2: The idim array

Entry| Name| Description

1 N, Number of parameters

2 N, Number of ’initial’ parameters

3 N.q | Number of differential model states

4 Nz, | Number of algebraic model states

5 N, Number of controls

6 N, Order of control parameterization polynomial

7 Ny Number of multiple shooting intervals

8 Niy1 | Number of control parameterization intervals per shooting interval
9 Ngnpr| Number of nonlinear constraints on p, r and X
10 tnu | Number of nonlinear constraints on p and u

11 N¢neo| Number of nonlinear constraints on p, X, and u
12 not used

13 not used

14 not used

15 Nyipr | Number of linear constraints on p, r, and Xy

16 Ny, | Number of linear constraints on p and u

17 N1z | Number of linear constraints on p, X, and u

18 not used

19 not used

20 not used
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Table 3: The iflag array

| Entry | Name| Description
1 irun | Perform initial and/or final simulations?
0 No
1 Both. Use default output
2 Only initial simulation and then stop. Use default output
3 Only sensitivity computation and then stop. Use default output
-1 Both. Use user output
-2 Only initial simulation and then stop. Use user output
-3 Only sensitivity computation and then stop. Use user output
2 Topt Which optimizer? 0: SNOPT; 1: DAOPT
3 ixf Exclude final states from the optimization? 0: No; 1: Yes
4 iTs Include final time in the optimization? 0: No; 1: Yes
5 inrLes | Does the cost function contain a nonlinear part depending on the final state and
final time? 0: No; 1: Yes
6 ipnau | Are there additional bounds on the control?
0 No
1 Yes, the control must be within bounds everywhere (works only for N, = 2)
2 Yes, the control must be monotonic on subintervals (works only for N, = 2)
7 iguesstf How is the initial guess for controls provided?
0 Constant value over the entire time interval
1 Control parameters provided
2 Tabulated data
8 iinitx | How is the initial guess for states at shooting interfaces obtained?
0 Same set of values at all shooting interfaces
1 Obtained from an initial simulation with initial guess for parameters and con-
trols
9-15 not used
16 iX0 Should a consistent DAE initialization algorithm be applied at the begining of each
shooting interval? See DASPK3.0 documentation
17 istep | Is the initial interagtion step size provided? 0: No; 1: Yes and set rdata(5)
18 Ttol How are integration tolerances provided?
0 Same relative and absolute tolerances for both states and sensitivities. Set
rdata(1) = rtol and rdata(2) = atol
1 Different tolerances for states and sensitivities Set rdata(l) = rtol,tates,
rdata(2) = atolstates, rdata(3) = rtolsensi, rdata(4) = atolsensi
2 Compute absolute tolerances for sensitivity variables from estimates of state
magnitudes (provided through the subroutine cUtol). Set rdata(l) =
rtolstates, rdata(2) = atolstates.
19 ils What linear solver is used by DASPK3.0? 0: Direct; 1: Iterative
20 ibands| Is the integration Jacobian banded? (used only if i;; = 0)
0 No
1 Yes. Set idata(6) = bypper and idata(7) = biower-
21 ixr1 | Does the iterative solver use default settings? (used only if i;, = 1)
0 Yes
1 No. Set idata(8) = MAXL, idata(9) = KMP, idata(10) = NRMAX, and
rdata(6) = EPLI (see DASPK3.0 documentation).
22 ixr2 | Does the iterative solver use a Jacobian? (used only if 4;; = 1) 0: No; 1: Yes
23-24 not used
25 istagg | What method is used in sensitivity computations? (see DASPK3.0 documentation)
26 Terp Are the sensitivity variables included in the error test? 0: Yes; 1: No (see DASPK3.0
documentation)
27-30 not used
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Table 4: The idata array

| Entry| Name | Description
1 1Udata Number of points in the initial control data (if igyesstr = 2)
2-4 not used
5 Tdae DAE index of the model equations
6 bupper Upper band width of the Jacobian (used only if 4p4nqs = 1)
7 biower Lower band width of the Jacobian (used only if ipqngs = 1)
8 MAXL MAXL parameter (used only if ig.; = 1)
9 KMP KMP parameter (used only if ig,; = 1)
10 NRMAX | NRMAX parameter (used only if ig, = 1)
12 luwp Length of real work array for cUpsol and cUpjac (used only if i;; = 1)
13 Liwp Length of integer work array for cUpsol and cUpjac (used only if i;; = 1)

Table 5: Fixed ADIFOR preprocessor options

| Section | Option | Value |

1 AD_TOP cNsysG
AD_EXCEPTION_FLAVOR | performance
AD_SCALAR_GRADIENTS | true
AD_PREFIX g
AD_PMAX 1

2 AD_TOP cNsysJ
AD_EXCEPTION_FLAVOR | performance
AD_PREFIX j

3 AD_TOP cUsetX0
AD_EXCEPTION_FLAVOR | performance
AD_SUPRESS_LDG true
AD_PREFIX s
AD_PMAX 1
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Figure 2: Structure of COOPT

3 Implementation

The structure and components of COOPT are presented in Fig 2. All notation used in the following sections
are those used in the code. All symbols and their meanings are listed in Table 6.

3.1 Control Parameterization

On each multiple shooting interval, each control u;,, iu = 1,2, ..., N, is represented as a piecewise polynomial
of order N,. Each multiple shooting interval is subdivided into Ng,; control intervals (see Fig. 3). The control
Uiy 1S then parameterized by a minimum number of parameters that ensure continuity of the control and of
its derivative; i.e., u;, € C'. Consider the multiple shooting interval [itz, itz + 1]. The length of each control
subinterval is then Atz = (fitw+1 — titz)/Newr. Let t be such that it - Aty <t —tie < (it + 1) - Atjgy.
Consider the order N, polynomial approximation of control u;, at ¢, using the nondimensionalized variable
t* = (t — tigg — it - Atye)/Atie € [0,1)

Ng—1

Uzt+10 Uzt+1 lt + Z Uzt+1,J+1 *J+1

uzu( ) iu,ite

iu,ite iu,ite

Atitg - upy (1) = Uiphaa + Z Ulked 1 (G + Dt it =0,1,2, ., N
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it+1,0 it+1,1
iu,ite and Uzu,itz

Imposing the conditions u;, € C!, the parameters
relations:

must satisfy the following recursive

u,ite iu,ite iu,ite iu,ite

N,—1
it+1,0 it,0 it,1 it,j+1
Uit = Ui + Uisie + > Uit
j=1

Ng—1
it+1,1 _ prit,1 . it,j+1 o
Uilu,it:z - U;u,itz + Z (.7 + l)UZu,gtz it = ]" 27 Tt NtU«I
i=1
By induction, we can see that
it Ng—1
it+1,0 1,0 . 1,1 : . ko1
Uiite = Uinyite + 0t Upp i + Z Z [(G+ 1)@t — k) + I]Uiu‘,]i-:z
k=1 j=1
it Ng—1 9)
it+1,1 1,1 . k,j+1 .
z'zu_;ta: = Uiu,itw + Z Z (.7 + 1)Uzu,Jz_:z it = 05 1a 27 ) Ntu1
k=1 j=1

The piece-wise polynomial approximation of u;,, in the shooting interval [itz, itz + 1] can thus be represented
by the following 2 + N1 (N, — 1) parameters:

1,0
Uiu,ita:
1,1
Uiu,itw
1,2 2,2 it,2 41,2 Ntul,2
Uiu,itw Uz'u,z'tz' T Uiu,itz Uiu,itz T U’iu,’itm
1,3 2,3 " it,3 1,3 Ntul,3
Uiu,itz U’iu,z’tz Uiu,itz‘ Uiu,itz Uz'u,'itz
1N, 2,N, it,N, it+1,N, Niut,N,
Uiu,ita: Uiu,itw T Uiu,itw Uiu,itw T Uiu,z’tm

The total number of control parameters is then
Nyw = Nz Ny (2 + Ny (Ng — 1)) (10)

Such a parameterization of the control has two advantages over the approach in which an order N, polyno-
mial is used to represent the control on each control subinterval [it,it+ 1], with C* control continuity enforced
by the optimization algorithm. First, a reduced number of parameters is required, Niz Ny (2 + Nyy1 (Ng — 1))
vS. NizNyNyy1(Ng + 1) which means that fewer sensitivity equations must be solved. Using an order N,
polynomial on each control subinterval introduces discontinuities in the sensitivities with respect to param-
eters UZZ’,?tz and therefore, a consistent initial condition computation must be performed at the beginning
of each control subinterval. With the current control parameterization the integration can be carried out on
the entire multiple shooting interval without restarts at the beginning of each control subinterval.

3.2 Continuity Constraints

In a multiple shooting type method, continuity of states and controls at the multiple shooting points must
be enforced. We impose C° conditions on the states (including the additional state for the cost function) and
C! conditions on the controls. These conditions result in nonlinear state continuity constraints and linear
control continuity constraints.
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Figure 3: Control subintervals within a shooting interval

3.2.1 State Continuity Constraints

The state equations (1) are solved on each multiple shooting interval [tits, titz+1], it = 1,2, ..., Ny,. We
denote the solution at time ¢ of (1) with initial value Xz, at tiyz by x(¢, tits, Xitz, P, u). Continuity of states
between subintervals is achieved via the nonlinear constraints

Cite = Xitot1 — X(tita+1, titas Xitz, P,u) =0
where Cy, € RNt ite = 1,2, ..., Ny,

(11)
We denote by
X = {X2,X3, ., Xn, 41} € RN (NetD)

the vector of discretized states and by
U= {U]_,UQ, ---;UNi } € RNMN"(2+NW1(N‘771))

the vector of control parameters, with Uy, representing the parameterization of all controls on the interval
[titz, titz41]. Note that the states X; € RM=*+1 at ¢ = #; are excluded from the array X. Next, we collect
the constraints of Eq. 11 into the array

i Cl i X2 _x(tZ;tlaxlaeraUl)
C, X3 —x(t3,t2, X2, p, Us)
Clp,r,X,U)= | | = ‘ =0 12
(P ) Cita Xitot1 — X(titz+1, titz, Xitz, P, Uita) (12)
_Csz_ _X'Ntm+1 - X(tNtm+1atNmuXszaanNtz)_

The Jacobian of these constraints with respect to the vector of optimization parameters [p,r, X, U] is
J= [JlthI‘JJX;JU] (13)

where
—0x(t>)/0p
—0x(t3)/0p

—0x(titz41)/0P

[—0x(tN,.+1)/0P]

[ 8x(ts) /Or]
0
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[ I 0 0 --- 0 0 --- 0 0
Ox(t3)
> 0 0 - 0 0
IJx = : : : : : : :
X Ox(titay1)
0 0 0o --- 0 0 --- _%@xNiw I
[_ 9x(ta) 5
_E)—Uf ao(t) 0 0
0 — 8U§ 0 0
Ju = 0 O _3"6(%:?:—1) 0
0 0 0 _%fvﬁl)

In the previous equations, we have made the simplifying notation x(titz+1) = X(titest1, tite, Xitz, P, Uitz )-
As Eq. 16 shows, the Jacobian Jx is nonsingular. Multiplying the constraints C and the Jacobian J to the

left by J ;(1, we obtain the modified constraints and modified Jacobian as
¢ =Jy'c,
J=[3x135, 351 3., I Ix, I Iu] = [P, R, 1, U],
To compute the matrix C, we partition it into N, vertical blocks. We find that
¢ =¢C

Ox(titwt1) A

Citz = Citz + By o Citz—1, itr = 2,3, ..., Nig.

With a similar partition for P and R, we get

131 _ _6X(t2)
op
A Ox(titz+1)  OxX(titzt1) o .
P o= _ P tr =2,3,..., N,
itn Bp + X1 itz—1, wr 73 - Neo
and
. ox(t
L ox(t; N .
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With a block-lower triangular partition of the matrix U we have that

A 6x(t2)
U, =—

1,1 5U,
N ox(t; N
Uite,1 = g)zizzl)Uitz—l,l
N ox(t; N
Uite2 = MUW&J

Xty (23)
N ox(t; N
Uitz ite—1 = ;}(zitz—i_l)Uitac—l,itz—l
T

Uiro e =  0x(tita+1)

itz itz 6Uzt$

for itz = 2,3, ..., N¢,. In Section 3.5 we present in more detail how the sensitivity equations are formed and
solved.

3.2.2 Control Continuity Constraints

Continuity conditions on w;,, and w}, at tig, itz = 2, ..., Ny, result in the following Ny, = 2(Ng; — 1)N,
linear constraints on the control parameters:

Npw1 N

Czlu itz = zu zta: + Niur - zu ztz + Z Z [ J+1 Ntul - k) ]Uﬁzﬁl Uilql?itzﬂ

o k=1 j=1 . (24)
Chiite =Uiitia + Z j+DULH - AZZH Uidivars itr =1,2, ..., Ni.

k=1 j=1 we

The Jacobian entries of these constraints are

OChie _, ke _ o Ok _ v O
We  OUdlyie 7 oULSE “ U
0C?y ita — o 0C?y ita _ 1. 0C3y it Y 0C}y ita _ _ Atitat1
6Uz1uoztz , aUzlulztz' 7 6Uzu’];z1 7 6Uzlu1ztz+1 Atity (25)
it =1,2,..., Ny,
tw=1,2,...,N,
j=1,2,.,N,—1
k=1,2,..., Np-

The control continuity constraints are arranged in the following order:
for each multiple shooting interval itx
for each control iu
1
Czu itz
C?

iu,ite
end

end

3.3 Additional Control Constraints
3.3.1 Bounds at control intervals

Because of the control parameterization scheme that we employ, user-defined bounds on controls and first
derivatives of controls can be directly applied only at the beginning of each multiple shooting interval.
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Therefore, on each shooting interval itx, we add 2 - Ny, linear constraints for each control, to enforce the
user-defined bounds at all control points. If bl,, and bu, are the user-defined upper and lower bounds for
control iu and bl,, and bu, are the upper and lower bounds defined for the control derivative, then we
impose

Ng—1
bly S ULy + Uisire + O Uil < buy,
j=1

iu,ite iu,ite iu,ite
s (26)
Atigg - bly < Ul e + Y (G + VUL < Atigg - buy it=1,2, ..., Npa.
i=1

If the simulation length is an optimization parameter (see Section 2.4), then the bounds on u' are
multiplied by p;, , to take into account the scaling of the time derivatives (Eq. 6).
These additional control constraints are arranged in the following order:
for each multiple shooting interval itx
for each control iu
for each subinterval it
Control 4u is in bounds
end
for each subinterval it
Derivative of control ¢u is in bounds
end
end
end

3.3.2 Bounds inside the control intervals

For piece wise quadratic control parameterization we provide the option of having the control bounded
within the whole interval(iboundU=1) or having the control monotonic within the interval(iboundU=2). For
a quadratic polynomial of the form U = Uy + at + bt? for t € [0,1] and a lower bound of m and upper bound
of M we assume

m<Uy< M

and impose the constraints:

Uy+a+b< M
ore (27)
U+a+b>m

In the first case(iboundU=1), the area of feasibility for the parameters a and b on the a-b plane is as
shown in Figure 4. We consider only the shaded area to keep the additional constraints linear. Therefore,
we impose the following additional constraints:

+Ug < M
erno (28)
a+Uy>m

In the second case(iboundU=2), the region in the a-b plane which ensures that the control is monotonic

within the control interval is as shown in Figure 5. The shaded area guarantess that % doesn’t change sign

in [0,1]. Therefore, we get the additional constraint:

a(a+2b) >0 (29)
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Uo+a+b=M >
b=—a“/(4(m—-U0))

N

a+2b=0

Uo+a+b=m
b=—a%/(4(M—U0))

Figure 4: Feasibility region for control parameters

Uo+a+b=M

a+2b=0

Uo+a+b=m

Figure 5: Region which ensures monotonicity of control within control interval
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’chacand‘ ’chachns‘ @%E ’ cNpjacB ‘ ’ cNpsolB ‘

g_CcNsys

User
subroutines cUpjac | | cUpsol

Figure 6: Subroutines called by DASPK3.0

3.4 Optimization Constraints

The complete set of constraints in the discretize optimal control problem (4) is then obtain by collecting the
user-defined constraints (specified through the file Constraints.f), the state continuity constraints (Section
3.2.1), the control continuity constraints (Section 3.2.2), and the additional control constraints (Section 3.3).
The number and order of the optimization constraints is presented in Table 7.

3.5 Solution of State and Sensitivity Equations

We obtain values and Jacobians of the nonlinear state continuity constraints of Section 3.2.1 by solving the
following state and sensitivity equations:

F(t,x,x', p,u(t),u'(t)) = 0 (30)
OF  OF
OF OF , OF _
a_XS + @S + % =0 (32)
F F F
8—s + 6—5' 0 0. (33)

ox ox! ou
The central observation behind the modified multiple shooting approach is that Eq. 31 has no forcing term.
As a consequence, if s; is the j-th column of the solution of (31) with initial condition s;(t;) = e; then any
linear combination of these columns is also a solution of (31), with initial condition given by the coefficients
of the linear combination. For a given parameter a, we say that computing x,(t) represents one sensitivity
computation. Then, computation of the modified constraint ¢ requires only one sensitivity calculation. The
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modified Jacobians P and R can be obtained with only 2- N, and N, sensitivity computations, respectively.
Also, each block ﬁitz]_,z'tz2 requires only 2 + Ng,1 (N, — 1) sensitivity computations. When the dimension of
the state vector x is large, this approach will substantially reduce the number of sensitivity computations
required by a conventional multiple shooting approach.

On the first multiple shooting interval (itz = 1), we have to solve N, + 1 state equations and (N, +
1){1 + Np + N, + Ny[2 + Niy1 (Ng — 1)]} sensitivity equations. On each of the following multiple shooting
intervals (itz > 1) the number of equations to be solved is (N + 1){1+ 1 4+ N, + N; 4+ Ny[2 + Nyy1 (Ng —
1)] + Np + (it — 1)Ny[2 + Ny (N — 1)]}. Collecting the states and all their sensitivities into a vector v,
we can split this vector into 7 parts. The columns in Table 8 have the following meanings:

1. Part in vector v

2. Number of elements/equations
Initial content

Equation used

Content after integration

A

Relation in which the result is used
Notes

1. The additional variable corresponding to the cost function (Eq. 3) is inserted in the vector of model
states at the position specified by the user through the flag i,y = idata(23). This option is provided to
preserve the possible band structure of the model equations Jacobian. If the banded Jacobian option
is not used, iy can have any value between 1 and N, + 1.

2. If no explicit bounds are defined for the model states at ¢t = tn,,+1 = tmaz and if they are not
part of the cost function or of the user constraints, it is more efficient not to include them among
the optimization variables (specify idata(22) = 1). This not only leads to an optimization problem
with fewer variables, but also results in N, fewer nonlinear state continuity constraints. However,
even in this case, the additional variable corresponding to the cost function at t,,,, is still added to
the optimization variables, to obtain a linear cost function in the discretized nonlinear programming
problem (4).

3. Although we consider additional control subintervals inside each multiple shooting interval, the control
parameterization employed (see Section 3.1) assures C! continuity of the controls inside each shooting
interval and thus integration can be carried out without restarts. This can be seen best in Fig. 7 which
shows that sensitivities of the control u with respect to the coefficients of the parameterization are
also C! continous. Moreover, the optimization algorithm implemented in SNOPT/DAOPT satisfies the
linear constraints at all iterates. The controls and their derivatives are therefore within the prescribed
bounds at any control subdivision. However, this doesn’t mean that these bounds are respected at all
times. For problems in which the optimal control tends to be very close to some of the bounds, you
will have to experiment with different combinations of N;, and N1, as well as different settings of
the bounds bl and bu, to keep the controls at all time within the feasible region.

During integration on a given shooting interval itz, DASPK3.0 requires computation of the residual of the
state and sensitivity equations (30)-(33), as well as computation of the Jacobian with respect to states and
their derivatives. The subroutine sys calls the user-defined routines sysM and sysC to evaluate the residual
of the state equations at a given time ¢, for given values of the parameters p, states x, state derivatives x/,
controls u, and control derivatives u'; i.e.,

F = F(tJ X7 XIJPJ u7 ul) (34)

The subroutine sys is preprocessed through ADIFOR to generate the following two subroutines:
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Figure 7: Sensitivities of the control with respect to coefficients of the parameterization (for Ny, = 5,
N, = 2). (0): Ou/dUY (1): Ou/OoUYY (2): Ou/OU? (3): Ou/OU?? (4): Ou/OU>2 (5): Ou/OUL? (6):
Ou/oU52
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1. g$sys to evaluate

= OF OF OF
_ "% T ! 5 T s T S5t
F= ax x 6pp u' " ou (35)

for given values of the seed vectors X, X', P, @, and @'.

2. j$sys to evaluate

. OF_ OF_,
J=5 X+ X (36)

for given values of the seed matrices X, X'.

3.5.1 Residual Computation

The equations that must be solved on a given shooting interval itz can be partitioned into seven parts,
corresponding to the similar partition of the vector v. We evaluate each part of the residual by repeatedly
calling g$sys with convenient seed vectors. As an example, consider the fifth part of the residual. The
subroutine g$sys must be called N, (2 + Ny,1 (N — 1)) times to evaluate the residual of Eq. 33 for each
control parameter in the interval itz. Comparing Egs. 33 and 35 it follows that p = 0. The seed vector X is
set to that part of the vector v that contains the sensitivities with respect to the current control parameter.
The seed vector X' is set to the corresponding part in v’'. For each control 7u = 1,--- , N,, the initialization
of the seed vectors @ and @’ follows from

it Ng—1
. . k,j+1
ul’u(t) = Uzu itx + it - Uzu itx + Z Z [(J + 1)(Zt - k) + ]Uzujz-;v +
k=1 j=1
it Ng—1
k,j+1 it+1,7+1 % j+1
w ztw + Z Z -7 + 1 Uquztw t* + Z U:u ztz] *J
k=1 j=1
and
it Ng—1
Jj+1 1,54+1
Atity - ul(t) = zu ztz + Z Z Jj+ 1 zujzjx + Z U;;ttzJJr -7 + 1)t*J
k=1 j=1

where we have used Eqgs. 7 and 9.

Therefore, to compute the residual of the sensitivity equations with respect to the control parameter
Uilu’?m the only nonzero component of i is 4z, = 1, while @’ = 0.

To compute the residual of the sensitivity equations with respect to Uw itz We set 43, = it +t* and
’I_L'u = ]-/Atztz

To compute the residual of the sensitivity equations with respect to Uff;ml yk=1,..,it,5=1,...,N,—1,
we set Usy, = (F+1)(it — k) + 1+ (j+ 1)¢* and @}, = (j + 1)/ Atie.

Finally, to compute the residual of the sensitivity equations with respect to Ufi";tlm’ﬁl, j=1,..,N; -1,
we set G, = t*7! and al, =+ l)t*j/At,-m.

The residual computation is implemented in the subroutine cNresB (file src/Dynamics_subs.f) and is
transparent to the user.

3.5.2 Jacobian Computation

If a direct linear system solution method is selected, the DASPK3.0 software also requires Jacobians of Eq.
30 with respect to x and x'. Note that these Jacobians are the same for the state and sensitivity equations.
They are computed by the ADIFOR-generated subroutine, j$sys (obtained starting from the user-defined
subroutine sys). Depending on the banded Jacobian user option selected through idata(32), the subroutine
j$sys is called with different arguments to obtain either a dense or a banded Jacobian.

If idata(32) = 0, subroutine cNjacBdns calls j$sys with the following seed matrices:

X =1In.41
X'=¢j-In, 11
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If idata(32) = 1, subroutine cNjacBbnd calls j$sys with the following seed matrices:
_ I,
x= 3]
X =ar-[]

where w = MU + ML + 1 is the total Jacobian bandwidth.

3.5.3 Integration Tolerances

The accuracy of the states and sensitivities computed by DASPK3.0 is specified by the error tolerances rtol
and atol. There are three methods of specifying these values in COOPT.

e The simplest use is to take both rtol and atol to be scalars. This is done by setting i flag(5) = 0 and
specifying rdata(1) = rtol and rdata(2) = atol. These values will then be used for all variables, both
state and sensitivity.

o If iflag(5) = 1, then the state and sensitivity equations will be solved with different tolerances.
rdata(l) = rtolsiates and rdata(2) = atolsiares will be used for all state variables and rdata(3) =
Tt0lsensitivity and rdata(4) = atolsensitivity Will be used for all sensitivity variables.

e If iflag(5) = 2 then the user must specify, through the subroutine cUtol (see Section 2.1.1), rtol and
atol values for each of the state variables and for the additional cost function variable. In addition,
order of magnitude information for the states, parameters, and controls must be provided. FError
tolerances for the sensitivity variables are computed as follows:

— For all sensitivity variables, the relative tolerance rtol is set to the rtol tolerance of the corre-
sponding state variable.

— For sensitivies with respect to parameters p or r, the absolute tolerance atol is computed by
dividing the atol tolerance of the corresponding state variable by the estimate provided for that
parameter.

— For variables that represent linear combinations of sensitivities with respect to initial conditions
(see Table 8), the absolute error tolerance atol is computed as a weighted sum of corresponding
atol tolerances for the state variables divided by estimates of the states. The weights are the
coeflicients of the linear combinations. Let [ai, as, ..., an, ] be the absolute tolerances for the state
variables x € R+ and consider the array s = 6‘9—;05 , where £ € RN=. Then the absolute tolerances

. . . N, - o .
used in computing s is set to [a1, a2, ...,an,] Y ;.7 |&/%i|, where Z; is an estimate for z;.
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Table 6: Notation

Description

Dimension of the state vector

Number of parameters in the model

Number of ’initial’ parameters

Number of control functions

Order of the control approximation polynomial
Number of multiple shooting intervals

Number of control subintervals per shooting interval
Total number of control parameters

Current shooting interval
Current control subinterval
Current control

Vector of model parameters

Vector of ’initial’ parameters (used to parameterize the states at ¢ = t1)
Solution of state equations

Vector of states at the begining of the shooting interval itz

Vector of discretized states

Vector of controls

Vector of control parameters

Vector of control parameters on the interval itz

Value of control iu on interval itz at subdivision it

Value of derivative of control iu on interval itz at subdivision it
Coeflicients of the polynomial approximation of control iu on interval itz

Vector of state continuity constraints at the end of the shooting interval itz

Vector of state continuity constraints

Vector of modified state continuity constraints at the end of the shooting interval itz
Vector of modified state continuity constraints

Jacobian of the state continuity constraints with respect to p, r, X, and U

Jacobian of the state continuity constraints with respect to the parameters p
Jacobian of the state continuity constraints with respect to the ’initial’ parameters r
Jacobian of the state continuity constraints with respect to the discretized states X
Jacobian of the state continuity constraints with respect to the control parameters U
Modified J

Modified Jp

Modified J,

Modified Jy

Continuity constraint on control iu at itz
Continuity constraint on derivative of control iu at itz
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Table 7: Optimization Constraints

| | Dimension | Description | User |
Nonlinear 1| Nenpray Nonlinear constraints on p, r and X yes
constraints | 2 | Nypgu(Nig — tzfFree) Nonlinear constraints on p, X, and u yes
3 | Ninu(Nig % Nyy1 + 1 — iprrree) | Nonlinear constraints on p and u yes
4| Ngy Nonlinear state continuity constraints no
Linear 5 | Nipres Linear constraints on p, r and X yes
constraints | 6 | Nygy(Nig — tg5Free) Linear constraints on p, X, and u yes
7 | Njiu(Neg * Ngya +1 —ig5Free) | Linear constraints on p and u yes
8 | Nyu Linear control continuity constraints no
9| Nyu Linear additional constraints on controls | no
Table 8: State and sensitivity equations
Dimension | Initial Eq. | Final Result
itr =1
Nw +1 X1 30 X(tz) Cl = X2 — X(t2)
N, +1 0 31 0 never used
ax(t A ax(t
Ny(N, +1) | 0 32 | 2 P, = -2t
A 3
No(Ne +1) | xeltn) 31 | 2t R, = -5
Ox(t 2 Ox(t
() 0 33 | G2 U1, = -5
it > 1
N, +1 Xtz 30 | x(titat1) Cite = Xitot1 — X(tita41)
~ % (tire A A x(Lita e
Ny +1 Cite—1 31 Wcim—l Cite = Citz + wcim—l
Np(N,+1) | 0 32 | Zxllien)
> Ox(tite S S Ox(tite >
Ny(No +1) | —Rito—1 31 —%Ritzfl Rits = %Rmfl
o ti z - [ ti ®
o) 0 33 | Oxlliesr) Uitaite = — Zprets)
5 % (tit A B Ox(tite Ox(tite '
Np(Nz +1) | =Pitz 1 31 __xig(tnjl)_Pitzfl Pite = — "(ta; 1) 4 x(‘g(titjl)Pitzfl
N % (tite 2~ 3 Ox(Lita ]
—Uitz—1,1 _intz—l,l Uit = %Uitz—l,l
A Ox(tita 3 () Ox(tita ()
(1) —Uitz-1,2 31 _%Uitwflﬂ Uitz,2 = %Uitz—l,z
& Ox(tita 3 - Ox(tita 3
—Uitz—1,ite—1 —%Uitm—l,itw—l Usite,ite—1 = %Uitz—l,im—l

(1) Nu(2+ Newr (Ng = 1)) (N2 + 1)

(1) (itz — 1)Nu(2 + Npwr (Ng — 1))(No + 1)
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Figure 8: Function 7(t)

4 1-D Heat Problem

To illustrate the use of COOPT consider the heat equation
oz 0%z
ot~ Oy?

defined on the region ¢ > 0, 0 < y < 1 with boundary conditions at z(t,0) and z(¢,1), and initial conditions

at z(0,0).

We use the method of lines (MOL) by discretizing the spatial derivative using finite differences and

convert the PDE into an index-1 DAE. Taking a uniform spatial grid y; = (j + 1)Ay, 1 < j < N, and using
centered differences, we obtain the DAE in the variables z;(t) = z(t,y;)

(39)

xz1 —z(t,0) =0
Tj_1 —2x; +x; .
o - PRI =0, =2, N1 (40)

zy —z(t,1) =0

Imposing z(t,0) = z(t,1) = u as the control, we can formulate an optimal control problem as to find u
such that, for some k, 2 < k < N — 1, the temperature zj, follows a predefined path 7(t).

Consider N =11, k = 6, and 7(t) defined as in Fig. 8.

The user files for this problem can be found in the directory coopt/example. The significant values in
the idim, i flag, and idata arrays (subroutine cUinit) are

Entry | Name | Value | Comment
idim
3 Nzq 9 The number of differential variables is N — 2
4 Nza 2 There are 2 algebraic variables
5 N, 1 There is one control function
6 N, 3 Cubic approximation of the control
7 Nyz 10 There are 10 shooting intervals
8 N1 1 There is 1 control interval per shooting interval
iflag
3 igf 1 The final states are not optimization variables
8 irnitx | 1 Initial condition computation
18 Ttol 1 Use different tolerances for state and sensitivity equations
26 Terr 1 The sensitivity variables are not included in the error test
idata
1 icf 12 The additional variable is the last one (N + 1)
5 Tdae 1 The DAE is index 1
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Indices of the two algebraic variables are set through the array ivars in the subroutine cUvars as
ivars(1) = 1 and vars(2) = 11.
The rdata array (defined in subroutine cUinit) contains

Entry | Name | Value | Comment

1 rtoleq | 1078 | rtol for state equations

2 atoleq | 107 | atol for state equations

3 rtolsen | 10~* | rtol for sensitivity equations
4 atolsen | 10~ | atol for sensitivity equations

As initial guess (subroutine cUguess) we set z; = 2.0, j = 1,..., N at all shooting intervals and u = 2.0
everywhere. We impose zero lower bounds for both states and controls and we fix the control at t = 0 by
specifying blU0(1) = buU0(1) = 2.0 (subroutine cUbounds).

The state equations are specified in the file sysM. f:

dx = 1.040/(Nx-1)

dx2 = dx*dx
c
(1) = X(1) - U(1)
c
do ix = 2,Nx-1
f(ix) = Xdot(ix) - (X(ix-1)-2.0d0*X(ix)+X(ix+1))/dx2
enddo
c

f(Nx) = X(Nx) - U(1)
The right side of the additional equation (3) is specified in the file sysC. f:

tt = 2.0d40

wW 1.0d40

if(t.GT.0.2 .AND. t.LT.0.4) then
tt = 2.0d40+2.0d0%(t-0.2)/0.2

endif

if(t.GE.0.4 .AND. t.LE.1.0) then
tt = 4.0d40

endif

if(t.GT.1.0 .AND. t.LT.1.2) then
tt = 4.0d40-1.040*(t-1.0)/0.2

endif
if(t.GE.1.2) then

tt = 3.0d40
endif

fc = wwx(X(6)-tt)*(X(6)-tt)
Optimization parameters are passed to SNOPT through the specification file example.spc:

Begin example

Derivative level 3
Feasibility Tolerance 1.0d-4
Function Precision 1.0d-4
Linesearch Tolerance 0.9
Major iteratiomns 200
Major Print level 1
Minor print level 0
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Figure 9: Optimization results for the heat problem. Solid line z§(t). Dashed line 7(t)

Minor iterations 1000
Minimize

Optimality Tolerance 5.0d4-3
Print frequency 1

Row Tolerance 1.0d-5
Scale option 0
Summary frequency 1
Verify level -1
Solution yes

End example

With the above settings, COOPT converged to the optimal solution in 12 major iterations. The cost
function corresponding to the initial guess was 3.928 and was reduced to 9.600 - 10~3. Figure 9 shows the
temperature z7 obtained with the optimal control as compared to the targeted function 7(t).

4.1 Results with quadratic control parameterization

In this section, we illustrate the results obtained using a quadratic control parameterization and with various
bounding schemes.

Figure 10 shows for different values of iboundU, a plot of control and x4 (t) against time when there are
no bounds on the control (ie bu, = oo and bl, = —00). When iboundU=0, the control is bounded only at
the control points and when iboundU=1, control is bounded inside the control intervals. But, since there
are no bounds, there are no additional control constraints in both cases and the same solution is obtained.
When iboundU =2, the control is monotonic within the control intervals and therefore a different solution is
obtained as seen in Figure 10.

Figure 11 shows for different values of iboundU, a plot of control and x4 () against time when bu, = 3.5
and bl, = —oo. This time, we get different solutions for iboundU=0 and iboundU =1 because of the bounds.
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Figure 10: Plot of control and x4 (t) when there are no bounds
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Figure 11: Plot of control and z4(t) when bu, = 3.5 and bl,, = —o0
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