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Abstract. In this paper we study the order, stability and convergence properties of implicit Runge-Kutta
methods applied to a relatively simple class of nonlinear differential/algebraic systems. These methods often
do not attain the same order of accuracy for differential/algebraic systems as they do for purely differential
systems. We derive a set of order conditions which the method coefficients should satisfy in addition to the
usual order conditions to ensure a given order of accuracy, and we present results on the stability and
convergence properties of these methods.
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1. Introduction. In this paper we study the order, stability and convergence proper-
ties of implicit Runge-Kutta methods applied to systems of differential/algebraic
equations (DAE) of the form

(1.1) O=F(t,y,y’)

where the initial values of y are given at 0 and F is linear is y’. These methods
often do not attain the same order of accuracy for differential/algebraic systems as
they do for purely differential systems. We derive a set of order conditions which the
method coefficients must satisfy in addition to the usual order conditions to ensure a
given order of accuracy of the local truncation error. Also, we present results on the
stability properties and order of convergence of the global error of these methods.
Finally, we describe some numerical experiments which are in agreement with our
results.

An M-stage implicit Runge-Kutta method for the solution of a system of ordinary
differential equations (ODEs)

(1.2) y’ =f(t, y)

is given by

(1.3)
( M

Y[=f tn+c,h, yn_l+h , aijY
j=l

M

yn=y,,_l+h biY,
i=1

i=1,2,...,M,

where h t, in-1. The method is often written in the shorthand notation which displays
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the matrix of coefficients,

(1.4)

1 all a12 aim

a21 a22 a2M

aM1 aM2 aMM

b b2 bM
We can consider formally applying this method to DAE systems (1.1) by

F t,_+c,h,y,_+h Y aijY,Y’i =0, i=l,2,...,M,
j=l

(1.5)
M

y,=y,_l+h biY.
i=1

The intermediate Y’s are given by
M

(1.6) Y/=yn_l+h aoY,
j=l

and the method reduces to (1.3) if we happen to be solving a DAE which is also an
ODE (that is, if F(t, y, y’) y’-f( t, y) 0). In this paper we shall only consider methods
where the matrix M (aj) in (1.4) is nonsingular.
The particular class of DAE systems that we will be concerned with is the systems

whose index is equal to one. For a linear DAE system of the form

(1.7) A( t)y’( t) / B( t)y( t) g( t),

the index is one if there exist nonsingular time-dependent matrices P(t), Q(t) such that

(1.8)
(’P(t)A(t)Q(t)
0

P(t)B(t)Q(t) ( C(t)
\ 0

These transformations decouple the system into a "differential" part and an "algebraic"
part. In the nonlinear case, we associate the matrices A and B with OF/Oy’ and OF/Oy,
respectively.

The concept of index is discussed in much greater detail in [1]. Here we note that
index one systems are in some sense the simplest nontrivial (A(t) is singular) DAE
systems, and that these types of systems arise frequently in practical applications [2].
For the special DAE systems which can be written in the form

y’ =f( t, y, z), 0 g( t, y, z),

the index is one if [Og/Oz]- exists and is bounded Practical means of deciding for a
general DAE system whether the index is one are discussed in [1].

Several other authors have obtained results which are in some ways related to the
results given in this paper. Gear and Petzold [1] show that backward differentiation
formulas (BDF) converge with the expected order of accuracy for index one DAE
systems. M/irz [3] has studied general linear multistep methods applied to index one
DAE systems, and showed that the method coefficients must satisfy an extra set of
conditions (which happen to be satisfied for BDF) for the method to be convergent
with the expected order of accuracy for DAE systems. Hence, it is not entirely surprising
that implicit Runge-Kutta methods should suffer some order reduction when applied
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to DAE systems. In the context of stiff differential systems, which are related to DAEs,
Prothero and Robinson [4] observed some order reduction effects for certain Runge-
Kutta methods in 1974. Recently, Frank, Schneid, and Ueberhuber [5] give order
conditions for implicit Runge-Kutta methods applied to stiff systems. Some of the
results in [5] appear similar to ours, but the order conditions are somewhat different
due to the different types of systems that we are considering; we will comment on this
in greater detail later.

The remainder of this paper is divided into three sections. In 2 we consider
linear constant-coefficient index one DAE systems. We give a set of conditions that
are necessary and sufficient to ensure that the local truncation error of a method (1.5)
attains a given order for these systems. We also give conditions on the coefficients
which must be satisfied for the method to be stable and convergent to a given order
of accuracy for linear constant-coefficient DAE systems. Stability for solving the DAE
is related to the method’s stability properties for linear stiff ODEs. Finally, we discuss
the stability and order properties for differential/algebraic systems of a few methods
which have recently appeared in the literature for stiff ODEs.

In 3 we study nonlinear index one systems of the form (1.1). Because of"mixing"
which can occur between the differential and algebraic parts of the solution, these
systems are more troublesome to solve than linear constant-coefficient systems. We
give a set of order conditions which are sufficient to ensure that a method is accurate
to a given order for these systems. These conditions are more restrictive than the order
conditions for linear constant-coefficient systems.

In the last section we present the results of some numerical experiments which
confirm that the order reduction effects predicted in the earlier sections can occur in
practice.

2. Linear constant-coefficient index one systems. In this section we consider linear
constant-coefficient indeex one systems. We derive conditions that are necessary and
sufficient to ensure that the local truncation error of an implicit Runge-Kutta method
attains a given order. We give conditions on the coefficients for the method to be
stable, and we discuss the stability and order properties for DAEs of a few methods
which have recently appeared in the stiff ODE literature.

Consider again the DAE system

(2.1) F(t,y,y’)=O,

and an implicit M-stage Runge-Kutta method applied to this system,

F t,_+cih, y,_l+h aijYj, Y =0, i=l,2,...,M,
j=l

(.
M

y,,=y,_l+h biY,
i=1

where we will always assume that the matrix (aj) is nonsingular. Another way to
write the Runge-Kutta method is given by

(2.3) Y. Y.-1 + h(y._, t._l, h ).

Before we can get started, we need a few definitions.
DEFINITION 2.1. The local error d, is given by

(2.4) y(t,)= y(t,_l)+ h(y(t,_), t,_l, h)-d,.
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DEFINITION 2.2. The Runge-Kutta method (2.2) is strictly stable for the DAE
(2.1) if the difference between a perturbed Runge-Kutta step,

F t_+qh, z_+h Y aoZj+,Z =0, i=l,2,...,M,
j=l

(.51
R(M+I)z,=z,_+h bZ+,,

i=1

where zo=Yo+ 6+), and 6), i= 1, 2,..., M+ 1, and an unpeurbed Runge-
Kutta step (2.2), satisfies llz, -y, Ko, where 0< h ho, and Ko, ho are constants
depending only on the method and the DAE.

Consider the constant-coefficient DAE

(2.6) Ay’ + By g( t).

Since the index is assumed to be one, there exist nonsingular transformation matrices
P and Q such that

(2.7) PAQ=( 001 PBQ=(C )0

Applying the implicit Runge-Kutta method to (2.6), we have

AYI+B y_+h 2 aoY =g(t_+c,h), i=l,2,...,M,

(2.8/
y, y,_ + h bY.

i=1

Letting f, Q-y,, Q- Y, (t) Pg(t), and premultiplying by P, we can rewrite
(.81

(PAQ)Y+(PBQ) ,_,+h a, =(t,_l+C,h),
(2.9)

M. ._+h E b,"g,.
i=1

In this form, the differential and algebraic pas of the systems are completely
decoupled from each other. Thus, it is sucient to study the differential and algebraic
pas separately to get an understanding of the general linear constant-coecient DAE.
Since we have assumed the index is one, the system (2.6) decouples into a system of
differential equations, and a set of algebraic equations of the form

(2.10) y g(t),

where for the remainder of this section y and g represent the second pas of fi and
in (2.9), where the paitioning is given in (2.7).
We now study the Runge-Kutta method (2.2) applied to these algebraic equations

in detail. Applying the implicit Runge-Kutta method (2.2) to (2.10) gives
M

(2.11a) Y,-I + h aoYj= g(t,-1 + c,h), i= 1, 2,..., M,
j=l

M

(2.11b) Y, Y,-i + h b,Y.
i=1
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From (2.11) it is easy to see why we should assume the matrix M (aij) is nonsingular,
for then Y’= (Y,. , Y)7" is determined uniquely by (2.11a).

To find the local error, let Y.-1 g(t._). Solving for Y’ in (2.11a), we have

(2.12a) Y’= M-G,
where

/ (g(t,,-1 + Clh)-g(t,-l))/h I
(2.12b) G={(g(t"-’+c2h!-g(t"-l))/h}.

\g._, + hi g_,))/h/
Then from (2.11b), we have

(2.13) y. g(t._)+ hbTM-G,
where b (bl, b2,’’’, b) Thus, the local error is given by

(2.14) d, g(t,_l) + hbr-iG g( t,).

Expanding the terms in (2.14) in a Taylor series around t,_l, we have

( h2 h3 h4gid.=- hg’+Tg"+g’"+ +...

.15 / ,_ch ,,_ch
cng .gg .

I ,_ch ,,_ch

I 2 h2

ng
2
g

6
g

Equating like powers of h, d, O(h+) i br-c 1, j 1,. ., k where c
(c, , c)
Drro 2.3. The algebraic order of an implicit Runge-Kutta method (2.12)

is equal to k if d,= O(h+) for all equations (2.10) with g(t) suciently smooth.
Then we have just shown,
TOM 2.1. e algebraic order of an implicit Runge-Kutta method (2.2) is

equal to k iff the method coecients satisfy

(.) -,c= , j ,
where

We now turn to the question of stability for linear constant-coefficient systems.
Solving (2.10) by the perturbed Runge-Kutta method (2.5), we have

(2.17)

M

z._, + h E aoZj + 8)= g(t.-, + c,h ),
j=l

M

z,, z,,_ + h biZ +
i=1

i=1,2,...,M,
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Subtracting (2.17) from the corresponding expressions for the unperturbed solution
(2.11), and letting e, y, z,, E’ Yi- Zi, we obtain

(2.18)

Rewriting,

M

e,-l + h Y aijEj- 8 0, 1, 2,..., M,
j=l

M

e. en-l + h Y bE’ 8(M+I)
i=l

(2.19) e, en-1 "k- b Ts-l(8n ete,_) 8+1),
where eM (1, 1, , 1) T and 8, (8, 8,... ,8,t) 7-. Collecting terms,

(2.20) e, (1 b rM-1e)e,,-1 + (b’M-18, 6<4+1)).
Thus we have shown,

THEOREM 2.2. An implicit Runge-Kutta method (2.2) is strictly stable for linear
constant-coefficient index one DAEs iff the method coefficients satisfy

(2.21) I1 b ’M-’eMI < 1.

We note that the inequality in (2.21) must be a strict inequality; for an example
see M[irz [6].

Since DAEs can be regarded as "infinitely stiff" ODEs, it is natural to ask what
is the relationship between the above criterion for stability, and the stability criterion
for the same methods applied to the stiff model problem y’= Ay. From Hall and Watt
[7], an implicit Runge-Kutta method (1.3) is stable for z= hA iff IR(z)l-< 1, where

(2.22)

It follows from (2.22) that

R(z) 1 + zbT(I-

lim R(z)=(2.23)
Izl-

Thus, a method is stable for constant-coefficient index one DAEs if[

(2.24) r lim IR(z)I < 1.

Now that we have an understanding of the local truncation error and stability
properties of a method, we can estimate the size of the global error. Clearly, if r 0
in (2.24) then the local error is equal to the global error, for the "algebraic part" of
the system. For r < 1, we have from (2.20),

(2.25) Ile.II <-- rll e.-,ll + MA,
where M is some positive constant, so that

(2.26) Ile.II-<- r"lleoll / 1 r ]
MA.

Since r is independent of h and lim,_ ((1- r")/(1- r))= 1/(l-r) we have in this
case that the order of the local error is the same as the order of the global error, for
the "algebraic part" of the system. Combining these results, we have

DEFINITXON 2.4. The constant -coefficient order ofan implicit Runge-Kutta method
(2.2) is equal to kc if the method converges with global error O(h kc) for all linear
constant-coefficient index one systems (2.6) with g(t) sufficiently smooth.
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THEOREM 2.3. The constant-coefficient order kc of the global error of an implicit
Runge-Kutta method which satisfies

(1) the matrix sg of method coefficients is nonsingular,
(2) the method coefficients satisfy the stability condition (2.21),

is given by

(2.27) kc- min (ka + 1, kd),

where kd is the order of the method for purely differential (nonstiff) systems, and k,, is
the algebraic order.

We see there is a reduction of order when k + 1 < kd. This order reduction effect
actually does occur for some of the implicit Runge-Kutta methods in the stiff ODE
literature. Here we give examples of some implicit Runge-Kutta methods, along with
their properties for constant-coefficient index one DAE systems.

METHOD 1 (Hall and Watt [7]). Semi-explicit third order Runge-Kutta.

3+x/ 3+x/
0

6 6

3-x/ x/r 3+x/
6 3 6

1 1

2 2

l+x/
2+v/’

ka=3,

METHOD 2 (Burrage [8]). Singly implicit first order Runge-Kutta with error
estimate.

1 1

1

Error-estimating method,

1110 -1 1

2 2
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METHOD 3 (Burrage [8]). Singly implicit second order Runge-Kutta with error
estimate.

A (2 x/) A (4 ,f)/4 A (4- 3x/)/4
A (2+x/) A (4+ 3x/)/4 A(4+,)/4

(4A(1 +v)-f)/(8A) (4A(1-x/)+f)/(8A)

A (2 + x/)/2,

a (4- 3/)/4 0

a(4+x/)/4 0

(a2(1 lx/- 8) a

bl b2 b3

b (6A2(2 + x/) 3A (3 +v) + 1)/(12A (A (3x/ 2) x/)),

b2 (6A 2(x/ 2) + 3A (3 -) 1)/(12A (A(3+ 2) -)),

b3 (6AE-6A + 1)/3(7A2- 6A + 1),

r .276,

k=3,

3. Nonlinear index one systems. In this section we study nonlinear index one
systems of the form (1.1). The Runge-Kutta methods are, in general, even less accurate
for nonlinear systems than for linear constant-coecient systems. The additional loss
of accuracy comes about because of mixing which can occur between the differential
and algebraic pas ofthe solution. We give a set of order conditions which are sucient
to ensure that a method is accurate to a given order for these systems.

To state our results, we need some notation. First, we must define the internal
local truncation errors, which are defined similarly in [5]

DEFINITION 3.1. The ith internal local truncation error " at t, of an M-stage
implicit Runge-Kutta method (1.5) is given by

M

" y(t._) + h aoy’( t._ + ch) y( t._ + c,h), , M,
(3.1)

M

+=y(t,_l)+h b’(t,_l+C,h)-y(t,).
i=1

r---0,

Error-estimating method,

A (2-x/) A (4-x/)/4
A(2+v/) A (4+ 3x/)/4
1-A (-A2(1 lx/ + 8)

+4A (1 + 2x/) -v)/(SA + 4A (1 2v) +x/)/(8A
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DEFINITION 3.2. The internal order kl of an M-stage implicit Runge-Kutta
method (1.5) is given by

k1 min (k,..., k., kM+l)

where

t$i= O(hk’+l), i=1,..., (M+I).

It is simple to find the internal order of an implicit Runge-Kutta method in terms
of its coefficients by expanding (3.1) in Taylor series around t,_, as in [5], leading to

THEOREM 3.1. The internal order of an M-stage implicit Runge-Kutta method is

equal to kt iff the method coefficients satisfy

cX aoc;-=- i=1 M,
j=l k’

X bjc;-1
= k

for k= l, ki.
Following [1], we will say that a nonlinear system (1.1) is uniform index one if

the index of the constant-coefficient problem

Ay’( t) + By( t) g( t)

where A =OF/Oy’, B =OF/Oy is one in a neighborhood of the solution y(t), and if the
matrices P, Q which transform (A, B) to the canonical form (1.8) satisfy:

(1) Q(t, y(t)) and Q-l(t, y(t)) exist and are bounded for all (t, y(t)) solving (1.1),
(2) Q-l(t, ty(tl))Q(t2, y(t2)) I+O(t2-tl),
(3) C( tl, y(t)) C( t2, y(t2)) + O(t2- tl).

These conditions are satisfied if in a neighborhood of the solution A and B are
sufficiently smooth, the index is one, and the rank of A is constant.

Suppose the dimension of the "differential part" of the system is nl and the
dimension of the "algebraic part" is n2. Then we can state the following result.

THEOREM 3.2. Suppose
(1) System (1.1) is uniform index one.
(2) F is linear in y’.
(3) The Runge-Kutta method (1.5) satisfies the strict stability condition (2.21) with

0-<r<l.
(4) The initial conditions satisfy Ilyo-y(to)ll- where k min (ka, kt + 1).
(5) Ifk 1, then r O.

Then the global error of the Runge-Kutta method (1.5) is O(h).
Proof. Consider the Runge-Kutta method (1.5). The numerical solution satisfies

(3.2a) F t,_1-4- c,h, y,,_ + h ao Yj, Y 0, 1, 2,. ., M,
j=l

M

(3.2b) y,, y,-1 + h X b,Y.
i=1

The true solution satisfies

( M )(3.3a)
F t,_, + c,h, y( t,_,) + h E aoy’( t,-, + cjh ,, y’( t,_, + c,h O,

j=l

i=1,2,." .,M,
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M

(3.3b) y( t,) y( t,_l) + h ,
i=1

Let E= Y-y’(t,_ 4-cih), Ei Y-y(t,_l 4- ch), and e, y,- y(t,). Subtracting (3.3)
from (3.2), we obtain

( M )(3.4a) A,E + B, e._l + h , aoE + 8, rl,, i= 1, 2,. ., M,
j=l

M

(3.4b) e. e._l + h biE + 8M+I,
i=1

where Ai=OF/Oy and B=F/Oy are evaluated at (t._ +cih, y(t._l +cih)) and rh is
the sum of residuals from the Newton iteration and higher order terms in e._ and E.

We can rewrite (3.4a) in the form

A + alhB

a21.hB2
aMlhBM

(3.5)

a2hB aMhB1

A24-a.22hB2. "’’.. a2M.hBg_J;}
aM2hBM AM 4- aMMhBM/ M/

B(e._ + 8)

B(e_..+8) + rl!\BM(e- +M
For notational convenience, we will henceforth assume that all matrices without
subscripts or superscripts are evaluated at (t., y(t.)). Let A =OF/Oy’ and B =OF/Oy
be evaluated at (t., y(t.)), and let P and Q be the transformation matrices which bring
A and B to the canonical form (1.8). Let .-1 Q-le.-, .’=i Q-1E’i, = Q-8i, and

r P:7. Then we can rewrite (3.5),

X 4- allhW al2hW1 alMhW \ /.

\ aMIIWM XM + aMMhWM/ \M]aM2hWM
(3.6)

[ w,(._, + g,). ,
/ w2(n-I 4- 82)

4- 2

\w(._, + .)

where W PBiQ(QT, Q) and W PAiQ(QT, Q).
By the definition of P, Q and the assumption on Q that QC,Q I+ O(h) (we

will use the order symbol to denote a matrix whose elements are all O(h)), we have

W=(C’ O)(I+O(h))0 I2
(3.7)

X, ( O0)(I+O(h)).
The matrices I and I2 are identity matrices of order n and n2, respectively.
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Partition/f (/(1),/(2)) r, where/(’) has dimension n and/(2) has dimension

n2. By partitioning 8i, n-i and in the same way, using (3.7) and rearranging the
variables and equations in (3.6), we can write

h2T2 (E. t(1) ( S1
hT4 ] t(2)/=- hS3

(3.8) h2T3
where

for i= 1, 2, and

T1 T + O(h),

T4= 4+ O(h),

S1 1 -t- O(h),

$4 I + O(h)

where l I + h/(R) C, 4 sg(R)/, S1 I(R) C, and %, T3, S, $3 are matrices whose
elements are O(1).

Let T, denote the left-hand matrix in (3.8). T, can be written as

(3.9) T,=
hi hT3 4+ O(h)

T4 is inveRible because the matrix of coecients of the Runge-Kutta method is
inveRible. By inveing the right-hand side of (3.9) the inverse of T, is given by

(310) T,=(’+O(h) O(h))O(h) 2/h + 0(1)

Using (3.10) to solve (3.8) for (’(, ’(:>) we have

,(1) TI

2+g:] +r ]"

Multiplying (3.4b) by Q-, which we now denote by Q to show its dependence
upon (t,, y(t,)) we obtain

M

i=l

Inseing (3.11) into (3.12), we have

(3.13) Oe.=S.O’e._-hU.g("+g+hr
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where

S. (i_ h (b- ll+ O(h)
o(1) b2T1-1/h q" O(1)

0(1)
O(h) )hr-I/h+O(1)2 .*4 I

Z1 IM () I1,

Z: e (R) I:,

b_=bV(R)I,,

b_= bV(R)I:,

0 b

where eM (1, 1,..., 1)r. By the definition of :4, we have

2-*4 Z2=(1-r)I2,

where r is defined in (2.24), and 0_-< r < 1 by the assumption that the method is stable
for constant-coefficient systems. Thus, S, has the form

(3.14) S,=K+O(h),

where

0 rI
Solving for en in (3.13), we obtain

e, Q._sS._sQ;lseo+ Q,_ss,_sQ-l
j=l i=1 \j=O

(3.15)
(hQ.,_,U,,_,g’-’) + Q._,)+ hQ._,B_ T._,-I -(n-i)) [

Now,

I-I Q,,-sS,,-s -s Q,, 1-I S,, -sQ-lsQ -s
=o j=o

Q,,(K’* + O(h))Q-[

and

i--1

1-I Q,,-IS,-IQ-ll Q,(K’ + O(h))Q-l,+l.
j=O
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We can rewrite (3.15),

(3.16)
Q-l e,, K + O(h )(Ql eo)

+ E (K’+ O(h))(hU,,_,g("-’)+ g_l + h_BTI,("-’)).
i=1

Thus we find

(3.17)

n--1

.,=(K"+O(h)).o+ E (K’+O(h))hU,-,g(’-’)
i=1

n--1 n--1

+ (K’+O(h))-+)l+ (K+O(h))h_BT-_,(-i).
i=1 i=1

Let

u o b_;/h
Rewriting (3.17) and noting that I1,11- O(h’/), we have

e =(K + O(h))o+ K’(hO_g(-’+ g;)
=1

(3.al
+ (K’+ O(h))(hB_ T,_-I (n--i)) + o(hk’+l).

i=1

Observe that

(3.19) hlJn_ig(n-i)+g(-+i)=(O(hkd+l), O(hk+l)) r.
We can see this by noting that the local error for the constant-coefficient problem
A,z’(t) + Bnz(t) g(t) is given by

where ’ Qi, and we know from 2 that this local error is O(hk’/) in the differential
part and O(hka+l) in the algebraic part. Although the solution to our problem and the
solution to the constant-coefficient problem are different, the cancellation of various
derivatives of the solution in the local error does not in general depend on the solution.
Also note that because ’ O(h k, +1), h 0,_,g"-’) +g? O(hk,+1), O(hk,+l)) E Thus
k >- kr. and ka>-k.

Suppose that II,’)ll _-< A,, o’)ll o(,), i= 1, 2. Expanding the terms in (3.18) and
r O(1) and making use of (3.19), we find thatnoting that Y,=

.(,,’= 0(,)+ 0(h2)+ o(hka)+ o(hk’+’)+ O(A,)+ O(A2)
(3.20)

)= O(h,)+ O(r:2) + O(h:2) + O(hk’+l)+ O(hA,) + O(A2).

For linear systems, A A2=0 and we can conclude that Ile.II- O(h), where
kG min (kd, kt + 1). For nonlinear systems, we sketch the proof. The higher order
term is composed of terms of the form

..21e,,- +h a.iE+8, en-l.+h ., a.iEj+8,
oy\ j=l j=l

(3.21)
en_l+h aijE+i E’i.

Oy Oy =
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Thus we find that Ilfill is proportional to (ll  - ll + hk)2/h. Substituting this relation
for r into (3.18), we obtain a nonlinear recurrence for ,. The solutions to this recurrence
can then be shown by induction to be of O(hk). We make use of assumption (5) of
the theorem to bound the solutions to the recurrence.

4. Numerical experiments. In this section we present the results of some numerical
experiments which confirm that the order reduction effects predicted in 3 can occur
in practice.

The test problem we uso was constructed to illustrate the effects of coupling
between the differential and algebraic parts of the system. The problem is given by

(4.1) (10 t)(+(10Y;]
-(1+ 0

1 t))(yY.’)=(sin (t))
with the initial values given by

,(o)

This problem has true solution

(4.2) I(t) sin(t)

The problem was obtained from the constant-coefficient index one DAE

(4.3)
Y Y1,

Y sin (t)

by introducing a change of variables

1 Y(4.4) (12)--(0 )(Y2)
The test problem is uniform index one for all t, and because of the mixing

introduced by the time-dependent transformation in (4.4), we would expect it to exhibit
many of the order reduction effects described in 3.

In the experiments to determine the global error, we solved the problem with a
sequence of fixed stepsizes over the interval [0, 1]. The reported observed order of the
global error reflects the behaviour of the global error at the end of the interval as the
stepsize is decreased by successive factors of two. To compute the observed local error,
we solved (4.1) with the various Runge-Kutta methods with one step. The reported
observed local error reflects the behaviour of the error after one step as the stepsize
is decreased by successive factors of two.

We experimented with several Runge-Kutte methods which might appear to be
likely candidates for solving stitI or differential/algebraic systems. A description of
the methods follows:

(1) 5-Stage ’4th order’ Strongly S-stable Diagonally Implicit method (Cash [9])
(2) 2-Stage ’2nd order’ Strongly S-Stable Diagonally Implicit method (Alexander

[10]) with t 1-x//2
(3) 3-Stage ’2nd order’ L-Stable Semi-Implicit method (Houbak and Thomsen

[11])
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(4) 7-Stage ’3rd order’ Extrapolation method based on fully implicit backward
Euler and polynomial extrapolation, written as a semi-implicit Runge-Kutta
method

(5) 3-Stage ’4th order’ Lobatto IIIc method (Chipman [12])
(6) 2-Stage ’2nd order’ Singly-Implicit method (Burrage [8], described in 2)
Table 4.1 gives the results of the experiments. In Table 4.1, kg is the order of the

observed global error and k6 is the lower bound which is predicted by the theory,
based on ka and k.

Method

TABLE 4.1
Numerical results.

kd ka kx+l k kg

4 oo 2 2 2
2 oo 2 2 2
2 2 2 2
3 oo 2 2 3
4 oo 3 3 4
2 o 2 2 2

Based on the results in Table 4.1, we can make a few observations. It is reassuring
that in no case was the lower bound for the order predicted by the theory higher than
the order which was actually observed, and in many cases these two orders coincided.
The observed orders for the extrapolation method and for the Lobatto IIIc formula
were higher than would be expected based on the theory. We do not know whether
all of the different order extrapolation methods based on backward Euler would have
this property, or even whether there might exist problems for which the observed order
is given by the lower bound.

Since k for a semi-implicit Runge-Kutta method is limited to one (because the
first stage is necessarily a backward Euler step), we would expect the order of the
global errors for these methods to be limited to two. This appears to be the case, with
the exception again being the extrapolation method, which can be written as a semi-
implicit Runge-Kutta method. Orders higher than two appear to be easily achieved
by going to a fully implicit formula such as the Lobatto IIIc method where the stage
orders are higher. At least, in this case higher orders are predicted by the results in

3. We have yet to achieve a complete understanding of the order reduction
phenomenon, as evidenced by the better than predicted behaviour of the extrapolation
method reported in Table 4.1; however it is clear that many of the order reduction
effects predicted in the earlier sections actually do occur.

The orders that we predict and observe for the DAE systems tend to be somewhat
higher than those predicted by Prothero and Robinson [4] and Frank, Schneid, and
Ueberhuber [5] for related classes of stiff systems. For example, the theory of Frank,
Schneid, and Ueberhuber [5] predicts an order of one for the global error of all
semi-implicit Runge-Kutta methods for stiff systems, while we predict and observe an
order of two for those methods applied to index one DAEs. Neither set of results is
wrong. The differences are due mainly to considering different classes of problems.
For example, Prothero and Robinson [4] consider the model problem

(4.5) y’= a (y g(t)) + g’(t)
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for Re (-h) o and say that a method has order (p, q) if the error behaves as h’+h q

as Re (-hh) and h0.
For methods where q =-1, the error behaves as hp+, but in addition it tends to

zero for any h as Re (-h). In [4], [5] these methods with q -1 are said to have
order p, whereas for DAEs the order is infinite because these methods are exact for
the algebraic equation

(4.6) y=g(t)

which is the limit of (4.5) as Re (-h). By looking at DAEs, we see everything in
the limit as IAI- o. On the other hand, for stiff equations where 1’1 is very large, it
may be that the errors are already so small that the behaviour as h is reduced is not
important. There is no question, however, that even after neglecting order reduction
effects which disappear as 1[-, order reduction can occur.
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