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AN EFFICIENT NUMERICAL METHOD FOR HIGHLY
OSCILLATORY ORDINARY DIFFERENTIAL EQUATIONS*

LINDA R. PETZOLDt

Abstract. A "quasi-envelope" of the solution of highly oscillatory differential equations is defined. For
many problems this is a smooth function which can be integrated using much larger steps than are possible for
the original problem. Since the definition of the quasi-envelope is a differential equation involving an integral
of the original oscillatory problem, it is necessary to integrate the original problem over a cycle of the
oscillation (to average the effects of a full cycle).-This information can then be extrapolated over a long (giant!)
time step. Unless the period is known a priori, it is also necessary to estimate it either early in the integration (if
it is fixed) or periodically (if it is slowly varying). Error propagation properties of this technique are
investigated, and an automatic program is presented. Numerical results indicate that this technique is much
more efficient than conventional ODE methods, for many oscillating problems.

1. Introduction. Differential equations that have highly oscillatory solutions
cannot be solved efficiently using conventional methods. In this paper we will present a
method which finds the long-term behavior of the solution to an oscillating problem
without following the oscillation closely. This technique can handle linear or nonlinear
problems, and it is much faster than conventional methods for many oscillating
problems.

Several different authors have proposed algorithms to solve oscillating problems.
The multirevolution methods [6], [7], [11], [17], [18], which were first introduced by
astronomers in 1957 for calculating the orbits of artificial satellites, are the most closely
related to the class of methods presented here. The methods developed here differ from
the multirevolution methods in several significant ways. First, those authors were
concerned with computing future orbits (oscillations) accurately, whereas we are mainly
concerned with "ignoring" the details of the oscillation. Secondly, those methods
require some ph.ysical reference point (for example, node, apogee, or perigee), whereas
with the methods given here there is little need for knowledge of the (physical) origin of
the oscillations. Additionally, very little theoretical justification for the multirevolution
methods has been attempted.

Several other approaches have been taken to solve these problems. In Gautschi [43,
methods are derived which are exact for trigonometric polynomials of a given order if
the frequency is known in advance. These methods are applicable for stepsizes the order
of the period of the oscillation. Linear systems can be treated by using information from
the system eigenvalues to transform the system into another linear system which has
highly oscillatory coefficients, but of small amplitude so that they can be neglected, as
done by Amdursky and Ziv [1]. Linear and nearly linear systems are also treated by
Miranker and Wahba [15], where running averages of the solution are computed.
Nonlinear problems of the form

--=--x+g(t,x),A=
dt e 1 O’

e > 0 small, are dealt with by Miranker and Veldhuizen [14], where the solution is
approximated by a series of functions of tie. Kreiss [9] approaches the problem by
choosing initial values so that the resulting solution is smooth.
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The methods given here compute a smooth function which is conceptually similar
to the envelope of an oscillatory function. (For details see 2.) An approach which is
similar to ours, in that the envelope of the oscillations is found, is taken by Miranker and
Hoppensteadt [13]. This approach is based on the asymptotic representation of the
solution. Alternative ways for determining the asymptotic representation of the solu-
tion are found in Auslander and Miranker [2].

The class of methods in this paper is motivated by the observation that when a
nearly periodic function is sampled at multiples of the period (or near-period) of the
oscillation, the resulting sequence of points changes slowly. If the oscillation is very fast
compared to the underlying slowly-varying function, then a smooth curve which passes
through these points can be defined. This curve will be called the quasi-envelope,
because it is intuitively similar to the envelope of an oscillating function. Since the
quasi-envelope varies slowly, it can be followed with large steps. The important
property of the quasi-envelope is that it agrees with the solution to the original equation
at multiples of the period. Thus, the pointwise solution of the differential equation can
be recovered from the quasi-envelope and the differential equation by integrating from
any multiple of the period for no more than one cycle.

This technique assumes a knowledge of the period or near-period of the oscillation.
An algorithm for finding the period, given a reasonably accurate initial estimate, is
developed in 3. This algorithm is based on minimizing a norm of the difference of the
periodic part of the solution and the same part displaced by the period.

Some results concerning the order of accuracy of these methods are given in 4.
Proofs of most theorems are omitted here, and can be found in Petzold [16]. The
algorithm has been implemented with variable stepsizes and orders. Details of the
implementation are given in 5 and computational results illustrating the efficiency of
this method are provided in 6.

2. The method. Suppose we are given the initial value problem

(2.1) y’ f(y, t), y (0) yo, 0 -<_ -<_ L,

with y (t) periodic or nearly periodic with period T. The variable y may be a vector, as
long as all of its components are either nearly periodic with period T, or slowly varying
(at least one component of y should be oscillating).

We can define a function z(t) (the quasi-envelope) which describes the long-term
behavior of y in terms of the values of z on [0, T) by

(2.2a)

where

(2.2b)

and

z(t + T) z(t) + Tg(z(t), t), O <- <- L- T,

1
g(z, t)=-[17(t + T, t)-37(t, t)]

d
(2.2c) d--(t + s, t)= f((t + s, t), + s), 37(t, t)= z.

It is easy to see that if z(0)= y(0) then z(KT)= y(KT), 0 <_-KT <-_ L, so that z agrees
With y at multiples of the period. Since y is nearly periodic, the values of z it the points
{KT}, K an integer, should change slowly. Solving (2.2a) exactly amounts to solving the
differential equation (2.1) over the entire interval [0, L], as g(z, t) is based on the
solution of the differential equation over one period. If the length of the interval is very
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large.in comparison with the period of the oscillation, this can be very time consuming
and costly. Thus, the basis of our method is to compute an approximation to z.

It is possible for many problems to define z on (0, T) so that z(t) changes slowly in
[0, L] (see [16]), and then an approximation to z can be computed; or, we may consider
z to be a point function, and seek to approximate it only on the set {KT}.

If the quasi-envelope z(t) is a smooth (slowly varying) function, we can approxi-
mate z in terms of its values at infrequent points (at intervals H >> T), thus stepping over
many periods of the oscillation at a time. In this paper, we will use formulae which are
similar to Adams methods, though other types of formulae are easily derived using the
same ideas.

As an example, formulae analogous to the Adams-Moulton methods will be
derived. We will use the following relations from operator calculus"

Vz(t)=z(t)-z(t-H),

V I-e-n (D is the differentiation operator).

Proceeding formally, we have

(2.3)

(2.4)

From (2.3)we have

TD

g"
T

z,,,

Zn Zn-1 (I- e-n)z,.

TD -1

(e-eI(2.5) zn T

Substituting (2.5) into (2.4) we obtain

z-z-l=(I-e

or
TD -1

T
gn"

Now HD =-log (I- V), so TD =-(T/H) log (I- V), so that

e e -I
T T

-1

1-log (I -V) +--
lgl )H H 2!

lg2 (I- V) +.
-1

Substituting this into (2.6) we obtain

z,-z,-l=VH[log(’-V)]-a(-I/T 1 ()21 )H . log (I V) . log (I V) +’"

1()
2

}1 TV_ Vlog(I-V)+...H{ -V[log (I V)]- 2

-1

gn

Then

(2.7) _1z,,-z,,-x=H{[I V-1-V2
2

+i5 +"" g""
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The terms in square brackets are the Adams-Moulton coefficients, and the others
become small as T/H becomes small. This then gives an analogue of the Adams-
Moulton formulae in terms of the gn, on truncating the series at 7p. Other such formulae
may be derived similarly. These formulae, applied to y, have also been derived in [6],
[7], [11], [17] and [18]. Following Graft [6], we will call them generalized Adams
formulae. An interesting property of the generalized Adams methods (except for the
first order method in (2.7)) is that as H T, the coefficients in the formulae approach
those of the forward Euler method, which is exact (up to errors made by the method
which integrates with small steps through one cycle to find g(z, t)) for T H.

A geometrical interpretation of the generalized methods is that they find the
"envelope" of the periodic function y. It is easy to see this in Fig. 1, which shows one
component of y.

quasi-envelope z (t)

(t ;; B P

to to+ T

FIG. 1. ODE solution and quasi-envelope.

More precisely, in the method we integrate through one period with small steps to
calculate an estimate of the secant line from A to B. (The point A need not be at the top
of a cycle, as in the figure.) This secant line is then used (instead of the tangent, as in
solving a differential equation), to project the solution to P, which may be many cycles
away. Note that, unless H is chosen to be an integral number of periods, the point P may
not be anywhere near the solution to the original equation, in the usual sense. Starting
with P as the initial value, we integrate for one period along the chain line, using small
steps (this solves (2.2c) for )7). In the picture, the curve that we are finding looks like the
upper half of the envelope of the oscillating function.

Some problems have solutions that are composed of oscillations with a slowly
varying period, modulated by slowly varying terms. (Here, "period" is defined as the
solution to a minimization problem given in 3.) These problems are handled without
having to distinguish them from problems with a constant period of oscillation. This is
accomplished by means of a change of independent variable so that in the new variable
the period of oscillation is a constant. Then the problem is solved with constant-period
formulae, like those just derived.

The change of.variables from to/’ should have the property that the period T(t) of
the oscillation becomes a constant - in the new variable/’ (- is just a scaling factor). This



HIGHLY OSCILLATORY ORDINARY DIFFERENTIAL EQUATIONS 459

is expressed as

(2.8) t(? + ’)- t(/’) T(t(f)), t(O) to.

We will define 3 (/’) to mean y (t(f)), and (/’) to mean z (t(/’)). Since we would like to
be solving

(2.9) _:(f + ) : (/’) + (, :),

in order to use the constant period formulae, it follows that (, ’) must be defined as

T(t(f))
(2.10) ,(, :)=g(z(t(f)), t(f)).

To effect this change of variables, one extra difference equation must be solved.
The equations to be solved (instead of (2.2a)) are summarized below.

2(f + -) (f) + -(Y,/’), (0) z(t0),
(2.11) (T(/’,)))t(f + r) t(f) + r t(0) to.

3. Finding the period. Finding the function g(z, t) in (2.2) involves integrating the
differential equation (2.1) over one period (or near-period) of the oscillation. When T is
inaccurate, the function z(t), although still defined, may change so rapidly that it might
not be possible to follow it with large steps. Therefore, it is important to have an
accurate estimate of the period. The procedure described in this section corrects an
estimate of the period, once a reasonably accurate initial estimate is given. (In practice,
"reasonably accurate" usually means to within about five or ten per cent.)

Suppose we are given a nearly periodic function y(t) defined on an interval
I [0, L), which is the sum of a slowly varying function r(t) and a periodic function s(t)
with period T. (In practice, y(t) need not be restricted to have this form, however it is
needed for the proof of Theorem 3.1.) By requiring r to be slowly varying, we mean that
r does not change much over any interval of length T. Over most of this section, we will
assume that y is a scalar, although the procedure is easily extended to a system of
functions.

As an example to motivate the algorithm, suppose first that y(t) is periodic with
period T. Then Ily (t)- y(t + T)[[2 0 on I. This suggests that we might be able to find the
period T by minimizing Ily(t)- y(t + T)]I2 over all T in I which are bounded away from
zero. Now if y is the solution of a differential equation, it would be impractical to
minimize

Ily (t)- y(t + Y)[lz Jt (y(t)- y(t + Y))2 dt,

with the integral taken over all of/, as that would imply that y is known over all of I.
Instead we minimize over the interval from zero to the last estimate of the period. That
is, we find

min (y(t)- y(t + T*))
T*e>O
T*I

and T,, +1 is defined as the value of T* for which the minimum is attained. As there may
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be many such values, Tin+ will be the one to which the algorithm converges (this will
usually be the value closest to T,,).

Some notation which will be used below will now be explained. A function f with a
bar over it means/(t + T,,) (the subscript m changes after each iteration and should be
clear from the context). The symbol means )(t). All integrals are over the interval
[0, T,,] although in practice they may be over any interval of length T,, with the left
endpoint fixed throughout the procedure.

In general, we have y(t) r(t) + s(t), with r 0. In this case, we start out with To as
before, and with a k-dimensional space of functions P(k <) in which we approximate
r. The most obvious space P to take is the space of polynomials of degree =<k. Since a
constant shift of a periodic function, that is, c + s(t), isalso periodic, the space P should
not include constant functions. It is necessary that r may be approximated rather closely
over one period by functions in P. At each step of the iteration we would like to find the
function Pm/l which most closely approximates g on [0, Tin], and a new estimate
of the period. Thus, we must solve two minimization problems at each step.

First we find

(3.1) min I0Pm+IP
[y-p,,+ (37 -p,,+a)]2 dt.

When Pm+l is expressed in terms of the basis functions of P, this just leads to k
linear equations to determine the coefficients.

Then we find

(3.2) min
Tm+le>O
Tm+lI

"" [y -p,+,- (y (t + T,,+l)-p,+(t + T,,+))]z dt.

At each step of the algorithm a pair {p,,, T,,} of quantities which describe r and s
are produced.

To describe the computations more precisely, let {/i(t)}, 1, , k be a basis for
kP. Write p,,(t)== ai.,,l(t). Then to solve the minimization problem (3.1), take the

partial derivatives of the function to be minimized with respect to the coefficients ai,
and set them equal to zero.

y Ogi,m+ll -I- E Ogi,m+l dt= O,
OOg],m+l i=1 i=1

j=l,...,k.

This leads to

(3.3) Oli,m+l (1" li) I’ 1]) dt l] li)( y) dt, j 1,..., k,
i=1

which is a set of k linear equations that we can solve for the Oi,m+l 1, , k. These
equations are nonsingular as long as P excludes periodic functions.

To determine the minimum in (3.2) take the partial derivative of the function to be
minimized, with respect to T,/, and set that equal to zero

(3.4) (pm+ 37’)(y --Pro+l-- ; + ffm+) dt= O.
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This is a nonlinear equation in the variable T,+I which can be solved by Newton’s
method if the initial estimate To is close enough to the minimum. This is partly why To
needs to be a good estimate, and why the period may be allowed to change only slowly.

This leads to the iteration (one step of (3.5) is done per iteration consisting of (3.3)
followed by (3.5)):

The algorithm can be summarized as follows. First, an initial estimate To for the
period is given. Then (3.3) is solved for an approximation px(t) to r(t). Finally, Tx is
found by (3.5). This process is repeated until the sequence of approximations to the
period is determined to have converged. This is not Newton’s method for (3.4) because
at each iteration m changes, so that p, changes. It would be possible to fix p,,/a in (3.4)
and iterate that equation for T,/I until it converges each time, but this appears to be
slightly less efficient.

The integrals needed in the iteration can be computed using any sufficiently
accurate quadrature formula. They are easily computed using Riemann sums. This
procedure may be extended in an obvious way to a system of functions.

In practice, this algorithm converges to the period or near period for a wide range
of functions y(t). The following theorem, which is proved in [16], shows that it is locally
convergent for a certain class of functions.

THEOREM 3.1. If y r + s, where r P and s is periodic with period T, the iteration

defined by (3.3) and (3.5) is stable, if we start within a sufficiently small neighborhood of r
and T.

Using this technique to compute the period, the generalized methods can then be
used to solve approximately the resulting equations for the quasi-envelope z(t), with
large steps.

4. Error propagation. Errors are introduced into the solution during several
phases of the computation. The function g(z, t) in (2.2b) is computed by integrating
over one cycle of the oscillation with a numerical method using small steps. The effects
of the errors introduced in this computation can be seen by introducing new functions
(t) and ff(, t), which depend on the numerical solution 3(t) by the small-step method
over the entire interval [0, L], in the same way that z(t) and g(z, t) depend on the true
solution y(t), Under a few assumptions (the period T(t) is known in advance, and 3(t) is
computed by re-starting at the beginning of each period with the values at the end of the
last period), the quasi-envelope (t) of the numerical solution agrees with (t) at
multiples of the period. Because the generalized methods compute an approximation to
(t) their accuracy is limited by the global errors of the,small-step method. Thus,
the solution computed by the generalized methods is, in general, no more accurate
than the solution would be if the small-step method were used to integrate the problem
over the entire interval.

The generalized methods solve (2.2a) approximately, stepping over many periods
at a time. This is another source of errors, which we will investigate in this section. In
doing so, we will extend the concepts of order, stability and convergence to the
generalized methods.

Throughout this section, we will assume that the period T is a constant, or has been
transformed to a constant by a change of variables, and that all implicit equations are
solved exactly. For simplicity, we will consider only problems involving a single
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differential equation, though the results are easily extended to systems of equations.
Additionally, the stepsize H is assumed to be an integral multiple of the period.

We can now proceed to investigate the errors due to the generalized methods. To
begin, let H NT (N an integer). The solution y(t) of the original differential equation
and the choice of T define a set of functions {gk/N(Z)} at multiples of the period,
tk/N kT (k/N)H, where

1 1
(4.1) gk/v(Z) g(z, tk/r) -AZ(tk/r) -(z(t(k+l/V) Z(tk/)).

Note that the symbol A is used here to denote the forward difference over an interval of
length T. We will assume that the functions gk/N(Z) satisfy

IoJAigk/N(Z) < Cij(CTi) {j O, i-- O, 1,’’’, N,
(4.2) Oz; j 1, i= 0,

and Cii <-- k, where
Agk/N(Z) g(k+I)/N(Z)- gk/N(Z),

and the higher order differences are defined similarly.
These conditions are analogous to conditions which bound derivatives for ordinary

differential equations. For ] 0, (4.2) requites for each problem that the secant lines of
length T at multiples of T change slowly along the solution and along integral curves
near the solution. For j 1 it requires that changes in,gk/N(Z) are not rapid with respect
to changes in z._Thus, the solution over one period must depend slowly on the value of z
at the beginning of the period. This condition has the effect of constraining the
multiplier of the error at each (large) step to be small. If integral curves near the solution
are nearly periodic (with period T), then it is likely that these conditions are satisfied.

It appears to be a difficult problem to determine whether a problem satisfies the
conditions (4.2) from the original differential equation alone. Using some qualitative
information about the behavior of the solution and curves near the solution we can at
least decide whether it is plausible that the conditions are satisfied.

With these assumptions we can compute bounds on the error due to the general-
ized methods without having to bound derivatives of g and z with respect to t. If g(z, t) is
nearly periodic with period T, then {gk/(Z)} is a slowly changing sequence of functions.

To gain some insight into how errors for these methods might be analyzed, we will
first take a closer look at the simplest method, the generalized forward Euler method.

Suppose that z, is the solution computed by the generalized forward Euler
method. Then we have, for t, nil,

(4.3) Zn+l z, + Hg(z,, t,).

In addition, it is easy to see that

(4.4) z(t,+x) z(t, + NT)= 2 Aiz(t,).
i=O

The case when H is not constrained to be a multiple of the period is discussed in Petzold [16]. It is
possible, for many oscillating problems, to define a sequence of functions {zt(t)} which approximate z at the
points {kT}, k an integer, to order T Then z can be defined on all of [0, L] as a smooth, continuous function,
for small T in terms of the Zl. Bounds can be found on the distance between the numerical solution and zt, for
some I. In this way, the difference between the numerical solution and the true solution can be bounded. While
the practice of not constraining H to be a multiple of the period is not, in general, recommended, it is
important to consider this case because when T(t) is varying, phase errors introduced in the solution of (2.11)
may not be negligible.
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Letting en z(tn)-z., and subtracting (4.3) from (4.4), we have

(4.5)
en+l e, + NT[g(z(t,), t,)- g(z,, t,)]

N(N 1)
TAg(z(t,), t,)+. + TAN-Xg(z(t,), t,).

2

Then, using (4.2), we get

(4.6) le.+al--< le, I(1 + NTCol) + D, eo O,

where

D i=2 (CT)i-1C/-1,0T.

Note that e, is identically zero if N 1, as we would expect. In fact, this is true for all of
the generalized Adams formulae, except the generalized backward Euler method.

We will investigate convergence by means of a sequence {Pq} of problems where
the period Tq becomes arbitrarily small as q c without changing the true solution
much.

We can define functions {gk/N,.q}, {Zq} for the qth problem just as in the case of a
single problem. We consider only sequences where {gk/u,,q} and {z} satisfy condition
(4.2). That is,

gk/r,.q(Zq)) ] O, 0,..., Nq,(4.7)
OZ(qi Ci](CTq)i’

j 1, O,

and Cq =< K, where

(4.8) H NqTq.

and Cij is independent of the problem q.
One might visualize the sequence of problems as having the same "envelope"

(although, it is a little less restrictive than that), where the oscillations "inside" become
more and more dense as q becomes larger.

If we were solving an equation which, in the conventional sense, had for its solution
the "envelope", we would choose the stepsize H to compute the solution to the desired
error tolerance. In investigating convergence, we would let H 0 and see whether the
computed solution tends to the true solution. Here, for one problem, H >= Tq, so we
consider solving all of the problems satisfying (4.7) for which H -> T, and for q large we
look at how close the computed solution is to the true quasi-envelope.

We will now proceed with the discussion of the generalized forward Euler method.
Recall that (4.6) bounded le,+ll in terms of le.I and Dn,q. We can bound the solutions of
that recurrence by the usual methods to obtain for the qth problem,

(4.9) [e., =<D"’q(eC’L 1)
N.TCo,

for 0 _-< nH <-L. (Note the notation. The letter q will always refer to the qth problem.
The letter n will always refer to the time t, nil. When the method is applied to a single
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problem, the subscript q will not appear.) Now

D.,q i2
(CTa)-l c_a,oTa

K
-< [(1 + CTq)N. -(NqCTq + 1)].
-C

If H is a constant, and NqTq H, then we have

, + -(cN + (e -(cN +.
Thus, for H fixed and for all q such that H Tq,

g(ec -(CH + 1))(ec. 1)
(4.0) le,l

CHCo.
Since we can make H arbitrarily small, with H Tq, by taking q large enough, (4.10)
implies that e,l is O(H)in the sense that for all q such that H e Tq, e.ql N KH,
0 <nH L. The constant K does not depend on H or q.

In general, for any method, the statement len.ql is O(HP) will mean that for any
sequence of problems satisfying (4.7), there are positive constants ro and Ho such that
for each H e (0, Ho], if Tq/H N ro and 0 < nH N L, then le,[ NH. The constant is
independent of H and q, and ro depends only on the method.

In this section, a generalized/-step method will have the form

i=0

where H NT, z is the solution computed at time t, and tn nil. The formula (2.7)
truncated provides examples of some of these methods. For purposes of discussing local
truncation error, we will assume that (4.11) is normalized so that =o(1/N)= 1.

( is the (global) error of the method, applied to the h problem at time t withn,q

stepsize H. That is, it is the difference between the solution computed by the method
and the true quasi-envelope. Analogously to ordinary differential equations, we have
the following definition"

DEFINITION 4.1. A generalized/-step method is convergent if there is a constant
ro > 0 such that for any sequence of problems satisfying (4.7),we have

(g 0,lim sup e ,q
go {qlrq/gro}

uniformly for 0 N nH L.
Thus, a method is convergent if e.ql is O(Hp) with p > 0.
To investigate the convergence of generalized/-step methods we will first examine

several other properties of the methods, which are analogous to similar properties of
methods for ordinary differential equations.

A linear multistep method is stable if for any differential equation satisfying a
Lipschitz condition on an interval [0, L], a small perturbation in the initial values causes
a bounded change in the numerical solution as H 0, with nH L, where n is the
number of steps taken. One way to guarantee this is to require the polynomial

o( 2
i=0
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to satisfy the root condition. That is, the roots of p (:) 0 must be inside the unit circle,
or on the unit circle and simple.

Analogously, for the generalized linear/-step method (4.12) we have the following
definition.

DEFINITION 4.2. A method of the form (4.11) is uniformly stable if the poly-
nomials

1
Pr()-- E Ol’i(r)’,

satisfy the root condition for all r in some interval [0, r0], and ozi(r) and fli(r) are
continuous functions of r on [0, r0], (r0 > 0).

Another concept from ordinary differential equations that will be useful here is
that of order.

DEFINITION 4.3. A method (4.11) is of order p if

H 1 +i)] =0
i=0

whenever z is a polynomial of degree p, for all r (r 1/N) such that 0 <- r <_- r0. (As usual,
Az is the forward difference of z over an interval of length T.) A method of order p, with
p >= 1, will be called consistent.

The following theorem tells us that a uniformly stable and consistent generalized
/-step method is convergent.

THEOREM 4.1. For a sequence ofproblems satisfying conditions (4.7), the error en,q
of a uniformly stable generalized l-step method of order p, with H sufficiently small, is
O(H").

Proof. First, we will find a bound for Dn,, the local error in solving the qth problem
with a stepsize H. Let H TN. Then

(4.12) D.,= ,=o[C’(--q)Zq(t"+’)+Nq’(--q)AZq(t"+’)]
i=0/’=0 qq
INq +

(4.14) Y’. [Oi.q]AJzq(t,),
/’=0

where

O"q
i=o [z(--q)(iNqI]/+gq(-q)(\f_1}]’iN

By the definition of order p, Oj,q =0 for i =0, 1,..., p. The first nonzero term,
Ap+lOp+l,q Zq(t), is the principal part of the local truncation error. Deleting the

vanishing terms we have

(4.15) ID.,I

Since Azq(tk)= Tqg(Zq(tk), tk), we have from (4.7) that

[AiZq(tn)l qK(Cq)i-1.
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Substituting this into (4.15) and using the triangle inequality, we obtain

(4.16)

iN) (iN)J/j have thatNow, since
J

-<_ we

<= e iNCT, iNqCTq p

p[

Now (4.16) and (4.17) together imply that

(4.18) iCH iCH)p+
e +HK

(p+l)!
icH (iCg)Pl

p! l

For q sufficiently large this bound can be made independent of q by continuity of cei(r)
and i(r) on [0, ro].

Now that we have a bound for Dn.q, the next steps are almost the same as the
standard proofs in ODEs. (See, for example, Henrici [8, Theorem 5.11].) The basic idea
is to find a difference equation defining the global error, and then use the root condition
and the bound on Dn,q to bound the solutions of the difference equation by a bound
which is a constant timesHp. The principal tools that are generally used, and that we will
use here, are variants of Lemmas 5.5 and 5.6 of Henrici [8, pp. 242-244]. It is important
to notice that many of the constants in these lemmas can be bounded independently of r
(where r T/H). In particular, Lemma 5.5 says that if p(() satisfies the root condition,
and yl, 0, 1, 2,. , are defined by

then F sups=o,1,... Il] < oo. Examining the proof it is easy to see that it will hold for Dr, r
sufficiently small, and that F(r) is a continuous function of r. It follows by compactness
that F(r) is bounded in [0, r0]. Lemma 5.6 concerns the growth of solutions of

Ogk OOm+k "+- Ogk_ tOm+k_ "Jr" q" Og o(.O
(4.19)

h{...w,.+ + k-l,mO.Jm+k-1 -t- + O,rnOOm} t- Am.
If p satisfies the root condition, and B*,/3, and A are nonnegative constants such that

}t,.I / It-..I /’’’ / [to,.l-<-B*, lt,.l--<t, [a.I =< A, n-0, 1, 2,... ,U,

and 0 <- h < -*, then every solution of (4;19) for which Iw.I < z, tz 0, 1, k 1
satisfies Iw.] <- K* e "hz’*, n O, 1,.. , N, where L* F’B*, K* F*(NA + AZk),

Fa [a] + [Cek-ll +’’’ + [Ceo[, F*

By uniform stability and compactness,/3 and A can be bounded independently of r on

[0, ro], and we can bound the solutions of (4.19) independently of q and r for Tq/H <= to.
Proceeding with this we define the global error e,.q by

(4.20) e.,q Zq (t.) Z.,q,

where Zn,q is the solution to the qth problem at time t. by the method (4.11). Then en,q
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satisfies

Using the mean value theorem, we have

g,q(zq(t))- g,q(z,q)
Og,a(za)

cza
So this gives

i=0 tZq (,,+i,t,,+i)en+l,q Dn,q.

Now it is a simple (but tedious) matter to use Lemma 5.6 in Henrici [8], plus uniform
stability, the bound (4.16) and the conditions (4.7) to show that for

0<H< where tE >a and l ,
K

we have that le,l is O(H"). ]
It is easily seen that the generalized Adams formulae are uniformly stable, because

Ol/V(sc) is independent of N, so that it is the same as O(s) for conventional Adams
formulae, which satisfies the root condition. In addition, the coefficients {/i(1/N)} are
polynomials in 1 IN, and hence are uniformly bounded for 0-< 1/N <= ro.

It is also easily found that the generalized Adams formula which is of order p when
T 0 is of order p for T 0 (it is exact for polynomials of degree _-<p). Thus, we have
trivially from Theorem 4.1"

COROLLARY 4.1. The generalized Adams-Moulton and Adams-Bashforth
formulae of order p are convergent, and fen,q[ is O(HP).

In summary, the generalized methods are limited in accuracy by the small-step
method used to compute the solution over one period. By choosing the period, and
stepsize and order of the generalized method appropriately to follow the smooth
solution, computation of the solution can be speeded up a great deal, with little sacrifice
in accuracy.

More precisely, if z is the computed solution and is the quasi-envelope of the
numerical solution computed by the small-step method, we have

(4.21) IIz (nNT) y (nNZ)ll <-_ IIz (nNT) (nNZ)ll + (nNT) y (nNT)ll.

For nNT near L, the first term on the right-hand side represents the global error due to
the large-step discretization, analogous to en. The second term represents the global
error of the small-step method over [0, nNT]. In practice, we choose the parameters of
the small-step method as if it alone were solving the problem, and the parameters of the
generalized method are chosen to compute the smooth quasi-envelope z(t) to the
desired error tolerance.

5. Implementation considerations. The development of an automatic program
implementing the generalized Adams methods will be considered in this section.

Because of the similarities between the generalized Adams formulae and con-
ventional Adams formulae, it is relatively straightforward to implement the generalized
Adams methods as a predictor-corrector process. In fact, this can be accomplished by
making a few changes in a code which implements the conventional Adams methods.
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A data organization scheme which is similar to Nordsieck’s form of the Adams
method will be described. This scheme enables us to change stepsize and order easily.

Using the change of variables described in 2, append onto the end of z. Then the
equations to be solved can be written as

(5.1) z(" + ) z(’) + g(z()),
where

g(z(t)) [, ,...,
and s+1 T(t())/-. This change of variables will be assumed. It is useful to notice that
the (s + 1)st component of g is the estimate for the period T(t) (divided by -) at each
step. Thus, computation of T(t) is treated like a function evaluation. The predictor
equation is used to form an initial estimate for the period at each step (except the first
step, where the user-supplied estimate is used), which is then corrected by the Newton
iteration of 3.

The procedures described here can be applied to the vector z simply by applying
them individually to each component of z at every time step, so we consider only the
scalar difference equation

(5.2) z(t + T)= z(t) + Tg(z, t).
In this section the generalized/-step explicit method will be written as

(5.3) z, Y] (ai(r)z,-i + H,(r)g,,-i),
i=1

where r T/H. The generalized/-step implicit method is given by

(5.4) z, Y. (a (r)z,_i + H*i (r)g,_i) + Hfl*o (r)g(z,).
i=1

Using the formulae in (5.3) and (5.4) as predictor and corrector, we have

Zn,(O) , (oi(r)zn-i + Hfli(r)gn-i),
i=1

(5.5)

Z.m+ E (a (r)zn-i+n*i (r)g-i)+H*o (r)g(z,.m).
i=1

We will use the generalized Adams-Bashforth formula of order k as the predictor
(k l), and the generalized Adams-Moulton formula of order k as the corrector. These
formulae require values of z and g, which can be stored in the vector

(5.6) w [z, Hg, ., Hg,,_l+]T.
It is easier to compare different organizations of the computation if (5.5) is

rewritten in terms of the vector w,. Then the prediction step is given by

(5.7) w,.0 Bw,_,

where, for the generalized Adams methods,

(5.8) B
0

ill(r) /32(r) k(r)-]
Tl(r) y2(r) y r)

1
1

1
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Now, fig(r), 1,..., k are the coefficients of the generalized Adams-Bashforth
method of order k. yi(r), 1,..., k are given by

vi(r)
fli(r) *i (r)

where/3/* (r), 0, 1;..., k are the coefficients of the generalized Adams-Moulton
formula of order k.

The corrector iteration in (5.5) will then be rewritten as

(5.9) w..<m+ 1) w.,<.,)+ cG(w..<.)),

for m 0, 1,..., M. G(w,) is defined by

(5.10) G(w.) -Hg,, + Hg(zn).

Here, Hg,, is the second component of w,, and zn is the first component of wn. G(w,) is
the amount by which w, fails to satisfy (5.2). The vector c is chosen so that (5.7) followed
by (5.9) is equivalent to. the iteration defined by (5.5). For the generalized Adams
methods

c=[Hflo*, 1, 0,..., O]T.

Table 5.1 lists expressions for/30* (r) for generalized Adams-Moulton formulae.

TABLE 5.1.
Adams-Moulton coefficients (r).

(Order) 0,k (r) for Order k

2 1/2(l-r)

4 (9-12r + 3r2)/24
5 (251-360r+ 110r2-r4)/720
6 (475-720r+250r2-5r4)/1440
7 (19,087- 30,240r + 11,508r2-357r4+2r6)/60,480
8 (36,799-60,480r + 24,696r2-1029r4 + 14r6)/120,960
9 (1,070,017-1,814,400r+784,080r2-40,614r4+425r6-3rS)/3,628,800

10 (2,082,753 3,628,800r + 1,643,760r2-100,926r4+2250r6-27r8)/7,257,600
11 (134,211,265 239,500,800r / 112,923,360r2- 7,960,480r4

+ 266,090r6- 4785r / 10r1)/479,001,600

Changing the stepsize fi-om H,-1 to H, is inconvenient when using the represen-
tation (5.6) of the past values of z and g. Changing the stepsize by a ratio R,
corresponds to premultiplying w,-1 by a matrix C(R,). C(R,) computes the values of g
at the points (tn, &-H,,..., &-(n-k + 1)Hn) from the values of g at the points
(&, tn- H,-1, ’, t,- (n- k + 1)H,_I) by interpolation. The step-changing operation
is represented by

(5.12) n-1 C(R.)w.-1.

The step-changing matrix C(R,) for the vector wn defined by (5.6) is nontrivial. To
find a more convenient representation for the past values of z and g, note that the vector
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w. uniquely determines a polynomial w,(t) of degree k which satisfies

w,(t,)=z,,

(5.13). (H/T)[w,(t, + T)- w,(t,)] Hg,,

(H/T)[w,(t,_,+l + T)- w, (t,_k+X)] Hg,-k+l.

Instead of representing w,(t) in terms of (z,Hg,... ,Hg,-k+), we can
equivalently store

(5.14) a
| (H/T)Aw,(t,) |

=1 (H2/2T!Aw’(t") t’
L(HIk! T)’Aw- (t.)l

where Aw, (t) w,(t + T)- wn(t). This is similar to Nordsieck’s form of Adams method,
except that one of the derivatives has been replaced by A.

We can write (5.7) and (5.9) in terms of the representation (5.14). Since a, and w,
represent the same polynomials, they are related by the linear transformation

(5.15) a Sw.
For example, when k 2,

(H/T)Aw.(t.) |= 0 1 | (H/T)Aw.(t.) |.
(H2/2T)Aw’.(t.)_J 0 1/2 (H/T)Aw.(t._)_J

S is independent of T/H for all k.
With the past information stored in a., the predictor becomes

(5.16) anxo) Aa_a,

where A SBS-. A can also be determined by using the fact that the predictor is of
order k. That is, if w(t) is any kth order polynomial, and

w(t,) [w(t), (H/T)Aw(t,), H2/(2T)Aw’(t,), Hk/(k! T)zXwk-)(t,)] ’T,
then

(5.17) w(t,)=Aw(t,_l).

Since rows 2 through (k + 1) of A extrapolate Aw in terms of its past derivatives,
these coefficients do not depend upon T/H. They are the same as the corresponding
rows of the Pascal Triangle Matrix.

(5.18) A

1 1 al3(r) al4(r)
1 2 3

1 3
1

0

The coefficients a 1.i(r) are given in Table 5.2. If T/H 0, then A is the Pascal triangle
matrix.
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TABLE 5.2.
Perturbed coefficients for Nordsieck prediction.

Ol,i(r)

3 1-r
4 -r + 1/2r
5 1-2r+r
6 --(1 5r- 10r + 4)
7 3 +r r4

8 r +r r4 + 61-r
9 4r + 4r2 37-r4 + 32-r
10 1-o(45r-60rZ+42rn-20r6+3r8)

5 + 7 4 + 5 6 -The corrector iteration is rewritten in terms of the vector an as

(5.19) an,(m+) an,(m)+ i[Hgn,(m)-Hg(zn,(m))],

where Hgn,(. is the second component of an,(,), z.,(.,)is the first component of a.,(.)
and

(5.20) I=Sc.

For example, when k 2 we have

I!
The first column of S is always [1,0,...,0]7 and c has the form

[flo* (r), 1,..., 0]T. Thus the components of will be the same as for conventional
Adams methods in Nordsieck form, except fl0* now depends upon r. (This reduces to
Nordsieck’s form of Adams method as r 0.)

With this form, the stepsize is changed easily by interpolation. Changing stepsize
by a ratio R Hn/Hn-1 corresponds to premultiplying a-i by the matrix C(R),
where C(R,,) diag [1, R, R zn, Rk].n Thus the predictor-corrector technique that
we use is given by

(5.21)
a.,0) AC(R)a._I,

a.,,+1 an,m + IH[g,m)- g(z,,))].

A code using the Nordsieck formulation of the generalized Adams methods was
written (see Petzold 16] for a more detailed description and FORTRAN code). We will
describe a few of the more important features here.

Using the Nordsieck representation to store past data as described above, it is only
a matter of changing a few lines of DIFSUB (see Gear [5]) to allow it to solve difference
equations of the type that are treated here.

Errors are estimated and the stepsize and order are changed in exactly the same
way as in DIFSUB. The single-step truncation error is estimated to be a multiple of the
difference between the predictor and the corrector, and is controlled to be less than
EPS. For a kth order corrector the first term of the local truncation error is (this is the
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same as Ok+lAk+lz from (4.14))

, (H) k+lAk+l(5.22) Ck+l z.

The order is chosen (from the current order, one higher, and one lower) which gives the
largest H when the local truncation error is set equal to EPS. However, here the error
coefficient Ck*+l depends on T/H (in conventional Adams methods, Ck*/l is a
constant). Setting (5.22) equal to EPS and solving for H thus amounts to solving a
nonlinear equation. Since the error coefficients are very nearly the same as the
(conventional) Adams-Moulton coefficients for T/H small, and T/H will usually be
small for the type of problems that would be solved with this routine, we avoid the
trouble of solving the nonlinear equations by assuming the coefficients are the same as
for the corresponding (conventional) Adams method. This is a poor approximation only
when H is near T (generally the first few steps at low order). The error coefficients for
conventional Adams formulae are always larger than the coefficients for the generalized
Adams formulae of the same order. The error coefficients Ck*/l for the generalized
Adams-Moulton formulae are listed in Table 5.3, where it is easy to verify that they
tend to the error coefficients of conventional Adams formulae when T/H tends to 0,
and that they tend to 0 when H tends to T (except for the generalized backward Euler
method).

TABLE 5.3.
Error constants ]:or generalized Adams-Moulton formulae.

k (Order) k .C+a

2 -+r
!+3 -4 1/4r

4 19 4-+r -3-t6
5 -]+r2-1/4r4

863 /.2 /.4 /.66 --84+12 --1/4 +4
1375 l___fi5 r47 24-+70r2- +-r
33953 1624 4 5Or68 90 +480r2----i3--r +7
57281 9849/.4 219 20 +3780rZ---T0 +70r --r
3250433 /.2 2931/.4 5345/.6 /.8 lO10 132 +33600 +--C- -- +6-Sgr
189175511 + 332640r 2142995 4 + 47025_T_r6 -----/.3465 + 15rlO

Note: Ck*+l reduces to Ck+l ([5, p. 156]) when r= 0.

In finding the period, the set P (see 3) was chosen to be empty in this implemen-
tation.

Almost any "black box" can be used to do the small-step integrations over one
period, although it is good to use a code that can interpolate between steps efficiently,
because of the quadrature involved in finding the period. DIFSUB was used here to
perform the small-step integrations over one period.

The routines the user must supply are exactly the ones needed by DIFSUB. Also,
the user must supply a good (accurate to within about 5 or 10 percent) starting guess TN
for the period of the oscillation to the driving program. This may be deduced from the
nature of the physical problem, from the largest eigenvalue, if the problem is nearly
linear, or, if necessary, by just integrating with DIFSUB for a short time and observing
where the solution begins to repeat itself.

6. Computational results. This section describes results of applying the code
described in 5 to several test problems. All computations were done on an
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IBM 360/75 in double precision. The first example is

y"+ A 2y a sin (At),

(6.1) y(0) =1,

y’(0) -a/2,.

Converting to a system of first order equations makes this

y(t) -A y(t)J
+

a/. sin(It)
(6.2)

y2(0)J =[-a/2A
This has the solution

[yl(t)] [ (1- (a/2A )t) cos (At) ](6.3)
y2(t)_] -(1-(a/2A)t) sin (t)-a/22cos (At)

The solutions obtained by the program will be compared to (6.3) at intervals of
time which were chosen by the program. (These intervals were, of course, chosen for
purposes of efficiency. However, it is easy to obtain approximations to z(t) wherever
you want them, by using the predictor formula and the vectors of stored values at these
points to interpolate to other points.)

This problem was solved with the parameters , 1000, a 100. Because of the
high frequency forcing function a sin (A, t), it is important to retain the phase informa-
tion in this problem, so the stepsize H of the outer method was constrained to be a
multiple of the period.

The parameters for the routine are listed in Table 6.1. The parameters have the
same meanings as parameters of DIFSUB. (Actually, the parameters for the inner
integrations are the parameters of DIFSUB.) For example, EPS .1D-3 for the outer
integration means that the routine will try to keep the single step local truncation error
of the generalized methods alone to be less than .1D-3.

TABLE 6.1.
Problem 1--parameters.

Problem parameters

1000
a 100

Parameters for inner integration
H .1D-5
EPS .1D-6
HMIN =.ID- 13
HMAX 1.D0
MF= 0
MAXDER 10

Parameters for outer integration
H =.2512D-1
EPS .1D-3
HMIN .314D-
HMAX 5.D0
MF 0
MAXDER 10

Parameters for period-finder
TN .628D-2 initial estimate of the length of a period
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The problem was solved with DIFSUB alone (with parameters.identical to the
parameters for the inner integration) for comparison. Results are shown in Table 6.2
and the errors of the two solutions are compared, along with the number of function
evaluations (of the original function f(y, t) from the equation y’= f(y, t)), in Table 6.3.
The generalized methods were much faster than DIFSUB alone, both in terms of
function evaluations and execution time.

TABLE 6.2.
Problem 1--results.

True Solution by Solution by
Time solution gen. methods DIFSUB

.2513274D- .9987434 .9987451 .9987458
-.5D-4 -.5032188D-4 -.4766485D-4

.5026548D- 1 .9974867 .9974902 .9974922
-.5D-4 -.5063552D-4 -.4513941D-4

2.664071 .8667964 .8669955 .8670935
-.5D-4 -.6509385D-4 -.2940519D-3

5.277876 .7361062 .7363785 .7366541
-.5D-4 -.1620934D-3 -.6477888D-4

8.846726 .5576634 .5581064 .5584882
-.5D-4 -.2100309D-3 -.3004953D-3

12.41558 .3792145 .3798945 .3802331
-.5D-4 -.1672133D-3 -.1978808D-2

13.29522 .3352390 .3359656 .3362903
-.5D-4 -.1543100D-3 .2296590D-3

14.17487 .2912542 .2920207
-.5D-4 -.1529315D-3

15.05451 .2472740 .2480030
-.5D-4 -.2412899D-3

Period .006283186

* DIFSUB was stopped here after executing for 5 minutes, 45 seconds. Execution
time for the generalized Adams program was approximately 1/2 minute.

TABLE 6.3.
Problem 1--errors and eciency.

Function Function
Error Error evaluations evaluations

Time (gen. methods) (DIFSUB) (gen. methods) (DIFSUB)

.2513274D-1

.5026548D-1

2.664071

5.277876

8.846726

12.41558

13.29522

14.17487

t5.05451

-.1737D-5 -.2400D-5 568 429
.3218D-6 -.2335D-5

-.3474D-5 -.5500D-5 809 810
.6355D-6 -.4860D-5

-.1991D-3 -.2971D-3 1291 40,635
.1509D-4 .2440D-3

-.2723D-3 -.5479D-3 1990 80,457
.1120D-3 .1477D-4

-.4430D-3 -.8248D-3 2678 134,829
.1600D-3 .2504D-3

-.6799D-3 -.1018D-2 3335 182,645
.1172D-3 .1928D-2

-.7266D-3 -.1051D-2 4213 192,881
.1043D-3 -.2796D-3

-.7664D-3 4633
.1029D-3

-.7289D-3 5251
.1912D-3
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Problem 2 describes the nonlinear oscillations of a slightly damped pendulum. The
angle x of deviation from the origin for a pendulum of mass 1, length l, and damping
coefficient/x is described by

(6.4) x" + lx’ +() sin (x) O.

Starting from an angle of 1 radian and releasing the pendulum, the initial conditions are

x(0) x’(0) 0.

This initial angle is large enough so that it is not possible to obtain an accurate solution
to (6.4) from the linearized equation.

This problem differs from Problem 1 in several significant ways. First, it is an
autonomous problem, and thus we expect not to see the synchronization difficulties
(where H must be constrained to be a multiple of T) which were present in Problem 1
because of the high frequency forcing function. Secondly, the period of the oscillation is
changing slowly. Because of this, it is more difficult for us to retain the phase
information of the oscillation, although the amplitude information is quite easily
obtained. Values of the parameters for the problem and the program are given in Table
6.4. For the program, Eq. (6.4) was split into a system of first order equations

(6.5)

g
(Xl X),=Tx ,

x’ g
=-/zxz- sin (Xl).

A change of variables was made so that the units of time are thousands of seconds.

TABLE 6.4.
Problem 2--parameters.

Problem parameters
g 9.8 x 10 m/(1000 sec)
/=2m

/z =. /(1000 sec)
Parameters for inner integration
H .1D-5
EPS .1D-6
HMIN= .1D-13
HMAX 1.D0
MF=
MAXDER 6

Parameters for outer integration
H =.1204D-1
EPS .1D-2
HMIN =.1505D-
HMAX 5.D0
MF 0
MAXDER 10

Parameters for period-finder
TN .301D-2

The numerical solution obtained by the generalized methods is compared to the
amplitude of the first asymptotic approximation of Bogoliubov and Mitropolsky [3, pp.
141-143], since an exact analytic solution is not available. The first approximation is
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given by

where a and 0 are given by

x(t) a(t) cos (O(t)),

a (t) e -(/)t

(6.6)
g (e-- 1)"

O -[ [ + --0-6 ]"
The smooth solution z (t) computed by the generalized methods is compared to a (t), the
amplitude of the first approximation. Results are shown in Table 6.5. The solutions
obtained by the generalized methods for this problem were obtained with the program
with H constrained to be a multiple of T. For this problem, in contrast to Problem 1,
skipping over nonintegral numbers of periods does not impair the accuracy or efficiency
of the program. In fact, the program is slightly faster in that case.

TABLE 6.5.
Problem 2--results.

(t) first asymptotic
(t) solution by approximation to

Time generalized methods Period amplitude (t) (t)

.1210568D-1 .9993580 .3026420D-2 .9993949 .3689918D-4

.2421034D-1 .9987188 .3026164D-2 .9987902 .7141545D-4

.3804384 .9802374 .3018882D-2 .9811579 .9204561D-3

.7358455 .9622003 .3011924D-2 .9638763 .1676038D-2
1.060807 .9458811 .3005764D-2 .9483417 .2460649D-2
1.385118 .9299027 .2999881D-2 .9330879 .3185176D-2
1.708803 .9142388 .2994190D-2 .9181081 .3869295D-2
3.574200 .8292937 .2965452D-2 .8363484 .7054714D-2
4.036335 .8096557 .2959278D-2 .8172447 .7588984D-2
4.497534 .7905759 .2953405D-2 .7986147 .8038793D-2
4.957845 .7719919 .2947911D-2 .7804440 .8452143D-2
7.283115 .6847854 .2923921D-2 .6947830 .9997589D-2
9.591594 .6083878 .2905526D-2 .6190435 .1065574D-1
11.88713 .5410051 .2891251D-2 .5519176 .1091253D-1
15.72542 .4452374 .2874016D-2 .4555404 .1030296D-1
19.54533 .3670435 .2862533D-2 .3763384 .9294937D-2
23.35267 .3027923 .2854800D-2 .3111023 .8310016D-2

The numerical solution for this problem (with these parameters) is bounded above
by the first approximation and below by the second approximation at each step, though
we cannot expect that to happen in general. It should also be noted that the differences
between the numerical solution and the first and second approximations are much
smaller if a smaller initial angle (amplitude) is used (say, 1/2 radian instead of 1 radian).
This is probably due to the fact that the asymptotic approximations are much more
accurate for small amplitudes, as they approximate sin (x) by the first two (or three)
terms of its Taylor series. The amplitude information obtained by the generalized
methods is very near to the amplitude of the solution obtained by DIFSUB alone. These
observations would seem to indicate that the amplitude information in the numerical
solution is quite accurate.
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The solution by the generalized methods is compared to the solution by DIFSUB in
Table 6.6. Because the phase information has been lost by the program (in the sense
that the solution by DIFSUB at times which DIFF takes as integral multiples of the
period is not at the top of a cycle), it is not possible to compare the numerical solution to
the solution obtained by DIFSUB directly. Instead, we compare the energy of the two
solutions to see how much they differ. (More precisely, a multiple of the energy is
compared.) The total energy (potential plus kinetic) of the pendulum is given by

E(x) mgl[-cos (x x) + 1/2 x 22],
which is proportional to

(6.7) E* (X) [--COS (X 1) q- 1/2 X 22].
Thus, Table 6.6 compares E* of the solution by the generalized methods to E* of the
solution obtained by DIFSUB. Again, it is apparent that the generalized methods are
much more efficient than DIFSUB alone.

TABLE 6.6.
Problem 2--comparison with DIFSUB.

Function

E* (solution by E* (solution Function evaluations evaluations

Time generalized methods) by DIFSUB) (generalized methods) (DIFSUB)

.1210548D-1 -.5408417 -.5408409 794 592

.2421034D-1 -.5413800 -.5413782 1131 1,099

.3804384 -.5568254 -.5569341 2032 15,996

.7358455 -.5717161 -.5719238 2891 30,608
1.060807 -.5850285 -.5852117 4767 44,148
.1.385118 -.5979120 -.5980755 5224 58,061
1.708803 -.6103976 -.6105285 5680 71,953
3.574200 -.6753966 -.6753252 6944 151,458
4.036335 -.6897475 -.6896766 8675 171,280"

* DIFSUB was stopped here after executing for 7 minutes, 46 seconds. The generalized Adams program
completed the solution (to 20) in less than minute.

If it is absolutely necessary to find the phase information, too, this can be
accomplished, though with some sacrifice in efficiency. Until now, stepsizes in the outer
integration routine were selected to control the/2-norm of the single-step local errors
(absolute error is controlled if the solution is less than one in magnitude, and relative
error otherwise). In Problem 2 the component of the solution which computes time
(because the period is changing) was not influencing the choice of stepsize and order
significantly. However, the solution (including the phase, information) is much more
sensitive to time than to the other components of z (by a factor of the frequency). Thus if
we choose the stepsizes to control a weighted /2-norm, where the last equation
(determining time) is weighted by a multiple of the frequency, we would expect the
phase information to be fairly accurate. This does happen, as indicated by the results in
Table 6.7, where the last equation was weighted by 2/TN(TN is the initial estimate of
the period). Since the phase information depends on that of the underlying small-step
method alone, results are compared to the solution obtained by DIFSUB. Here the
phase information is deteriorating slowly. Some efficiency has been sacrificed (it takes
about twice as long to obtain the phase information as it did to obtain only the
amplitude).
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TABLE 6.7.
Problem 2mretaining phase information.

Time

First component of First component Function evaluations Function

solution by of solution (generalized Adams evaluations

generalized methods by DIFSUB methods) (DIFSUB)

.1210548D-1 .9993588 .9993579 1127 592

.2421034D-1 .9987188 .9987160 1801 1,099

.1693964 .9910700 .9910877 2924 7,178

.3144379 .9834891 .9835288 3708 13,253

.4593375 .9759835 .9760352 4490 19,252
1.073636 .9448545 .9446012 5722 44,687
1.685614 .9149374 .9133819 6968 70,961
1.835275 .9077903 .9057128 8745 77,372
1.984810 .9007157 .8980791 9079 83,758
2.134221 .8937066 .8904342 9813 90,115
2.283510 .8877701 .8827193 10,547 96,437
2.754491 .8652782 .8587107 11,646 116,375
3.224348 .8443805 .8349327 12,717 136,373

From the problems described here it is apparent that with a proper choice of
parameters the generalized methods can achieve large gains in efficiency over the
underlying small-step method, at little expense in accuracy, for some oscillating
problems. One class of oscillating problems that at present cannot be solved using these
methods are stiff oscillating problems (see [16]). (These are problems whose solutions
tend very rapidly to an oscillating solution.)

7. Summarymadditional comments. A class of methods has been described which
can efficiently solve highly oscillatory ordinary differential equations. These methods
are based on the observation that if the solution is sampled at multiples of the period of
the oscillation, then the resulting sequence of points can be used to define a slowly-
varying function z(t) which can be followed with large steps, and from which the
solution to the original system can be recovered. Problems with slowly varying periods
of oscillation can be solved with these methods by means of a change of variables.

The ’period’ of a nearly periodic function has been defined here as the minimum
over all possible values of the period, of a norm of the difference between the function
and the function displaced by the period. An algorithm which is based on Newton’s
method has been introduced to find this period.

Formulae which are generalizations of Adams formulae have been derived. These
methods can solve reasonably well-behaved nonstiff oscillating problems with an error
of order Hk (in the sense described in 4), taking steps that skip over several (possibly
many) cycles of the oscillation. The error bounds for these methods depend upon the
function g(z, t), which is indirectly related to the differential equation.

A program was described which demonstrated the generality and efficiency of
these methods for solving oscillating problems. Many decisions are involved in writing
such a program, and in some cases it does not seem at all clear which choices are best. It
seems evident that future efforts should lead to significantly faster codes, especially if
the problems have a special form (for example, almost linear problems).
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