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ON ORDER REDUCTION FOR RUNGE-KUTTA METHODS
APPLIED TO DIFFERENTIAL/ALGEBRAIC SYSTEMS AND TO

STIFF SYSTEMS OF ODES*

KEVIN BURRAGEt AND LINDA PETZOLD$

Abstract. In this short note, the order reduction results of Petzold [SIAM J. Numer. Anal.
23(1986), pp. 837-852] for implicit Runge-Kutta methods, applied to index 1 differential/algebraic
systems are extended to include a larger class of methods. The relationship between the order
reduction results for differential/algebraic systems and recent results for stiff systems of ordinary
differential equations is explained.
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1. Introduction. Recently some attention has been paid to the behavior of cer-
tain classes of methods when applied to systems of differential algebraic equations
(DAEs) of the form

u, u’ 0

where the initial values of y are given at t = 0. In particular, Petzold [11] has
considered the effect on the order and stability of Runge-Kutta methods of the form

(1.2)

( )F tn-1 + cih, y- + h aijYj, Yi’ 0,
j--1

M

Yn Yn- + hE biY
i=1

1,2,...,M,

when applied to such problems of index 1. Under the assumption that the matrix ,4 of
coefficients of the Runge-Kutta method is nonsingular and Irl < 1, where the stability
constant r is given by r 1- bTflt-le, and e (1, 1,..., 1)T, sufficient conditions for
a Runge-Kutta method to attain a given order are given in [11].

The global order results in [11] are very similar to those predicted by Prothero
and Robinson [12] for the model problem

(1.3) u’(t) a(t)) + a’(t)

and by Frank, Schneid, and Ueberhuber [8] for nonlinear ODEs which satisfy a one-
sided Lipschitz condition of the form

(1.4) (f(t, y) f(t, z), y z) _< "IlY zll Vt e , Vy, z e ]’.
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These stiff problems are very closely related to index 1 DAEs. However, the orders
predicted for DAEs usually appear to be higher for DAEs than those predicted for
stiff ODEs by the theory of Prothero and Robinson [12] and Frank et al. [8]. Burrage,
Hundsdorfer, and Verwer [5], by considering the order of convergence of Runge-Kutta
methods when applied to stiff semilinear systems of the form

(1.5) Q (t) +

have shown that in many cases the global order associated with the B-convergence
theory is one higher than the stage order. This analysis has been extended to nonlinear
problems that satisfy (1.4) by Burrage and Hundsdorfer [4].

The aim of the present paper is first to extend the results of Petzold [11] to the
case Irl 1 and second to show that the DAE order results can be obtained from the
theory in [5] by letting the magnitude of the stiffness go to infinity. In the process of
extending the results of [11] to the case ]r 1, we will also rederive the order results
for Irl < 1 schemes from Petzold [11], correctingan error in the analysis that does
not affect the conclusions of that paper.

Before proceeding to the main results, we note that our extended order results
have a close relationship to several results that have recently appeared in the literature.
In particular, Kvmrno [9] has derived a complete set of order conditions for the local
truncation error for nonlinear index 1 systems, and a lower bound on the order of
the global error. These results explain the higher than expected orders achieved by
certain methods with Irl < 1 in numerical experiments reported in Petzold [11]. In
this paper, we derive bounds on the global error for methods with Irl 1 which
explain the results of numerical experiments in Kvmrno [9] for these methods. In
Ascher [1], a convergence result is outlined and order conditions are given for Gaussian
collocation methods applied directly to fully implicit linear index 1 systems. The
latter result is closely related to the Irl 1 order results presented here, as Gaussian
collocation methods are an important subset of the implicit Runge-Kutta methods
that we consider. Our order results are in agreement with Ascher’s for Gaussian
collocation methods. Our analysis is in effect a generalization of the results in Petzold
[11], while Ascher focuses on Gaussian collocation methods.

2. Extended order results for index 1 DAEs. In this section we extend the
results of Petzold [11] to the case Irl 1. Before proving the main result we will first
define some terminology.

Following [11], we will say that a nonlinear DAE system (1.1) is uniform index
1 if the index of the local constant coefficient system Aw’(t)+ Bw(t) g(t), where
A Fy,(,),)’) and B Fy(,$,)’) is 1 for all (,$,’) in a neighborhood of the
graph of the solution, and if the partial derivatives of A with respect to t, y, y exist
and are bounded, and the rank of A is constant in a neighborhood of the solution.

For uniform index 1 systems, there exist nonsingular matrices g(t,y(t),y’(t)),
Q(t, y(t), y’(t)) which decouple the system [3], so that

pAQ_ (Iml O)0 0

PBQ ( C(t’ y(t),
0

where rn rnl + m2. The matrices Q and C satisfy:
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1. Q(t, y(t), y’(t)) and Q-l(t, y(t), y’(t)) exist and are bounded for all (t, y(t), y’(t))
solving (1.1),

2. Q-l(tl,y(tl),y’(t))Q(t2,y(t2),y’(t2)) Im + O(t2 t),
3. C(tl,y(tl),y’(t)) C(t2,y(t2),y’(t2)) +O(t2 tl).

Defining the algebraic conditions C(q), B(q), Al(q) by

i=1 s, k-1 qC(q) aijcjk- ci
j=l

8

B(q)" Ebjcjk-l l/k, k 1,...,q
j--1

A(q)" bTA-lck= l k= l,...,q,

a Runge-Kutta method is said to have internal stage order ki if and only if C(ki)
and B(ki) hold. Furthermore, if C(kd) and B(kd + 1) hold, then the differential order
(nonstiff ODE order) is at least kd + 1. The definition of A(q) corresponds to the
order conditions for index 1 constant coefficient systems. That is, the algebraic order
ka, equals q if and only if A(q). In general, for implicit Runge-Kutta methods with
nonsingular j( matrices, B(q) and C(q) implies A(q).

We now state the main result.
THEOREM 1. Suppose that (1.1) is uniform index 1, the Runge-Kutta method

satisfies the stability condition Irl <_ 1, the errors in the initial conditions are O(hC),
and the errors in terminating the Newton iterations are O(hG+) where 5 1 if Irl 1
and 0 otherwise, and >_ I1  11 O(h

q if C(q) and B(q);
G= q + l if C(q), B(q + l) and-1_r<1;

q + 1 ifC(q), B(q + 1), A(q + 1) and r 1.

Proof. Let 5n) be the ith internal local truncation error at the nth step of an

s-stage Runge-Kutta method and let (n) be the local error of the updating step.i+1
As in Petzold [11] we introduce the following definitions

where i is the sum of the residuals from the Newton iteration in the ith stage and
higher-order terms in e,_ and E and where matrices without subscripts or super-
scripts are evaluated at (tn, y(tn), y’(tn)). The matrices Pi and Qi represent P and Q
evaluated at (tn- + cih, y(tn- + cih), y’(tn- + cih)). In addition, we now partition
as in [11] any vector x, x E m, into two parts of dimension m (corresponding to the
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differential part of the DAE) and m2 (corresponding to the algebraic part), so that
x (x(1),x(2)). We write

and let

1 I (R) Im + hA (R) C
g =L(R)C
4=(R)

T: (gl + O(h) O(h)
o() /+o()

K=(II o)0 rI

o(1) o(1)

b bT @ Im

o b

0 ;/h

where 0 represents a matrix of zeros with appropriate dimension to make the above
matrices consistent.

Having introduced the notation of [11] we now quote the main result in [11,
(3.17), p. 849], which relates the global error en to the initial error e0. Rewriting this
equation slightly and correcting an error in the original proof which does not change
the conclusions, we obtain

n--1
(n-)gn (g + O(h))ngo + E(K + O(h))i(hfJn_i (n--i) + "s+l

i=1(2.1) n--1 n--1

+E(K + O(h))ih[T_i 7(n-i) + E(K + O(h))ih(Un-i n_i)(n-i).
i=1 i=1

-(n--i) (hmin(kd+l,ki+2)We note that h?n-i (-i) + 5s+1 is O in the differential part
and O(hka,l+) in the algebraic part. Assuming that Q(t,y(t),y’(t)) is a continuous
function of t and that the solution y(t) to the DAE is sufficiently smooth, so that (n-i)

(,-i) (,,-)and -+1 are continuous, then hTn_i (n--i) +"s+l is also a continuous function of
t. Similarly, we will assume Tl_i](n-i) is a continuous function of t, which is true
under mild assumptions on the smoothness of y if the Newton errors are neglected.
Finally, we know that II(-)ll O(hkI+l).

It is shown in [6] that, for <_ n <_ I/h, if Irl < 1 then

(K + O(h)) (O(1)O(h)
O(h) )IrlO(1) + O(h)
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This result is due to A. C. Hindmarsh and follows from diagonalization of a matrix
which bounds the above matrix. The above result can also be shown to be true for
r -1. This follows from considering powers of the matrix (K / O(h))2. For the
case r 1, we will use the result II(g + O(h))ill O(1), which follows simply from
the fact that IlK + O(h)l 1 + O(h).

Partition (2.1) into differential and algebraic parts, let 1, /2 be the Newton
errors, and suppose that the nonlinear higher-order terms satisfy I[(i)ll <_ A (this
does not include the Newton errors) and the errors in the initial conditions satisfy

I1(0)11- O(), i= 1, 2. Then we have from (2.1) the following cases"

(i) -1 < r < 1:

Hence

where

en O() + O(/) + O(A) + O(hC)

G min(kd, kx + 1).

O(1) -" O(2) "- O(hk) + O(hka’l+l) + O(hk’+l)- O(A1) -- O(/2) -- O(1) "- O(h/2);
O(1) -F O(2) -F O(hk’+l) -F O(hka’+) + O(hk+2)-- O(A1) -" O(A2) + O(1) -" O(7/h).

Hence

where

en O() + O(A) + O(l/h) + O(h)

G min(kd, kx + 1).

The better than expected results for (2) in this case are due to cancellations in the
algebraic part in the sums of (2.1) which come about because of alternating signs
in the bottom right block of K when r -1, coupled with the assumptions about
smoothness. This can be easily seen by grouping the terms in the sums of (2.1)
together two at a time, and then bounding the resulting sums. We also note that
when [r 1 the Newton iterations must be solved to O(hkG+).

(iii) r- 1"



452 KEVIN BURRAGE AND LINDA PETZOLD

Hence

en + + + O(h

where

min(kd, ki)G=
min(kd, ki+l)

if ka,1 ki;
if ka,1 >_ k1 + 1.

The better than expected terms O(A), O(A2) in (2) come about because bT.A-e
1 -r 0 in this case, so that the smoothness of /implies that the O(?(2)/h) term
in/T-_li (n-i) vanishes. Thus for linear problems (A 0) we obtain the results in
the statement of the theorem by noting that

C(q), B(q) k1

_
q

C(q),B(q + 1) :: kd >_ q + 1.

For nonlinear systems the proof is analogous to that given in [11]. Details are
given in [3]. El

It should be noted that implicit Runge-Kutta methods with Irl 1 are in some
sense unstable. Mrz [10] observes that if the implicit midpoint method is used to
solve the algebraic equation y 0, and a perturbation of size (-1)n5 is made in each
step, we obtain Yn+l --Yn + (--1)rib. Thus lY+I (n + 1)15 I. There is a linear
instability in these methods. This is why, in our analysis, the Newton iteration must
be solved more precisely for Irl 1 than for Irl < 1. We think that for most machines
and for most problems this difficulty with roundoff errors is not so severe that it would
prevent us from considering these methods.

A more critical stability consideration, for Irl 1 schemes applied to fully implicit
index 1 DAEs, has been pointed out by Ascher [2]. The stability of the scheme is con-
trolled by the stability of an underlying ODE problem which is not necessarily stable
when the original DAE system is stable. The asymptotic order results are technically
correct, but the constant can be very large. The problem is most severe when the
differential and algebraic parts of the system are tightly coupled together. For BVPs
the instability can sometimes be corrected by locating some of the consistency condi-
tions corresponding to algebraic constraints at the correct boundary [2]. However, for
IVPs this is not practical, and the use of Irl < 1 schemes is advised. The asymptotic
order results for Irl 1 schemes applied to DAE IVPs are useful because they imply
the order results for DAE BVPs [7].

We present several numerical experiments on implicit Runge-Kutta methods with

Irl 1. The observed results are in agreement with the order predictions of Theorem
1. It should be noted that the initial values for "algebraic" components must be given
quite accurately for these methods because, in contrast to L-stable methods such as

BDF, these initial errors are not damped out by the method. The experiments below
were performed in single precision on a Cray-1 computer with exact initial conditions.

The test problem is the same as in Petzold [11], and is constructed to illustrate
the effects of coupling between the differential and algebraic parts of the system. The
problem is given by

1 -t 1 -(1 + t)(0 0 )(i) + (0 1 )( ]7/1
sin(t) )’
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with initial values given by

1(0), (
This problem is index 1 and has the true solution

) exp(-t) + t sin(t)
sin(t) )

We present the results of numerical experiments on two implicit Runge-Kutta meth-
ods with Irl 1. The first is the implicit midpoint method. This method has r -1,
kI 1, kd 2, ka,1 1. We solved the problem with a decreasing sequence of fixed
stepsizes over the interval [0,1]. The order of global error that we observed at the end
of the interval was 2, which is in agreement with the lower bound given in Theorem
1.

The second numerical method is the 2-stage A-stable Gauss-Legendre method
given by

3+,V
6

4 4 6

6 4

This method has r 1 ki 2 ka, 2 kd 4. The order of the global error
that we observed at the end of the interval was 2. This result is in agreement with
the lower bound given in Theorem 1.

3. Unified order results for DAEs and stiff IVPs. In this section we will
discuss how the results on DAEs can be obtained from the study of the global error
recursion schemes given in [5] for general ODE initial value problems by letting the
stiffness become infinite. Before doing this it is interesting to note that the algebraic
order condition Al(q) can also be derived by considering the test equation (1.3). If
we apply the Runge-Kutta method given in (1.2) to this problem we find after some
simplification that

Yn Yn-l(1 -t- hAbT(I- h,cd[)-le) zr- hbT(I- h)-l(g’-
where

g’ (g’(tn-1 -I- clh), gt(tn-1 -t-csh))T
g (g(tn-1 -t- Clh),"" ,g(tn-1 + csh))T.

Hence the local error is given by

g(tn) 9(tn-)(1 + h,bT(I hA4)-le) hbT(I h/.4)-(g

and by letting the stiffness (,) -oe we find by a Taylor series expansion of
g(tn- + h) that the local error is O(hq+l) if

bTfl-lek 1, k 1,...,q,
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which is precisely the order condition Al(q) for linear constant-coefficient index 1
DAEs.

Burrage, Hundsdorfer, and Verwer [5] derived recursion schemes for the global
error when Runge-Kutta methods are applied to ODEs. Although they considered
the multidimensional case, we will quote their results only for the scalar case.

Defining

Z}n) h (tn + ch, Y + O(Y y(tn + cih)))dO, 1,’" s

where f’(t, y) is the Jacobian matrix Of(t, y)/Oy in the multidimensional case, Burrage
et al. [5] obtained the following recursion scheme for the global error

(3.1) en+l (I + bTZn(I JtZn)-le) en + bTZn(I jtZn)-ISn + 5s+l

where 5, is the vector of local errors in the internal stages and 58+ is the local residue

error in the final updating stage and Z(n) diag(Z’), Zn)).
Assuming that the method has stage order q so that B(q) and C(q) hold and

defining k (kl,k2,...,ks)T E 8 by

1 ( 1 cq+l-AcqIk=. q+l

we have

5n) hq+lky(q+l)(tn) + O(hq+2), 1,’",s

(s+l hq+11 ( 1 bTcq y(+l)(tn + O(hq+2).. \q+l /

By introducing the rational function given by

(3.2) 2(Z) [bT(I- tz)-le]-l[bT(I- z)-l]g], z e

Vn (z)hq+ly(q+l)(tn),

and defining

Burrage et al. [5] obtained a perturbed recursion scheme for the global error for
semilinear problems of the form (1.5),

n+l (I + bTzn(I AZn)-l() n -- bTZn(I AZn)-ln + s+l
where

n n -- Vnn n khq+lY(q+l)(t)
s-t-1 5s+1 -- Vn+l Vn.

Using these recursion schemes Burrage et al. [5] obtained optimal B-convergence re-
sults of the form
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where / and C are constants independent of the stiffness of the problem. For the
semilinear problem (1.5) and assuming the Runge-Kutta method is A-stable and A
is nonsingular (although this latter condition is not necessary) they showed

G q(3.4) q+l
if B(q) and C(q)
if B(q + 1) C(q) and is uniformly bounded on

By letting the stiffness -oc uniformly we can use the recursion scheme (3.3)
to obtain

where

r 1-bTA-e
(bTA-le)-l(bTA-k).

Noting that if r 1 (so that bTA-e 0 the uniform boundedness of requires

bTA-l k 0, bTA-cq+ (q + 1)bTcq 1 (if B(q + 1))
e, Al(q + 1) (if B(q + 1))

and we obtain from (3.4) the results of Theorem 1.
For the general nonlinear dissipative problem satisfying (1.4) with /= 0, Frank

et al. [8] and Burrage and Hundsdorfer [4] showed that if a method is algebraically
stable and there exists a diagonal matrix D > 0 such that

DA+ATD>O

then a Runge-Kutta method is optimally B-convergent with order G, where

q+l
if B(q) and C(q)
if B(q + 1) C(q) k te(t E ), ci cj not an integer (i - j).

Some methods achieve a higher order of optimal B-convergence for the semilinear
problem (1.5) than for the general nonlinear dissipative problem satisfying (1.4). Thus
the order of optimal B-convergence for general nonlinear dissipative problems may be
one lower in some cases than the order for index 1 DAEs.

We conclude this paper with the remark that if in a DAE system the "differential"
part is stiff then the O(h) analysis of Petzold [11] is no longer appropriate since the
error term depends on the stiffness of the problem. In this case we must use the
stability of the method (A-stability for stiff linear problems and nonlinear stability
for dissipative problems) to bound the global errors and in this case ka is replaced by
the appropriate B-convergence order as discussed in [4], [5], and [8].
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