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Abstract. For models described by ordinary differential equation boundary value problems
(ODE BVPs), we derive adjoint equations for sensitivity analysis, giving explicit forms for the bound-
ary conditions of the adjoint boundary value problem. The solutions of the adjoint equations are
used to efficiently compute gradients of both integral-form and pointwise constraints. Existence and
stability results are given for the adjoint system and its numerical solution. The use of the method
is demonstrated for a simple example, where it is seen that the method is particularly advantageous
for problems with more than a few parameters.
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1. Introduction. Sensitivity analysis generates essential information for design
optimization, parameter estimation, optimal control, data assimilation, process sen-
sitivity, and experimental design. Virtually any scientific or engineering problem can
take advantage of sensitivity analysis, for example, problems in chemical engineering
applications, multibody mechanical systems, structural engineering, materials science,
electric and electronic circuit simulation, and weather prediction models.

There is a large body of work on methods and software for forward sensitivity
analysis of initial value problems (IVPs) for ordinary differential equation (ODE)
systems [16] and differential-algebraic equation (DAE) systems [11, 22]. Recent re-
search [21, 25] has demonstrated that forward sensitivities can be computed reliably
and efficiently via automatic differentiation [4] in combination with ODE/DAE/PDE
solution techniques designed to exploit the structure of the sensitivity system.

Forward sensitivity analysis has been shown to be very efficient for problems
in which the sensitivities of a (potentially) very large number of quantities, with
respect to relatively few parameters, are needed. However, for problems where the
number of uncertain parameters is large, the forward sensitivity method becomes
computationally intractable. The adjoint (reverse) method is advantageous in the
complementary situation, where the sensitivities of a few quantities, with respect to
a large number of parameters, are needed. Adjoint sensitivity analysis is particularly
attractive for boundary value problems (BVPs). In contrast to the situation for
IVPs, where the adjoint method requires considerable memory resources above what
is required for the solution of the original problem, the solution values required by
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the adjoint method for BVPs are naturally available from the solution of the original
problem.

Adjoint sensitivity analysis raises a set of entirely new issues ranging from exis-
tence of adjoint operators [3, 5, 6, 20] to construction of adjoint models [10, 17, 18],
derivation of boundary conditions for the adjoint states [5], and algorithm imple-
mentation [13]. Adjoint sensitivity analysis for BVPs has focused mainly on models
described by partial differential equations (PDEs). We cite here the work of Cacuci
[5, 6] on general sensitivity theory for nonlinear systems, that of Ghione and Filicori
on sensitivity of semiconductor devices [12], the work of Giles and Pierce [14] on ad-
joint equations in computational fluid dynamics, and that of Machiels, Maclay, and
Patera [23, 24] on the use of adjoint methods to obtain a posteriori finite element
output bounds.

In [5, 6, 26], adjoint operators are constructed for general nonlinear systems, and
results are given for solvability of the original and adjoint systems. However, because
of the generality of this setting, boundary conditions for the adjoint problem cannot
be explicitly constructed. Instead, for each particular example, proper boundary con-
ditions are obtained by imposing the condition that the Lagrange identity is satisfied.
For the adjoint equations for inviscid and viscous compressible flow, Giles and Pierce
[14] constructed correct boundary conditions for adjoint problems used in evaluating
integral-form quantities. In computational fluid dynamics, most quantities of interest
are in integral form. However, in other engineering areas, point quantities such as
maximum stresses and/or deformations in structural analysis are of major concern.
Being able to efficiently compute gradients of such quantities is thus of high interest.

In the present work we derive adjoint equations for sensitivity analysis of models
described by ODE BVPs. For a general form ODE BVP, which is assumed to be
well conditioned and to have a unique solution, we derive in section 2 adjoint sys-
tems for which we explicitly construct proper boundary conditions. Our goals are
to demonstrate that the adjoint method offers an efficient means of computing ODE
BVP sensitivities, particularly if there are many parameters, and to show how the
adjoint method is formulated for ODE BVPs for different classes of derived func-
tions. Thus we derive adjoint equations to efficiently evaluate not only gradients of
integral-form quantities, but also (using the Leibnitz integral rule) gradients of point-
wise constraints. In section 3 we establish that, for the problems considered here, the
adjoint problems are well-posed and inherit the stability of the original system. We
show that numerical stability of the midpoint method for the original system implies
numerical stability for the adjoint system. In section 4 we illustrate the computation
of sensitivities via the adjoint method on a simple example.

2. Derivation of the adjoint BVP. Consider a state vector x ∈ RN that
satisfies the BVP depending on parameters p ∈ RNp ,

F(ẋ,x,p, t) = 0,
(1)

h(x(a),x(b),p) = 0,

and the function g(x,p, t) whose gradient with respect to p, dg/dp is to be evaluated
at some time τ ∈ [a, b]. We assume that the Jacobian of F with respect to the vector
ẋ is nonsingular (meaning that (1) represents a system of ODEs and not DAEs) and
that h represents a set of N independent equations. Note that if g also depends on
the time derivatives ẋ, then the first set of relations (1) can be used to express g as
a function of only x, p, and t. We assume also that (1) is well conditioned and has a
unique solution.
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In section 2.1 we derive the gradient (dg/dp) at τ ∈ (a, b). Using the result-
ing expressions, the particular case of computing (dg/dp) at τ = b is analyzed in
section 2.2.

2.1. Gradients of g between the integration bounds. We start by deriving
the gradient (dg/dp) at some τ ∈ (a, b). The derivation closely follows the IVP case
[7], with differences arising from the definition of proper boundary conditions for the
adjoint equations.

First, define the function

Gτ (p) =

∫ τ

a

g(x,p, t)dt.

The gradient of Gτ with respect to p is then simply

dGτ

dp
=

∫ τ

a

dg

dp
(x,p, t)dt =

∫ τ

a

(gp + gxxp) dt,(2)

where subscripts represent partial differentiation. Applying the Leibnitz integral rule
we obtain

d

dτ

dGτ

dp
=

dg

dp

∣∣∣∣
τ

.

Thus (dg/dp)|τ can be computed as

dg

dp

∣∣∣∣
τ

=
d

dτ

(∫ τ

a

(gp + gxxp) dt

)
.

The challenge of adjoint sensitivity analysis is now to compute the above quantity
without solving for the sensitivities xp. To do this, we first form the linear sensitivity
problem from the BVP (1),

Fẋẋp + Fxxp + Fp = 0,
(3)

Axp(a) +Bxp(b) + hp = 0,

whereA = hx0
(x(a),x(b),p) andB = hx1(x(a),x(b),p). Then, for arbitrary λ1,λ2 ∈

RN , the following holds:

0 ≡
∫ τ

a

λ∗
1 (Fẋẋp + Fxxp + Fp) dt +

∫ b

τ

λ∗
2 (Fẋẋp + Fxxp + Fp) dt,(4)

where ∗ indicates the transposed conjugate. Integrating by parts, the first term in the
first integral in the above relation becomes∫ τ

a

λ∗
1Fẋẋpdt = (λ∗

1Fẋxp)|τa −
∫ τ

a

(
λ̇
∗
1Fẋ + λ∗

1

dFẋ

dt

)
xpdt,

where

λ∗
1

dFẋ

dt
=

[(
dFẋ

dt

)∗
λ1

]∗
=
(
F∗

ẋλ̄1

)∗
t
+
[(
F∗

ẋλ̄1

)
x
ẋ
]∗

+
[(
F∗

ẋλ̄1

)
ẋ
ẍ
]∗

.(5)

A bar over a variable indicates that the variable is held fixed for the purpose of the
current differentiation. Without loss of generality, we can assume that F depends
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linearly on ẋ and that therefore, the last term in (5) is zero. Indeed, any other case
can be reduced to this one by introducing the additional variables y = ẋ. So from
now on, we calculate λ∗

1 (dFẋ/dt) by

λ∗
1

dFẋ

dt
=
(
F∗

ẋλ̄1

)∗
t
+
[(
F∗

ẋλ̄1

)
x
ẋ
]∗

.

Thus we have from (4) that

0 ≡ (λ∗
1Fẋxp)|τa + (λ∗

2Fẋxp)|bτ −
∫ τ

a

(
λ̇
∗
1Fẋ − λ∗

1Fx + λ∗
1

dFẋ

dt

)
xpdt

(6)

−
∫ b

τ

(
λ̇
∗
2Fẋ − λ∗

2Fx + λ∗
2

dFẋ

dt

)
xpdt +

∫ τ

a

λ∗
1Fpdt +

∫ b

τ

λ∗
2Fpdt.

A suitable choice for λ1 and λ2 to compute dGτ/dp is given by the following.
Proposition 1. If λ1 and λ2 satisfy

λ̇
∗
1Fẋ − λ∗

1

(
Fx − dFẋ

dt

)
= gx,

λ̇
∗
2Fẋ − λ∗

2

(
Fx − dFẋ

dt

)
= 0,

(7)
ĀF∗

ẋ(a)λ1(a) + B̄F∗
ẋ(b)λ2(b) = 0,

λ1(τ)− λ2(τ) = 0,

where Ā and B̄ are such that

span

[
ĀT

B̄T

]
= null [−A|B] ,(8)

that is, the rows of [Ā|B̄] span the null space of [−A|B], then

dGτ

dp
= −α∗hp +

∫ τ

a

(gp + λ∗
1Fp) dt +

∫ b

τ

λ∗
2Fpdt,(9)

where α = (AA∗ +BB∗)−1
(−A(F∗

ẋλ1)(a) +B(F∗
ẋλ2)(b)).

Proof. First note that the requirement that the boundary conditions in (1) rep-
resent N linearly independent equations is equivalent to [A|B] (as well as [−A|B])
having full row rank. As a consequence, the matrixAA∗+BB∗ is invertible. The defi-
nition (8) of Ā and B̄ implies that the rows of [−A|B] span the null space of [Ā|B̄]. On
the other hand, the third relation in (7) imposes that the vector [(F∗

ẋλ1)(a), (F
∗
ẋλ2)(b)]

is in the null space of [Ā|B̄]. Therefore, there exists a vector α ∈ RN such that

(F∗
ẋλ1)(a) = −A∗α,

(10)
(F∗

ẋλ2)(b) = B∗α,

and thus

(λ∗
1Fẋxp)|τa + (λ∗

2Fẋxp)|bτ = (λ1(τ)− λ2(τ))
∗
(Fẋxp) (τ)

− (λ∗
1Fẋ) (a)xp(a) + (λ∗

2Fẋ) (b)xp(b) = α∗ (Axp(a) +Bxp(b)) = −α∗hp,
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where the second relation in (3) and the last relation in (7) have been used. Since
[A|B] has full row rank, the N ×N matrix AA∗ +BB∗ is nonsingular, and α can be
computed from (10) as

α = (AA∗ +BB∗)−1
(−A(F∗

ẋλ1)(a) +B(F∗
ẋλ2)(b)) .

Substituting this result together with the first two relations of (7) into (6), we have

0 = −α∗hp −
∫ τ

a

gxxpdt +

∫ τ

a

λ∗
1Fpdt +

∫ b

τ

λ∗
2Fpdt

and therefore

dGτ

dp
=

∫ τ

a

(gp + gxxp) dt = −α∗hp +

∫ τ

a

(gp + λ∗
1Fp) dt +

∫ b

τ

λ∗
2Fpdt.

Returning to the problem of computing dg/dp at τ , by taking the total derivative
with respect to τ in (9) we obtain

d

dτ

dGτ

dp
=

d

dτ

(
−α∗hp +

∫ τ

a

(gp + λ∗
1Fp) dt +

∫ b

τ

λ∗
2Fpdt

)

and therefore

dg

dp

∣∣∣∣
τ

= −αT
τ hp + gp(τ) +

∫ τ

a

µ∗
1Fpdt +

∫ b

τ

µ∗
2Fpdt,(11)

where we have used λ1(τ) = λ2(τ). The quantities µ1 = (λ1)τ and µ2 = (λ2)τ are
the solution of the following sensitivity system, obtained by direct differentiation of
(7):

µ̇∗
1Fẋ − µ∗

1

(
Fx − dFẋ

dt

)
= 0,

µ̇∗
2Fẋ − µ∗

2

(
Fx − dFẋ

dt

)
= 0,

ĀF∗
ẋ(a)µ1(a) + B̄F∗

ẋ(b)µ2(b) = 0,

µ1(τ) + λ̇1(τ)− µ2(τ)− λ̇2(τ) = 0.

The last boundary condition is obtained by taking the total derivative with re-
spect to τ of the boundary condition λ1(τ) − λ2(τ) = 0 and taking into account all
dependencies on τ . These can be better seen if λ1 and λ2 are considered as functions
of two arguments, λ1(t, τ) and λ2(t, τ). In this case, direct differentiation of

λ(t, τ)|t=τ − λ(t, τ)|t=τ = 0

yields

λ1t(τ, τ) + λ1τ (τ, τ)− λ2t(τ, τ)− λ2τ (τ, τ) = 0,

that is,

λ̇1(τ) + µ1(τ)− λ̇2(τ) + µ2(τ) = 0.
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Note that, upon substitution of λ̇1(τ) and λ̇2(τ), this boundary condition can be
further simplified to

µ1(τ)− µ2(τ) +
(
gxF

−1
ẋ

)∗
(τ) = 0.

The quantity ατ is obtained by taking the total derivative of α with respect to τ :

ατ = (AA∗ +BB∗)−1
(−A(F∗

ẋµ1)(a) +B(F∗
ẋµ2)(b)) .

2.2. Gradients of g at the integration bounds. The gradient of Gb =∫ b

a
g(x,p, t)dt can be derived by applying a similar procedure, leading to

dGb

dp
= −α∗hp +

∫ b

a

(gp + λ∗fp) dt,(12)

where λ is the solution of

λ̇
∗
Fẋ − λ∗

(
Fx − dFẋ

dt

)
= gx,

ĀF∗
ẋ(a)λ(a) + B̄F∗

ẋ(b)λ(b) = 0,

and α = (AA∗ +BB∗)−1
(−A(F∗

ẋλ)(a) +B(F∗
ẋλ)(b)).

The gradient of g at t = b could, in principle, be obtained as in the previous
section by taking the total derivative of (12) with respect to b. Such an approach
would be considerably complicated by the fact that g now depends on b implicitly
through x. However, if we take

dg

dp

∣∣∣∣
b

= lim
τ→b

dg

dp

∣∣∣∣
τ

,

then these difficulties can be circumvented. Indeed, if we specify τ = b in (11), we
obtain

dg

dp

∣∣∣∣
b

= −α∗
bhp + gp(b) +

∫ b

a

µ∗Fpdt,(13)

where µ = λb is the solution of

µ̇∗Fẋ − µ∗
(
Fx − dFẋ

dt

)
= 0,

ĀF∗
ẋ(a)µ(a) + B̄F∗

ẋ(b)
(
µ(b) +

(
gxF

−1
ẋ

)∗
(b)
)

= 0,

or, rearranging the boundary condition, is the solution of

µ̇∗Fẋ − µ∗
(
Fx − dFẋ

dt

)
= 0,

ĀF∗
ẋ(a)µ(a) + B̄F∗

ẋ(b)µ(b) = −B̄g∗x(b).

The expression of αb in (13) can be derived as

αb = (AA∗ +BB∗)−1
(−A(F∗

ẋµ)(a) +B(F∗
ẋµ+ g∗x)(b)) .
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3. On existence and stability of the adjoint solution. Consider a linear
implicit ODE BVP of the form (3), written here as

M(t)ẋ+K(t)x+ q(t) = 0,
(14)

Ax(a) +Bx(b) + c = 0,

whose adjoint BVP can be written as

d

dt
(M∗(t)λ)−K∗(t)λ+ r(t) = 0,

(15)
ĀM∗(a)λ(a) + B̄M∗(b)λ(b) = 0,

where Ā and B̄ are defined as before.
In this section we investigate the stability of the adjoint system. More precisely,

if the original system is stable, will the adjoint system also be stable? If we consider
the adjoint system (15), the answer may be negative. Indeed, consider the following
IVP example [7]:

etẋ+
1

2
etx = 0,(16)

with some initial condition at t = a. This system is equivalent to

ẋ+
1

2
x = 0,

so it is stable to integration from the left. However, the adjoint system (15) for (16)
is

etλ̇− 1

2
etλ + etλ = 0 ⇒ λ̇ +

1

2
λ = 0.(17)

Note that the adjoint system must be solved in a backward direction. Thus the adjoint
system (17) is unstable.

Denoting λ̄(t) = M∗(t)λ(t), we can form the augmented adjoint system for (15),

˙̄λ−K∗(t)λ+ r(t) = 0,

λ̄−M∗(t)λ = 0,(18)

ĀM∗(a)λ(a) + B̄M∗(b)λ(b) = 0.

If, instead of (17), we solve the augmented adjoint system (18), then λ̄ satisfies

˙̄λ− 1

2
λ̄ = 0,

which is stable to integration from the right. We will show that, in general, if the
original system (14) is stable, then the augmented adjoint system (18) for λ̄ is stable.
First, note that since M is nonsingular, λ̄ satisfies

˙̄λ−K∗(t) (M∗(t))−1
λ̄+ r(t) = 0,

Āλ̄(a) + B̄λ̄(b) = 0.

In other words, for the implicit ODE BVP, the augmented adjoint system for λ̄ is
the same as the adjoint system of the explicit ODE BVP equivalent to the original



SENSITIVITY ANALYSIS FOR ODE BOUNDARY VALUE PROBLEMS 227

system (14). Therefore it is sufficient to investigate stability of the adjoint system for
the explicit ODE BVP,

ẋ = C(t)x+ q(t),
(19)

Ax(a) +Bx(b) = c,

whose adjoint BVP can be written as

λ̇ = −C∗(t)λ+ r(t),
(20)

Āλ(a) + B̄λ(b) = 0.

We begin by deriving the relationship between fundamental solutions of these two
problems. This is given by the following.

Lemma 1. Let X and Λ be any fundamental solutions of (19) and (20), respec-
tively. Then, for any t, s ∈ [a, b], Λ∗(t)X(t) = Λ∗(s)X(s).

Proof. Consider Z(t) = Λ∗(t)X(t). Then

Ż = Λ̇
∗
(t)X(t) +Λ∗(t)Ẋ(t) = (−C∗(t)Λ(t))

∗
X(t) +Λ∗(t) (C(t)X(t)) = 0.

Therefore Λ∗(t)X(t) = Λ∗(s)X(s) for all t, s ∈ [a, b]; in particular, Λ∗(t)X(t) =
Λ∗(a)X(a) = Λ∗(b)X(b) for any t ∈ [a, b].

As a direct consequence of Lemma 1, ‖Λ(t)Λ−1(s)‖ = ‖X(s)X−1(t)‖ for all s ≥ t.
This proves the following.

Theorem 1. The adjoint system (20) of an (asymptotically) stable linear ODE
IVP (19) is (asymptotically) stable.

We now concentrate on the ODE BVP. We first show the following.
Theorem 2. If the BVP (19) has a unique solution, then a solution for the

adjoint BVP (20) exists and is unique.
Proof. Consider the fundamental solution X(t) of the homogeneous equivalent of

(19) which satisfies X(a) = I. Then the matrix Q = A + BX(b) is nonsingular [2].
Similarly, let Λ(t) be the fundamental solution of the homogeneous equivalent of (20),
which satisfies Λ(b) = I, and construct the matrix Q̄ = Āλ(a) + B̄. From Lemma 1
we have that Λ(a) = X∗(b). Then

QĀ∗ = AĀ∗ +BX(b)Ā∗ = BB̄∗ +BΛ∗(a)Ā∗ = BQ̄∗

and

QX−1(b)B̄∗ = AX−1(b)B̄∗ +BB̄∗ = A (Λ∗(a))−1
B̄∗ +AĀ∗

= A (Λ∗(a))−1
Q̄∗ = AX−1(b)Q̄∗,

where we have used AĀ∗ = BB̄∗. Since Q is invertible, we can write

Ā∗ = Q−1BQ̄∗,
B̄∗ = X(b)Q−1AX−1(b)Q̄∗.

Thus [
Ā∗

B̄∗

]
=

[
Q−1B

X(b)Q−1AX−1(b)

]
Q̄∗.
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Since [Ā|B̄] has full row rank, it follows that Q̄∗ has full rank. Therefore, Q̄ is
invertible and (20) has a unique solution.

Stability results for the adjoint problem are given by the following [9].

Theorem 3. If the BVP (19) is well conditioned, then its adjoint BVP (20) is
well conditioned.

We now consider numerical stability for the adjoint system. As a consequence of
Theorem 3, zero-stability (i.e., stability as the stepsize h → 0 and the number of steps
n → ∞) for the adjoint BVP (20) is inherited from zero-stability of the original BVP
(19). Here we are concerned with the question of whether a numerical method which
is stable for the original system (19) on the mesh

π : a = t0 < t1 < · · · < tN−1 < tN = b

is also stable for the adjoint system (20). We consider the midpoint method for which
we show the following.

Theorem 4. Numerical stability of the midpoint method for the original system
on some mesh π implies numerical stability for the adjoint system on the same mesh.

Proof. Discretizing the original system (19) with the midpoint rule, we obtain

xn − xn−1

hn
= C(tn−1/2)

xn + xn−1

2
+ q(tn−1/2), n = 1, . . . , N,

(21)
Ax0 +BxN = −c,

where hn = tn − tn−1. The first N relations in (21) can be written as

−Snxn−1 +Rnxn = q(tn−1/2), n = 1, . . . , N,

where

Sn =
1

hn
I+

1

2
C(tn−1/2),

Rn =
1

hn
I− 1

2
C(tn−1/2).

Thus we have that [x∗
0;x

∗
N ] is the solution of a linear system of the form

[
P −I
A B

] [
x0

xN

]
=

[
q̂
−c

]
(22)

for some right-hand side q̂, where P = R−1
N SNR

−1
N−1SN−1 · · ·R−1

1 S1.

The midpoint method applied to the adjoint problem (20) yields the linear equa-
tions

S∗
nλn −R∗

nλn−1 = r(tn−1/2), n = 1, . . . , N.

Since Sn and R−1
n commute, it follows that [λ∗

N ;λ∗
0] is the solution of a linear system

[
P∗ −I
B̄ Ā

] [
λN

λ0

]
=

[
r̂
0

]
(23)
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for some right-hand side r̂. We show next that with Ā and B̄ defined by (8), solving
linear system (23) is equivalent to solving linear system (22). Indeed, system (22) can
be solved as

(A+BP)x0 = Bq̂− c,

xN = Px0 − q̂.

On the other hand, by construction, there exists a vector α defined as in (10). Thus
system (23) can be solved as

(P∗B∗ +A∗)α = r̂,

λ0 = −A∗α,

λN = B∗α.

Noting that ‖(P∗B∗ +A∗)−1‖ = ‖(A+BP)−1‖, this concludes the proof.

4. Numerical example. As an example we consider the following ODE BVP:

(J +ml2)θ̈ = u(t)−mgl cos(θ),

θ(a) = θ0,(24)

θ(b) = θ1,

which describes the motion of a 2-D pendulum of length 2l, mass m, and inertia J
under the action of gravity (g) and a time varying applied torque u(t). The position
of the pendulum is imposed at the initial and final times. Considering the torque u(t)
parameterized by p ∈ RNp , we wish to estimate the sensitivity with respect to p of
the energy g(θ, θ̇, p, t) = 1

2 (J +ml2)θ̇2 +mgl sin(θ) at some time t ∈ (a, b), as well as

the sensitivity of the total energy Gτ (p) =
∫ τ

a
g(θ, θ̇, p, t)dt over the interval [a, τ ].

As an alternative to using adjoint sensitivity analysis for the solution of these
problems, one could generate the sensitivity ODE BVP systems (3) by the following
forward method: For each of the parameters pi, compute the sensitivities of the
trajectories (θ(t), θ̇(t)) and then, using the chain rule of differentiation, evaluate the
gradients of g and Gτ . However, such an approach is computationally expensive,
especially if the dimension Np of the parameterization of u(t) is very large.

We first transform (24) into a first order ODE BVP:

ẋ1 = x2,

ẋ2 =
1

J +ml2
(u(t)−mgl cos(x1)) ,(25)

x1(a) = θ0,

x1(b) = θ1,

in which case

g(x, p, t) =
1

2
(J +ml2)x2

2 +mgl sin(x1)(26)

and

Gτ (p) =

∫ τ

a

(
1

2
(J +ml2)x2

2 +mgl sin(x1)

)
dt.(27)
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Fig. 1. Torque u(t) for the pendulum example (N = 8, Np = 9).

Consider a piecewise linear approximation of u given by

u(t) = −pk
t− k∆t

∆t
+ pk+1

t− (k − 1)∆t

∆t
;(28)

(k − 1)∆t ≤ t ≤ k∆t, k = 1, 2, . . . , N,

where ∆t = (b− a)/N . This gives Np = N +1 parameters p. Let N = 8 and let u be
as in Figure 1. For a = 0, b = 1, θ0 = 0, θ1 = 0, τ = 0.25, and m = g = l = J = 1,
we compare gradients of g and Gτ at both τ ∈ (a, b) and τ = b obtained by the
adjoint sensitivity analysis presented in the previous sections with gradients computed
through forward sensitivity analysis. Differences in gradients computed with the two
methods are summarized in Table 1.

Table 1
Differences in gradients computed with adjoint (a) and forward methods (f).

i
[
dGτ

dp

]
(a)

−
[
dGτ

dp

]
(f)

[
dg(τ)
dp

]
(a)

−
[
dg(τ)
dp

]
(f)

1 4.068486 · 10−06 −5.219818 · 10−09

2 8.042969 · 10−06 −9.258004 · 10−12

3 7.934972 · 10−06 −3.032900 · 10−11

4 5.331125 · 10−06 1.268874 · 10−06

5 9.902579 · 10−08 3.172192 · 10−06

6 −4.355139 · 10−08 5.555800 · 10−11

7 −2.891162 · 10−08 2.859599 · 10−11

8 −1.443129 · 10−08 8.619001 · 10−12

9 −3.178720 · 10−10 5.191848 · 10−09

i

[
dGb

dp

]
(a)

−
[
dGb

dp

]
(f)

[
dg(b)
dp

]
(a)

−
[
dg(b)
dp

]
(f)

1 1.013121 · 10−05 −4.789156 · 10−09

2 1.990550 · 10−05 −8.493997 · 10−12

3 1.943275 · 10−05 −2.782700 · 10−11

4 1.906737 · 10−05 −5.279502 · 10−11

5 1.883816 · 10−05 −7.485801 · 10−11

6 1.875241 · 10−05 −8.563900 · 10−11

7 1.879674 · 10−05 −7.838902 · 10−11

8 1.893979 · 10−05 −4.928702 · 10−11

9 9.530949 · 10−06 −1.530841 · 10−06
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All ODE BVPs involved in both adjoint and forward computations were numeri-
cally solved with colsys [1]. We note that the version of colsys that we used has a
limit of 20 on the number of differential equations, thus limiting the number of param-
eters that we could include for the forward sensitivity system to Np = 9. Of course,
when using the adjoint approach this is not an issue, as only one additional BVP of
the same size as the original problem must be solved to evaluate gradients with respect
to an array of parameters of any size. The other obvious advantage of using adjoint
sensitivity versus forward sensitivity is, of course, computational efficiency. Indeed,
solution of the BVP (original + adjoint) required by the adjoint approach was 15
times faster than solution of the BVP (original + Np forward sensitivities) required
by the forward approach. In all fairness, we must note that a careful implementation
of forward sensitivity analysis (which takes advantage of the special structure of the
sensitivity systems and the fact that they share the same Jacobian matrices with the
original BVP) will lead to a speedup of only about (1 + Np)/(1 + 1) = 5. Since
colsys does not provide a sensitivity analysis capability, the overhead computations
(especially in the linear algebra) explain the much higher speedup obtained.
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