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APPROXIMATION METHODS FOR THE CONSISTENT
INTIALIZATION OF DIFFERENTIAL-ALGEBRAIC EQUATIONS*

B. LEIMKUHLER', L. R. PETZOLD, AND C. W. GEARS

Abstract. The algebraic constraints in a system of differential-algebraic equations (DAEs)
impose a consistency requirement on the initial values that can be difficult to satisfy. In this paper
the consistency requirement is characterized by a system of equations. An approximation method
is introduced for these equations, and the numerical solution of the resulting system is analyzed for
certain important classes of DAEs. Finally, a numerical experiment is described.
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1. Introduction. In this paper, we present a computational method for the
initialization of the differential-algebraic equation (DAE)

(1) F(z,2',t) =0,

where z : [tg,T] = R" and F : R**! - R" is C'.

When |0F/0z'| = 0, there is an underlying algebraic subsystem of (1) that im-
poses a consistency requirement on the solution. Thus there is not a solution through
every given initial value. When an ordinary differential equation (ODE) method such
as BDF is used to solve a DAE, small inconsistencies in the initial values may cause
the method to fail or to become extremely inefficient.

Consistent initial values can sometimes be determined from physical considera-
tions, but more often their calculation requires a greater understanding of the under-
lying relationships between variables than is needed for the actual problem statement.
The very nature of a DAE implies that certain algebraic constraints are present which
restrict the choice of initial values. Numerical methods for DAEs place a difficult and
unnecessary burden on the user by requiring initial values for all components. Com-
puting consistent derivatives of the solution (which are typically needed by numerical
ODE methods) adds yet another level of complication, since, for a DAE, the initial
derivatives cannot be determined by a simple function evaluation (as is the case for
an explicit ODE) but may only be found through one or more differentiations of the
constraint equations and the solution of a nonlinear system of equations.

The subject of this paper is the consistent initialization problem: given specified
information about the initial state of the problem that is sufficient to specify a unique
solution to a DAE, determine the complete initial vector (z(to), z(to)) corresponding
to this unique solution.!

We begin in §2 by discussing elementary concepts that are useful for the analysis
of the consistency requirement and some prior work on the consistent initialization
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problem, before describing our approach. We develop a system of equations involving
derivatives of (1) that an initial value z(¢o) and derivative z'(to) must satisfy in order
that they lie on a smooth solution of the DAE. Since the derivatives of the DAE
are often difficult to obtain analytically, in §3 we construct a family of one-sided
finite difference approximations, and show how these differences can be used to form
an accurate approximation of the original equations. The solution of the resulting
approximate equations is considered in §4, and convergence results demonstrating
the applicability of the method to some important classes of problems are given. In
particular, it is shown that reductions of the consistency equations are often possible,
leading to well-behaved nonlinear systems. (Even when such a regularization is not
easily performed, the approximate consistency equations may still be numerically
tractable.) Finally, in §5 we describe an experiment in which an implementation,
DALIS, of the initialization procedure is applied to a practical problem.

2. Fundamentals and problem statement. In this section we define a few
basic concepts such as “solvability” and “index” and then use them to make a clearer
statement of the consistent initialization problem. We first describe some important
classes of DAEs which will be referred to frequently.

2.1. Common classes of DAEs. In a fundamental book by Campbell [4], and
in papers by various authors, the following structure is considered:

(2) Er' + Ax = f,
z(to) = 2o,
where E and A are n X n, xo is an n-vector, and f : [to,T] — R". We call this the
linear, constant-coefficient problem.
The coefficient matrices E and A in (2) may also be allowed to vary with time,
yielding a class of problems with more complex properties due to time-dependent
coupling between solution components.

In considering nonlinear DAESs, it is frequently assumed that the problem is in
the semi-explicit form:

3) o= flu,,1),
0 9(u,v,t),
where the vectors u and v are in R™* and R™2, respectively, and f and g are functions

defined on the domain R™! x R™2 x R which map into, respectively, R™ and R™2.
When the problem can be written

il

(4) u/2 = fl(ulau23u3a"'aukat),

(5) U?s = f2('U:2,U3,"',Uk,t),

(6) u;c = fk—l(uk-—lauk,t)a

(7) 0 = fr(uk,t)

for some partition (uy,---,ux) of z in (1), we have the so-called Hessenberg form of

order k. Note that a DAE in the semi-explicit form (3) is also in Hessenberg form
(of order two) provided dg/dv = 0, and that any DAE which is in the k + 1st order
Hessenberg form can be expressed in the Hessenberg form of order k, for £ > 2. Many
writers refer to the Hessenberg form as the triangular form, especially when referring
to the common cases k = 2 and k£ = 3.
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2.2. Solvability and index. The structure of the general DAE (1) is usually
identified in the literature with a quantity called its index. Many problems arising in
practice are in the Hessenberg form, for which the index is apparent [3]. In this paper
we assume that the index is known a priori. In this subsection we define the notions
of solvability and index so as to restrict the problem classes we study and guide the
construction of our initialization method.

DEFINITION 2.1 (Solvability). The DAE (1) is solvable on a subset Q of R"*!
if, for some r > 1, there is an r-parameter family of solutions z(t,c) (defined for
t € R,c € R") such that

1. (t,z(t,c)) € Q,
2. If Z(¢) is any solution whose graph lies in Q, then &(t) = z(¢, ¢) for some ¢,
3. The graph of z(t,c) is an (r + 1)-dimensional manifold.

We generally take = [to, T] x R™. This definition ensures that solvable problems
have solutions, that the solutions are uniquely defined by their value at ¢ = t¢, and
that there is no bifurcation of solutions [7].

We use an alternative, more restrictive definition of solvability in this paper. We
first define the pseudoderivative to simplify the notation and allow us to treat the
derivatives of the solution as independent variables. If in Definition 2.2 below, &; is
identified with the ith derivative of z(¢), then the pseudoderivative is just the usual
total derivative. We introduce the notion of the pseudoderivative to stress the fact
that we restrict our attention to the single point ¢ = tg, and are interested only in
how the various derivatives of the solution at this point are related by the DAE.

DEFINITION 2.2 (Pseudoderivative). Given a function G : R®+Ur+l  Rn,
G = G(&, 1, -, &, t), the pseudoderivative, DG of G is a new function on R(®+2)n+1
satisfying

oG oG oG oG
DG (0,815 €py Epr1st) = 6—&)& + 8—5152 + 55;61)-0-1 + T
where the partials are evaluated at (o, &1, -+, &p, t).

The powers of the operator D are defined in the usual manner: D™G = D(D™~1G).
(If D™1@ is a function on R*"*1 then D™@ will be a function defined on R(s+1)n+1))

DEFINITION 2.3 (Smooth solvability). The DAE (1) is smoothly solvable on [to, T
if there exists a nonnegative integer m such that F' has m continuous derivatives and
the nonlinear system of “derivative equations”

F(&O,glvt) = 0,
DF(&Oa&la{Z»t) 07

DmF(£0’€1’€27"'7§m+1?t) =0

when viewed as relating the independent symbols &y, &1, - -, Em+1, ¢, can be solved on
[to, T] for & in terms of & and t: & = @(&o,t), where the mapping ¢ so defined is
Lipschitz continuous.

An alternative formulation that assumes constant rank for the system of derivative
equations can be found in Campbell [6]. Problems that are smoothly solvable have
smooth solutions that are solutions of the Lipschitz continuous ODE, z' = ¢(z, ).
Since such solutions are smooth and well behaved, smoothly solvable DAEs are also
solvable.
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DEFINITION 2.4 (Index). The global index of a smoothly solvable DAE is the
smallest nonnegative integer m such that the DAE and the first m derivative equations
given in Definition 2.3 can be solved for &1 = ¢(&o, t).

Note that the &, i = 2,---,m + 1, are not uniquely determined by the system of
derivatives. A definition in the same spirit was originally given in Rheinboldt [21].

The equation ' = ¢(x,t) is defined at every point in [to,T], and so forms an
ODE (which we refer to as the underlying ODE). In our case, we will assume that
this equation (and hence (1)) has a very smooth (C™*1) solution in a neighborhood
of tg. This is a strong requirement—one which may not be satisfied in practice.

Definition 2.4 suggests that by differentiating a DAE one or more times we could
construct an ODE with the same solution, to which we could presumably apply an
ODE method. However, this is not usually a practical approach because the dif-
ferentiation may be expensive, it is necessary to determine constants of integration
accurately, and the numerical solution can drift from the constraints and out of the
physically meaningful solution space. The reader is referred to Gear [8] for a discus-
sion. On the other hand, a numerical method based on differentiation of the problem
may be feasible, as we shall see below, for determining a consistent initial condition
for the problem since accumulation of error is not a concern.

As a simple example, a DAE in the semi-explicit form (3) has index one if dg/dv
is nonsingular. In, among other places, [9] it is shown that the index of a DAE in the
semi-explicit triangular form ((3) with 8g/8v = 0) is two provided (8g/0u)(8f/Ov) is
nonsingular, and that the third-order Hessenberg form ((4)—(7) with k£ = 3) has index
three provided (0f3/0us)(8f2/0u2)(0f1/0u1) is nonsingular.

2.3. The consistent initialization problem. We are now prepared to begin in
detail our study of the initialization problem. We present some examples and survey
the literature before laying out a system of consistency equations which will form the
basis of our method. Later sections will be concerned with obtaining approximations
to the consistency equations and with the numerical solution of those equations.

2.3.1. Incompletely specified initial conditions. In practice, it is often dif-
ficult to determine the complete initial vector (zq,zj). Certain variables may have
readily apparent physical significance, leading to obvious initial values. Others may
have an obscure dependence on the initial state. The following examples illustrate
this fact.

Ezxample 2.5. This DAE has index one:

Y1+ s+ 91(t),
y2 = ga(t).

If either y1(to) or y}(to) is known, then a unique solution to the DAE can be found,
but in either case it is necessary to differentiate the constraint in order to solve for
the unknown components of the initial vector.

Ezample 2.6. Consider a plane pendulum consisting of a unit point mass swinging
on a massless inelastic rod of length one, anchored at the origin. We can write the
equations as a DAE:

! = =)z,
_)‘y -9
z? + P = 1.
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Here g is the gravitational constant, (z,y) represents the position of the pendulum
mass, and A is a Lagrange multiplier. This problem has index three. The initial
position can be any point on the unit circle, but the initial velocity must be consistent
with the differentiated constraint. The Lagrange multiplier (representing the tension
in the rod) must be derived from physical considerations or by another differentiation
of the constraint. To determine the derivatives of the Lagrange multipliers requires
yet a third differentiation of the constraint. In practice, most numerical methods
do not require the initial values for A. On the other hand, if the problem is given in
transformed variables, or in partially determined nonphysical generalized coordinates,
initial values for all components may need to be determined.

Other examples may be found in [15].

In these examples of the consistent initialization problem, the striking feature
is that in order to apply any of the standard methods, we must have information
about the state of the system which is hard to find, even though that information is
contained in the system itself.

2.3.2. The effect of poor initial values and derivatives. When consistent
initial values are difficult to determine exactly, the problem-solver may resort to crude
and even nonphysical assumptions in the hope that any gross initial errors will be
rapidly damped as the solution settles into a steady state. (See [12] for a particularly
difficult case.)

Present numerical software for solving DAEs often fails or becomes extremely
inefficient when the initial values are inconsistent with the DAE. The reasons for this
behavior were first discussed in Petzold [20], where a modification to the usual error
estimate can also be found . This filters and scales the usual predictor-corrector differ-
ence according to the structure of the DAE and effectively eliminates the difficulty for
some problems. (See also [14].) However, even when such a filtered estimate is used,
poor initial values and approximations for the derivatives of the solution variables at
the initial point can lead to gross inefficiency. Let us consider what happens when
the initial derivative approximations are very inaccurate (often zero values are used).

In most modern ODE and DAE solvers, the number of reevaluations and refactor-
izations of the Jacobian is kept to a minimum because these operations are so costly;
instead, many steps will use the same approximate Jacobian. If the initial derivatives
are not known, the initial predictor will be very poor, and an exceptionally small
stepsize will be necessary to make the predictor-corrector difference small. Poor ap-
poximations to the initial derivatives may lead to a sequence of costly failures as the
step is reduced (each stepsize change forces a reevaluation and refactorization of the
Jacobian) and then, subsequently, to even more Jacobian evaluations and factoriza-
tions as the stepsize is increased to the natural level over the first few integration
steps.

In fact, if the initial values are sufficiently inaccurate, or the problem highly
nonlinear, the Newton iteration at the first step either may not converge, may converge
very slowly, or may converge to an undesired solution. (Just such a “bad” problem is
discussed in Brenan [2, p. 285].)

See [11] for a detailed discussion of the effects of inconsistent initial conditions in
the context of Runge-Kutta methods.

2.3.3. Previous work on the initialization problem. For determining the
initial derivatives when the initial solution values are known, Petzold [19], in her code
DASSL, takes a small backward-Euler step and relies on a damped Newton iteration
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to determine the correct values. The method used in the code SPRINT [1] can be
viewed as a precursor of the general scheme we develop here.

Campbell [5] suggests an approach based on Taylor’s series expansions for deter-
mining consistent initial conditions for the linear time-varying problem

A2’ (¢) + Bt)z(t) = (2.

This method is limited because it requires a knowledge of the derivatives of the ma-
trices. Campbell [6] has recently extended his method to nonlinear problems and
developed a general time-stepping method based on those ideas, but it is unlikely
that the method will be competitive for complex scientific problems in which the par-
tial Jacobian matrices are unknown or difficult to compute. There are many parallels
between Campbell’s work and our own, but the emphasis is quite different.

Pantelides [18] uses a graph-theoretic algorithm to determine the minimal set
of equations to be differentiated in order to solve for consistent initial values. The
differentiations are then to be carried out exactly, as in Campbell’s algorithm.

Mrziglod [17] bases his algorithm for determining consistent initial values on a
thorough decomposition of the system structure. Unfortunately, this approach de-
pends on the isolation of algebraic constraints by index reduction and requires knowl-
edge of analytical expressions for various derivatives of the problem.

Some other, related techniques are described in [15].

2.3.4. The consistency equations. In this paper, we adopt the following for-
mal definition.

DEFINITION 2.7 (Consistent initial vector). A consistent initial vector (zq,xy)
for the DAE (1) at t = tq is such that the DAE has a C™*! solution through that
vector.

Throughout the following, we assume that (1) has index m. In general, the
user may possess information about the initial state in the form of some algebraic
equations:

(8) B(z,zp) = 0.

In addition to these user-controlled specifications, any valid initial point must
satisfy the problem itself:

(9) F(wo,mf),to) =0.

Also, depending on the index, (2o, z) must satisfy the m derivative equations (here
stated in terms of the pseudodifferentiation operator defined in the last section):

OF oF OF

]_ DF !/ ”t — gL or n or _
( O) (.’EO,IBO,SCO, 0) 8(1} $0+ aw/xo + Bt Oa

(11) D™ (o, z,zf, -,z t0) = 0

for some choice of (zy,zq, - ,x(()m“)). Here all the partial derivatives of F are

evaluated at (zo,zg) and t = to.

We call the m + 2 equations (8)-(11) the consistency equations. Theorem 2.8
states a condition under which the consistency equations uniquely determine z¢ and
-
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THEOREM 2.8. Suppose the problem

(12) F(x(t),z'(t),t) = 0,
B(x(to), ' (o)) 0,

has precisely one continuous solution Z(t) and it is smooth: Z(t) € C™*[ty, T]. Then

the consistency equations (8)—(11) posess a solution (zo, g, - -, :c(()mH)), and the first
two components are uniquely determined: xo = Z(to),zy = T’ (to)-
Proof (existence). Differentiate w(t) = F(Z(t),Z'(t),t) = 0 m times. Since

coupled with (8) are precisely the consistency equations satisfied at (Z(tg),---,
#(m+1)(ty)), this vector is a solution.

(Uniqueness). Suppose (Zo, &g, - - - ,a"sgmﬂ)) is a solution to the consistency equa-
tions. Let 2’ = ¢(z,t) be the underlying ODE from the definition of index (Definition
2.4), and consider the solution Z(t) to the IVP z’ = ¢(z,t), t € [to, T]; z(to) = Zo.
Obviously Z(t) is a solution to the DAE (1) which satisfies the initial condition (8).
However there is only one such solution; we must have Z(t) = Z(t). 0

We now have a framework for initializing DAEs, or at least smooth ones with a
known index. Assuming that enough information is known about the initial state, we
can, in principle, differentiate the constraints a few times and manipulate the resulting
equations to find the initial values. However, this strategy is inadequate as it stands
because the system of consistency equations, as described, requires the formation of
pseudoderivatives of the problem which are expensive to compute, and because the
equations (8)-(11) are hard to solve in general. In the next section we demonstrate
that the pseudoderivatives can be approximated by relatively easy-to-compute finite
differences. Some techniques for the efficient solution of the approximated equations
are given in the following section.

3. Computable approximations to the consistency equations. In this sec-
tion, we show how the pseudoderivatives can be approximated by finite differences.

3.1. First-order derivatives. To motivate the general approach, we consider
a particular approximation to the first derivative in the index-1 case. We simplify the
notation by defining z(t) = (z(¢),2'(t),t), 20 = (@0, Zg, to), and 2{ = (x5, z5,1). We
seek an approximation to the derivative

E%(_t)'z li=¢, = JF(2(t0))7'(t0),

where Jr is the Jacobian. An obvious choice is the simple one-sided difference

F(zo + hzy) — F(20)
T .

When zp = 2(to) and 2z, = 2'(to), 20 + hzy is a truncated Taylor’s series expan-
sion for z(typ + h) and we assume F' is C2, so the truncation error in the derivative
approximation is O(h).

Berzins, Dew, and Furzeland [1] use this approach in SPRINT.

We would like to determine a family of higher-order methods for approximating
these and higher pseudoderivatives of the DAE. There are several points worth noting:
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(1) because F is only defined for ¢t > tg, we are generally limited to one-sided differ-
ences; (2) the displacement s need not be related to the eventual starting stepsize of
the integration procedure; (3) numerical differentiation is ill-conditioned, so that the
roundoff errors incurred in the computation of F will be magnified by O(%) or O(3%)
when approximating the kth derivative; see below.

The idea is this: some points z1,---, 2, are chosen as truncated Taylor’s series
expansions of z(to + c1h), -+, z(tg + csh). Then values of F' at those points are
combined with coefficients ay, -+, a, chosen to annihilate certain of the high order
terms in the Taylor expansion of the approximation. This idea leads us to the class
of approximation methods described by

. k| ;h)? R z
D,kLF = -h—k [Z a; F <Z0 + cihz{) + (—012—)23 +---+ (c—;'—)-ztg )) - (Z o F(Zo)
i=1 ) i=1

(13)
for r > k. (Allowing 7 > k allows for the efficient approximation of several derivatives
simultaneously; see [15].)
Theorem 3.1 states conditions under which these methods approximate the deriva-
tives, and Theorem 3.3 establishes the attainable order of the approximations.
THEOREM 3.1. Let F: R™ — R™, z: R — R™. Supposer > k. Ifzisr+1
times differentiable in a neighborhood of t = ty and F is CP™! in a neighborhood of
2(to) for some p > r, then the truncation error of (13), as an approzimation to the
kth derivative, satisfies

d*F (2(t))
L¥F =D}F — 5 =t = O(hY)
provided thatp > k+1—1, and

8

C (1Li=k
Zaicf={0’;¢k’ j=1-k+1-1

=1

Proof. Let w,(r) = F(z2(ty + 7)); clearly wi®(0) = (d*F(2(t))/dt*) ls—¢,- Sub-
stituting the true solution 2(t) in (13) we have

DEF = 55" i [P(a(e) - F((0)),

i=1
where

Z(cih) = 2(to) + Cihzl(to) + -+ g—c;—}:)iz(r) (to).

Define w(c;h) = F(Z(¢;h)). Z is a polynomial in ¢;h, so it is C*° and the Taylor
expansion of w is only limited by the continuity of F":

w(c;h) = w(0) + c;hw'(0) + -+ - + £%:XL‘)("’)(O) + O(hPth).

Note that w(0) = F(2(tp)). We now have an expression for the truncation error in
powers of h:

d*F(2(t))

LiF = DﬁF———dtr— le=to
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- thaz w(eih) = w(0)) = i (0)

—
—
>

~

I

f e |3 000 + 0 0)| —uif0) + 01

hk k!
i=1 j=1
oy
8
= Zh’ ’“<Zaz )—wm )+(Zaicf)w(k)(O)—wik)(O)-i-O(hp"'l_k).
j=1 =1
J#k

If w®)(0) = wﬁk)(O), then this last expression yields the stated order conditions,

k
W) -wP0) = Lrl(r) ~wn()] |z

dk
= —[F(&(n) = F(a(to + 7)) |,
k
- _ddi [F(2(r)) = F(E(r) + B(T)] |,os

where R(7) is an O(7"*!) remainder term. We see that this is the multiplier of 7% /k!
in the Maclaurin series expansion of

¢(r) = F(2(1)) = F(2(7) + R(7)).

But F is smooth, so ¢(7) is O(7"+!). Hence the terms in the expansion of ¢ through
7" must vanish for 7 sufficiently small. Since r > k we have established the fact that
w®(0) = ().

Replacing w! ( ) by w®)(0) in (14) and setting the coefficients of powers of h
(through h!~1) to zero, we get the stated order conditions. 0

LEMMA 3.2. Let ¢y,c0,-+,cs be s distinct, positive real numbers. For v =
k,k+1,--., let e} be the kth standard basts vector in R” and define a = (o, -, as)T
and

Ci Cp - * Cg
2 .2 2
Cl 02 * . Cs
&y ¢y - - ¢}
Then the system
—_ v
Moa = €

has a solution if and only if v < s.

Proof. Let V, be the Vandermonde matrix of order s, C = diag(cy,--+,¢s).

If v = s then M is the column-scaled Vandermonde matrix V,C, so it is nonsin-
gular for positive, distinct ¢y, --,cs. Also, the first j < s rows are independent and
span R7, thus there is a solution provided v < s.

Now let v > s and suppose (by way of contradiction) that the system has a
solution. If k > s, then we must have at least that V,Ca = 0 (the first s equations),
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but then o = 0, so we cannot satisfy the kth equation: ) ;_; aick = 1. Hence the
only possibility is that 1 < k < s. We must (at least) satisfy the first s + 1 equations.
Let & = Ca, then we must have

and

E]
E d,-cf =0.
=1

Let ¢? = (c},---,c?). The above equations imply that the matrix L consisting of the
first k—1 and the last s —k rows of V together with the row c¢® have a nontrivial null
space. If k = 1, L is precisely the scaled Vandermonde matrix, M, which we know is
nonsingular.

This leaves only the possibility 2 < k < s. L is singular (and hence has a nontrivial
null space) only if c®,ct,---,c¥=2, ¢k, ... c* are linearly dependent; in this case, there
exist s coefficients v;, i =0,---,k — 2,k,-- -, s not all zero so that each ¢; is a root of
the polynomial

8
P(z) = Z izt
i=0
i#tk—1

Note that this means, in particular, that P has degree s. Applying Rolle’s theorem
on each of the s — 1 subintervals bounded by zeros of P, all of the zeros of P'(z) are
distinct and lie on the positive real axis (in between the zeros of P), and so for P’ (z),
etc. The important point is that all the zeros of any of the first s—1 derivatives of P
are positive. However, we can easily compute the (k—1)st derivative:

s—k+1
PR V(@)= > yigpoa(i+k—1)(i+k—2)--- (i + 1)z,
i=1
which has a root at zero. This is the contradiction we have been seeking. D

THEOREM 3.3. Let z, F be as in Theorem 3.1, then the maximum attainable
order of the kth derivative approzimation (13) is min(p—k+1,s—k+1).

Proof. The proof follows directly from Lemma 3.2 since the coefficients can only
be determined if v=k+1—1 satisfies v < s and v < p. ]

4. The numerical solution of the consistency equations. In this section
we consider what happens when we introduce approximations for the derivatives in
the system of consistency equations. The problem is that of understanding the con-
vergence behavior of a sequence of approximate minimizers to approximate problems.

In §2 we showed how the consistency requirements on the initial values and solu-
tion derivatives lead to a system of nonlinear equations (called the consistency equa-
tions) involving derivatives of the problem. In §3, we constructed approximations to
these equations based on finite differences. To prevent confusion, we refer to the equa-
tions developed in §2 as the “exact” consistency system and the equations resulting
from the substitution of difference approximations as the “approximate” system.

Here we first show how certain classes of problems can be greatly simplified by
reductions that yield problems with full column rank Jacobians. (Such reductions
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apply to both the exact and approximate consistency equations.) Next we consider
other classes of DAEs which lead to more difficult, rank-deficient problems, and show
that the special structure of the consistency equations allows the possibility of solving
these problems.

The classes of problems to which we restrict our attention here are precisely those
classes of DAEs whose solution by ODE methods has been considered in the literature.
(See, for example, the recent treatise [11] on Runge-Kutta methods for DAEs.)

4.1. The approximate consistency equations. If we substitute derivative
approximations into the consistency equations, the resulting system will probably
not have a solution. The difficulty occurs because, in general, the human problem
solver does not know which of the variables are determined by the constraints (or the
constraint derivatives) and which are arbitrary. If information redundant with the
analytical DAE or its derivatives is specified, the approximation of the problem can
lead to an inconsistency. (See [16, p. 23] for an example.)

For the class of problems linear in z’ that they consider, Berzins, Dew, and Furze-
land [1] avoid many difficulties by taking only a single step of Newton for the one-stage,
forward difference approximation. This is cheap, but probably not accurate. There
is no guarantee that, in solving the linearized derivative equation, the approximation
will not be forced out of the manifold described by the DAE and the user’s known
initial conditions.

To achieve better accuracy, the natural approach is to solve the consistency sys-
tem in the least-squares sense (i.e., to minimize the squared 2-norm of the residual).
The application of this method is complicated by the known rank deficiency of the Ja-
cobian. In certain cases, however, the rank-deficient part of the consistency equations
can be removed by taking advantage of the particular structure of those equations.

In the next subsection, we consider reductions to full column rank for a variety of
common problems. We demonstrate in §4.3 that solutions of approximations to the
resulting regular least-squares problems are convergent under mild conditions. We
then turn our attention to the approximate consistency equations arising from linear,
constant-coefficient problems (§4.4) and index-1 DAEs which are linear in z’ (§4.5).
Finally in §4.6 we summarize our method in an algorithm for the initialization of
DAEs.

4.2. Reductions to full column rank. What we mean by a “reduction to full
column rank” is a manipulation of the exact consistency equations that applies as
well to the approximate equations and results in systems of nonlinear equations for
z and z’ having full column rank Jacobians. Here we consider the manipulations
principally as they relate to the exact consistency equations; in § 4.3 we show that for
the difference approximations we are using, the Jacobians of the reduced approximate
consistency equations will typically also have full column rank.

Consider an index-1 linear, constant-coefficient problem

Ex' + Az = f,

where sufficient user conditions of the form Pz + Qz’ = £ are prescribed to specify a
unique smooth solution to the DAE. The consistency equations take the form

A E 0 X f(to)

.’III = f’(to) .
.'L'” 5

(15) 0 A E
P Q 0
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Now suppose the matrix E has a known column basis given by, say, the first r
columns (E = (E1, Ey), where Ey is n x r and R(E;) = R(E)). Then we can solve

the reduced consistency system given by:
z f(to)
= f (tO) 9
Y 4

where zf is an r-vector. By using some properties of linear consistency systems
that are developed below, it is a simple matter to show that the matrix multiplying
(z,z’,zY) in the reduced equations has full rank and that the reduced system has a
unique solutlon which corresponds to a solution of the (unreduced) consistency system
with £/ = (z/,0). The approximate consistency equations corresponding to (15) are
unchanged except that f’ is approximated by a difference approximation Dy f. This
idea is explored below for problems that are linear in z’ in order to demonstrate the
existence of a convergent solution sequence to those problems.

Another reduction can be performed on DAEs in the Hessenberg form (4)—(7).
The consistency equations for an index-2 problem in the triangular form ((3) with
g = g(u,t)) are given by:

A E

0
0 A E
PQ 0

U6 f(UO,DO)
0 = g(uo),
0 0
il
dg
0 = Z)Zus,
ug/ = (UOvUOvus’”{hug’”g)»
82 0
0 = g[ Ug, U 0]+ g'“'g’

ou

where 1 is some function involving first and second derivatives of f, and all partials
are evaluated at u = ug and v = vg.

This system can easily be reduced, since we are only interested in determining
(o, o, U, Vg):

(16) u6 = f(uo,v0),
(17) 0 = g(uo),
(18) 0 = 5 f(uom),
2
(19) 0 = 3E{f(u0,u0), Fuo, ) + 92 | 2L sun,uo) + Oy

The reduction is performed using only knowledge of the separation according to
the triangular form. A similar reduction can be applied to the approximate consis-
tency equations; see [15].

Details of a reduction along the same lines for the index-3 triangular form and an
efficient technique for initializing index-2 and index-3 triangular forms in the steady
state can be also be found in [15].



INITIALIZATION OF DIFFERENTIAL ALGEBRAIC EQUATIONS 217

4.3. Accuracy of solutions for full column rank problems. We have seen
that, in many cases, it is possible to reduce the complexity of the initialization problem
significantly by some simple analysis of the equations. Under certain conditions, when
a full column rank approximate system, such as that derived by manipulations of the
previous section, is solved in the least-squares sense, the error in the solution will
be proportional to that present in the equations. The proof, contained in [15], is a
straightforward application of the implicit function and local approximation theorems.

THEOREM 4.1. Let a mapping G(u, h) satisfy G(uo,0) = 0, and suppose that
|G(u, h) — G(u,0)|| = O(h?) as h — 0, uniformly for u in a neighborhood N of ug.
Suppose G is C" inu and C' in h and that OG /Ou has full column rank in the same
neighborhood (and for h sufficiently small). Then for any fized h sufficiently small,
the local minimum (in u) of the functional ||G(u,h)||? is unique and with respect to
the parameter h, the local minima so defined form a C' function, u = u(h), and
furthermore, ||u(h) — uol| = O(hP) as h — 0.

Note that an important assumption here is that the Jacobian of the approximate
function G has full rank. Since we know that the Jacobian of the exact analogue has
full column rank (for reduced problems), we need only establish that the Jacobian of
the approximate system converges with A. In Theorem 4.2, the convergence is shown
for the autonomous case, which is easily seen to be adequate.

THEOREM 4.2. For a C' function g : R® x R® — R", g = g(z,y), consider the
operator

Dkg hkz:cvz Z hch 0 Z hcz EESY

7=0
as an approximation to the kth pseudoderivative of g defined, recursively, by

8Dk_1gw/+ 3Dk_1g$,,+”.+ dD*~ lg (k+1)

ko _
D%g = Oz Oz’ “ozk)

for k> 1, with

Dog = g(x, .’I)l).

We assume here that r > k and we identify x and z°. Thus ﬁkg is a function
of (z,z',---,z"+V) and D*g is a function of (z,z’,---,z*+V). Let Dhg — Dkg =
O(hP), then, forl =0,1,---,k +1,

dDpg  9D*g
0~ em ~ O
and if r > k, then forl=k+2,---,r+1,
abkg _ v
320 — O(hP).

The body of the proof is found in the following two lemmas which describe the
exact and approximate Jacobians.
LEMMA 4.3, Forl=1,---,k,

ODkg k _ k _
D8 (4 )0 (|, )
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Proof. Using the recursive definition of the pseudoderivative and the equality of

mixed partials, we may write (for [ =1,---,k):
oD 8 oD* g ) . 0 0D*g ..
oz ™ FRONPTON 0z0=2) " 9z
k=1g k—1
oz(- 1) 9z(-1) 9z
0 3Dk g (l+1) 0 8thlg (k+1)
T 520 ° Tt 5am Tapm ©
0DF1g 9Dk 1y
= P gt
The other two cases are given by
O0Dkg dDF1g A
920 ~ P g =D
and
ODFg _ 0Dk~ 1g o
oxtAD) ~ gk T I
The proof of the lemma now follows by a simple induction; see [15] for details. O

Because there is nothing unique about O(hP) approximations to D* there is no
analogue of Lemma 4.3 for the approximations. On the other hand, that would be
more than we really require. Here we establish a result that serves our purposes.

LEMMA 4.4. For an O(h¥) difference approzimation D,’i, and forl=1,---,k,

oDk k _ k -
5l = ( l )Dk 92+ ( -1 )D'“ "o +O().

Proof. To simplify the notation, we define

z(he;) == (Z (hjcz 29 Z (hc’) 20+,

j=0
Forl=1,- -,k
dDkg k! he; L (he)
50 = W a(ll)gw Za, J .gw #(hci))

1=0

k= 1)
( )(hkl Za”gz (hei))
o\ (k=1+1)
+ ( -1 )(hk—mz% i 90 (2(hey)).
=0

Now, assuming that D} satisfies the order conditions of Theorem 3.1 which ensure
that it is an O(hP) approximation to the kth pseudoderivative, we know that
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8
[ Li=k . _
Eatc,:——{oz.?#k: ]—0,"',k+p_1.
1=0
Rewriting these conditions, for | = 1,---,k, we can say

i 1,7=k—1, .

=0

Now we simply note that this ensures that the coefficients a;ct are those of O(hP)
approximation to D*~!, and a similar result holds for aicﬁ_l. 0

The proof of Theorem 4.2 follows trivially by comparison of Lemmas 4.3 and 4.4
for! =1,---,k. The cases I =0 and [ = k + 1 are easy to verify individually, using
propositions developed in the proofs of the lemmas.

When r > k, an examination of the order conditions along the lines of the above
discussion shows that the partial derivatives with respect to z), Il =k +2,.--,7 +1
are all O(hP).

4.4. Solving the linear consistency equations. In [15], a detailed analysis
of the linear case is given based on Lemma 4.5 below, and standard results on the
stability of linear least-squares problems.

Consider the consistency system for a linear DAE:

(20) M(ﬁ):b,

which we assume has a solution, the u-part of which is unique. (Here u represents the

initial value and derivative, u = (;?), and v consists of the higher derivatives which
0

do not particularly interest us.)

LEMMA 4.5. Let M be a ¢ x (p1 + p2) real matriz. Partition M as (U,V), where
Uisqxps and V is ¢ X py. Then (20) has a solution (u,v) € RP* x RP? and u is
uniquely determined if and only if the following three propositions hold: (i) b € R(M),
(ii) U has full column rank, and (iii) R(U) NR(V) = {0}.

Proof. Suppose (20) has a solution (u*,v*)T and that u* is uniquely determined.
Obviously (i) holds. If U does not have full column rank, then U has a nontrivial
right null space: Ud = 0 for some @ # 0. Hence (u* + @,v*)T is another solution
to (20). This contradicts the assumed uniqueness of u*, so (ii) holds. Finally let
z € R(U)NR(V) with z = Uz; = Vzy. Therefore U(z1 + u*) + V(v* — 23) = b, so
that (21 + u*,v* — 22)T also solves the system. By uniqueness, we must have z; = 0
which implies that z = Uz; = 0, so (iii) is established.

We now assume that all three propositions hold. Clearly (i) implies the existence
of solutions. Suppose (ug,vo)T and (uy,v1)T are two solutions, then

U(U() - 'U,l) = V(’Ul - ’Uo).

However, the intersection of range spaces is {0} by (iii), so, in particular, U(uo—u;) =
0. Since U has a trivial null space by (ii), ug = u;. 0
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4.5. Nonlinear consistency equations. In this section we extend our analysis
to include the consistency equations for the subset of index-1 DAEs which are linear
in z'.

We consider a system of DAEs of the form

(21) E(:l),t):l)/ + f(ma t) =0,

where z,7' € R™, F is a n X n matrix-valued function assumed to be C’ in its
arguments, and f : R" x R — R™ is also C’. We assume that the user has supplied p
consistent initial conditions B(z,z’) = 0, which are sufficient in the sense of Theorem
2.8 to specify a unique solution to the DAE. We further assume that F(z,t) has
constant rank in a neighborhood of the solution.

This is an important class of problems from a practical point of view, including
most of the index-1 DAEs arising in engineering and scientific problems. Incidentally,
this is the class of problems which the popular codes SPRINT [1] and LSODI [13]
are designed to handle. The assumption that E(z,t) has constant rank is necessary
to insure solvability.

Consider an approximation to the consistency function (the left-hand side of the
consistency equations):

E(z,t0)z’ + f(z,to)
+ Yo @i{E(z + heiw!, to + hei)x' + fz + heia’, to + hei)}
+([Xizo it E(z + hesa! to + hei)] 2
B(z,z')

Note that if the derivative approximation used is O(h), then the term Y7 _, a;c; -
E(z + he;x',to + he;) which multiplies z” in the derivative equation is itself an ap-
proximation to E(z,ty). Since the latter expression is readily computable, and in the
exact equations, £’ occurs premultiplied by F(z,%o), we choose to work instead with
the somewhat simpler function

M(z,z',z";h)
E(x,to).’L’l + f(-’l?,t())
= | i o ai{E(z + heia to + he;)x’ + f(x + heir',t + he;)} + E(z, t)z” | .
B(z,z')

Note that limp—o M(z,z’,z";h) = M(z,x',z"), where M(z,z',z") represents the
exact consistency function.

This slight modification facilitates the analysis; indeed it is the assumption that
we always work with these slightly modified equations which rules out the possibility
of a catastrophic rank-change in the Jacobian of the consistency function. In the
sequel, we make the following additional assumption.

Assumption 4.6. The Jacobian OM(z,xz’,z")/d(z,z',2") of the exact consis-
tency equations satisfies the following properties in the neighborhood of the solution:
(i) OM(z,2',2")/d(z, =) has full column rank and (ii) R (0M(z,z’,2")/d(z,z')) N
R (0M(z,o',2")/0z") = {0}.

This assumption essentially says that the linearization of the consistency equa-
tions has the same structure as a system of consistency equations for a linear DAE;
it eliminates the possibility of a degenerate case in which, for example, the partial
Jacobian OM (z,z’',z")/0(z, ') does not have full column rank at the initial point,
even though the solution is uniquely determined at that point and in a neighborhood.
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Let Z = (Z,Z’) be the (unique) consistent initial vector for the DAE (21). We are
interested in the the local minima (relative to (z,z’,z")) of the functional

¢(z, ', 2" h) := |M(z,2',2"; b)||?

for various choices of h. Because the Jacobian of M is generally rank deficient, we
cannot assume that ¢ is strictly convex, so for any fixed value of h, ¢ will not have
a unique local minima. On the other hand, Theorem 4.7 establishes that the local
minima for sufficiently small & can be chosen as a continuous function of h whose
(z,z')-part converges to Z as h — 0. (From this point, z(h) represents the (z,z’)-part
of a local minimum of the consistency functional approximated with displacement h.)

4.5.1. Existence of a solution to the approximation.

THEOREM 4.7. Let M, ¢, and Z be defined as in the previous paragraphs. Suppose
that the Jacobian obeys the conditions of Assumption 4.6. Then there exists an H > 0
and continuous functions z(h) and z"(h) (defined for 0 < h < H) such that (for h in
(0,H)) (2(h),z"(h)) is a local minimum of ¢(z,x";h) and limp_o 2(h) = Z 2.

Before proving this result, we give a couple of simple lemmas which allow us to
reduce the structure of the rank-deficient problem to that of a full rank system.

The first lemma implies that we can always select a column basis for E(z,t) in a
neighborhood of the initial point.

LEMMA 4.8. Let A(u) be a C' matriz-valued function. Suppose that A has con-
stant rank r in a neighborhood of a point ug. Then if some set of r columns of A(u)
s linearly independent at u = ug, the set remains linearly independent for u in a
neighborhood of this point.

Proof. Let i1,1a, -1, be the indices of r linearly independent columns of A(uo)-
Define a new matrix function W(u) with just those r columns. Since small perturba-
tions of u lead to small perturbations of W (A is C’), the result follows immediately
by the fact that sufficiently small perturbations cannot lower the rank of a matrix. O

The next result shows how we can reduce the rank-deficient problem to a full rank
problem.

LEMMA 4.9. Let G be defined on RP xRIxR" — R?® have the form G(u,vy,v3) =
Gi1(u) + Ay (uw)vy + Az(u)ve, where Gy is some differentiable function in u and A;
and Ay are differentiable matriz-valued functions. Suppose further that As(u) =
A1 (u)B(u), where B is differentiable. Then ||G||* has a local minimum at (u,v1,vs) if
and only if ||G||* has a local minimum at (u,vy + B(u)vs), where G is the restriction
defined by G(z,y) = G(z,y,0).

Proof. The condition for the squared norm of a smooth mapping f(w) to have a
local minimum at a point wo is that (8f/0w)|T_,, f(wo) = 0. Therefore, for [|G|| to
have a local minimum at (u,v1,v2) we must have that

8Gy 041 04, \T B
(22) ( ™ + 5 vy + 5u 112) G(u,v1,v2) = 0,
(23) Al (U)TG(U’ V1, ’02) = Oa
(24) A2(U)TG(U7U17U2) = Oa

2 To simplify the details of the proof, we have here neglected showing the existence of an O(hP)
solution sequence when the approximation has this order. In fact, the sequence constructed in the
proof, below, has this property.
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where all the derivatives are evaluated at (u,vy,vs).

It is readily apparent that (24) is a direct consequence of (23), since As(u) =
A1(u)B(u), so we work with just the first two equations.

The equations satisfied by local minima of ||G||? are

T
5ot a—u(vl + B(u)vz)> G(u,v1 + B(u)vs)

(26) A;(w)TG(u,v1 + Bu)vy) = 0.

(25) (8G1 04,

0,

Note that A;(u)(vi + B(u)vg) = Ar(u)vy + Ag(u)vz, so G(u,vy + B(u)vg) =
G(u,v1,v2), and upon comparing the two sets of equations with this in mind we find
that (23) and (26) are the same equation. Subtracting (25) from (22), we arrive at

01 gy _ 042]"

(27) 2o B - —-

G(u,v1,v2) = 0.
If this holds given either set of equations, the equivalence is established. Differ-
entiate Az(u) = A;(u)B(u) to get

042
ou

Upon substitution in (27) we need only that (A;(u)(0B/0u)va)TG(u,v1,v5) = 0,
which follows directly from (23) or (26). a

With these lemmas we are ready to prove Theorem 4.7.

Proof. From the constant rank assumption and Lemma, 4.8, we know that for z
in some neighborhood of Z, there is a fixed choice of r columns of E(z,ty) which form
a basis for R(E(z, 1)), where r is the rank of E(Z,t). Without loss of generality, we
may assume that the first r columns, E(z, t), form such a basis. Let Es(z,t) represent
the remaining n — 7 columns. Es(z,tg) = E1(z,t0)V(z), for some V which has the
same smoothness as E. Partition z” as (z¥, %), according to the above partition of
E(.’L‘, to).

We next apply Lemma 4.9 to see that (z,4’, #7,2%) is a local minimum of ¢ if and
only if (&,2',2{ + B(&)44) is a local minimum of the restriction ¢ of ¢(z, ', z{,0) to
(z, ', zY)-space. This means that we can arbitrarily select = = 0.

Thus the reduced consistency function may be written

=A;(u)— + —u—B(u)

M(z,z',z!;h)
E(.’L‘, to).’L’l + f(wv tO)
= | + Yo {E(x + heit', to + hei)x' + f(z + hesr', ¢ + he;)} + Ey(x, )z
B(z,z')

To establish the existence of a convergent sequence of solutions, we will demon-
strate that this reduced function has a full rank Jacobian, so that Theorem 4.1 insures
the existence of a locally unique minimum for h sufficiently small.

First note that Assumption 4.6 means that the reduced function which is the limit
of M as h — 0 has a full column rank Jacobian.

The difference approximations we consider here, being linear combinations of
values of F' at various points, possess the same continuity as F itself. Lemma 4.2
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establishes that the Jacobian of the approximation is an approximation to the Jaco-
bian of the exact system. Therefore, in particular, Jy; = OM (z, ', z})/0(z, z', =)
has locally full column rank and, since rank cannot decrease in a sufficiently small
neighborhood of its matrix argument, the continuity of the approximation means that
J 7 has full column rank in some neighborhood of the initial point.

Thus we have reduced our problem to a full column rank problem, whose solv-
ability is guaranteed by Theorem 4.1. 0

If we knew which columns of F form the basis E;, we could construct a full
rank approximation with the same solution as the orignal rank-deficient system of
consistency equations. But even when such a basis cannot be explicitly determined,
its existence alone evidently serves to guarantee the existence of a convergent solution
sequence.

Unfortunately, this result does not tell us that the (z,z’)-part of solutions we
actually obtain in solving the approximate consistency equations in the least squares
sense will necessarily converge. The problem comes from the fact that some compo-
nents of the vector of derivatives (components which are not being sought) may tend
to infinity as A — 0. In Lemma 5.4.5 of [15], it is shown that as long as a solution
sequence remains bounded as h — 0, the (z, z’)-part must converge; this result follows
from the Bolzano—Weierstrass theorem.

4.6. Algorithm. We are now ready to state a general algorithm for the initial-
ization of DAEs.
ALGORITHM 4.1. DAE Initialization.
1. Set coefficient arrays for difference approximations,
unit round-off error, initial displacement h, tolerance 7
2. Repeat
2.1. Solve ||My(z,z’, -+, z(™+D)||2 = min
(or the reduction) for (zo, () (and higher derivatives)
2.2. Estimate error-norm €, in (zq, zg)
2.3. Estimate improved displacement, h
2.4. Until ¢, < 7.

5. Numerical experiment: trajectory control. In [15], a number of impor-
tant implementation questions are considered. In particular, it is shown there how to
exploit bandedness of the partial Jacobian matrices of the DAE during the formation
and solution of the consistency equations and how to choose a differencing parameter
for the approximation of the Jacobian of the consistency function; also described there
is a particular implementation of the DAIS method.

Here we briefly describe one numerical experiment. The following system, called
a “trajectory prescribed path control problem,” is a DAE for which initialization is a
nontrivial problem. The problem consists of six differential relations:

H' = Vgsin(y),
, _ Vgcos(y)sin(A)
& = rcos(A) '
)\/ _ VR
= - cos(y) cos(A),
-D

Vi = W—gsin('y),
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TABLE 1
Constants and derived variables.

T H + ae

g p/r?

L 5pCLSVA
Cr(a) .0lar/180
Cpo(a) 04+ .1C%

D 5pCpSV3
p(H) | .002378¢ /23800
ae .20902900e+9

M .1407653916e+17

Qp .72921159e—4

m .2890532728e+1

S 1.0

—Q%rcos()) (sin(/\) cos(A) cos(y) — cos(A) sin('y)),

J o Lx‘s}iﬁ) +UC°‘S/S) (VTI% _ g> + 205 cos(\) sin(A),
+S_2_2E%zs@ (sin(/\) cos(A) sin(y) + cos(A) cos('y)) ,
A = m—ff%—f()’y) + % cos(7y) sin(A) tan(\),

—-2Qg (cos()\) cos(A) tan(y) — sin()\)) ,

Q27 cos(A) sin(A) sin(A4)
* VR cos(7)

)

coupled with two constraints (the desired path):

v+ 1+ 9(¢/300)? 0,
A—45-90(t/300)2 = 0,

where the differential variables are (H, £, X, Vg, v, A), the algebraic variables are (a, 3)
and constants and “derived” variables are given in Table 1. The (provided) initial
values for the differential variables are (to numerical precision)

(Ho, &, Mo, VR, 0,70, Ag) = (12000, —/180, 100000, 457 /180, 0, 0).

For units and physical interpretations, see [2]; for our present purpose, we ignore the
physical significance of the problem to treat it solely as a test case for the initialization
method.

In this example, the initial conditions are given by initial values for the differential
variables. In [2] it is demonstrated that this problem has index two. The problem
has interesting features with respect to initialization: the equations are nonlinear
and, what is relatively rare in the study of high index problems, even the algebraic
variables (here o and () occur nonlinearly. The problem is in the Hessenberg form
and results in consistency equations of the form (16)—(19).
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TABLE 2

Trajectory control problem.

Order h1 ha error(u) | error(u’) | error(v) | error(v’)
1 10.0e—06 | 5.85e—04 | 1.77e—17 | 2.62e—09 | 9.77e—05 | 1.35e—06
2 36.8e—05 | 3.16e—03 | 1.77e—17 | 3.18e—10 | 3.04e—07 | 7.39e—06
3 24.0e—04 | 9.22e—03 | 1.77e—17 | 1.05e—10 | 2.51e—08 | 3.69e—07
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DAIS solves the reduced equations (reduction of §4.2) by replacing the first
derivatives and second derivatives by independent finite difference approximations
constructed from coeflicients computed according to Lemma 3.2, using ¢; = 3.

In [15], the same displacement was used for each of the derivative approximations,
and this was provided a priori to DAIS. In the current version of the code, the
parameters h; and ho used in the difference approximations to the first and second
derivatives respectively are computed automatically according to the formula

(i(IPI + 1)eM>1/"’+">
hi = (=t :
pIT|

where €)s is machine epsilon, p is the order of the approximation being used, and
I' is some measure of smallest scale present in the problem. The estimate is the
approximate optimum choice of displacement (under certain simplifying assumptions
on the behavior of the rounding error) if the pseudoderivatives of the ODE

(28)

y =Ty

are computed using the finite-difference approximations of §3. When the smallest
scale present in the problem is used as the basis for the displacement selection, it will
typically lead to an overestimate of the optimum choice for the larger modes. No
claim is made here that (28) is the best displacement selection strategy, neither do
we suggest a method for estimating the smallest scale of the problem, T'.

Heuristics for the selection of the displacements for the difference approximations
to the Jacobian can be found in [15].

In Table 2 we give the relative error in Euclidean norm of the computed initial
solution and derivatives for the trajectory problem. Here u = (H,{, A\, Vg,7v,4) is a
vector of differential variables, and v = (a, 3) is the vector of algebraic variables, in
which we would expect to find the larger errors. In this example, we chose I' = 10~°.

The problem was solved on a Digital Equipment Corporation yVAX in double
precision (epr & 10717). In this environment, the most accuracy we would expect to
be able to achieve in the derivatives and algebraic variables would be around eight
digits. The results given in Table 2 are therefore as expected. It is interesting that the
higher-order approximations seem to perform best. Similar behavior was observed in
some other experiments.

6. Conclusion. In this paper we described a practical method for initializing a
differential-algebraic equation and its numerical implementation. We showed how the
consistency conditions for an index-m DAE lead to a system of equations involving
derivatives of the problem. We then showed how these equations can be approximated
by finite differences and discussed the solution of the resulting system. Finally we
described a numerical experiment in which the authors’ program, DAIS, was used to
initialize a highly nonlinear DAE arising in trajectory control simulation.
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Many important questions have not been addressed here, including, in particular,
the selection and analysis of a robust nonlinear solver for the rank-deficient case and
the application of the method to the important class of index-2 DAEs in the semi-
explicit form but not in triangular form (e.g., those arising typically from the method
of lines solution of PDEs).
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