Revision Recognitionfor Scientific Computing: Theory and Application

Andrew Strelzof
Universty of CaliforniaSantaBarbara
Departmentf ComputerScience
SantaBarbaraCalifornia93106
strelz@engineering.ucsulu

Abstract

Scientificcomputirg applicaions are rarely equipped
with high qudity graphic userinterfaces(GUIs), in part
becaisetheinterfacescannd berevisedquidkly enoudn to
keep pacewith rapid changesin the uncerlying apgdica-
tion. A critical stepin userinterface maintenaceis re-
vision recaynition: the processof determining giventwo
versionsof a program, which parts of the original program
hawe beenchanged,deletedor preservedFor large, highy
compex scientificapplicaionsthis problemis a significar
barrier to interfacemaintermnce In this pape we present
the“r eticentprogrammermodel” which transformghere-
vision recaynition probleminto an optimizatian problem.
Thesolutiors obtaired usingthis modelare exactfor small
apgications and are high quality estimatefor mediumto
large applicaions. An exampleof howthesesolutionscan
beusedto facilitate userinterfacemaintermnceis alsopre-
sented.

Keywords

Revision recognition, graph mapping software
evolution, scientificcompuing.

1. Intr oduction

Maintaining userinterfages for scientific compuing is

a long standingprodem. Fundanentally, the userinter-

faceprogmammerrarely hasthe mathenatical backgound
to uncerstandthe complex changs that take placein nu-
mericsoftwarepackagsasthey arerevised Developersof

numeric software are usually unwilling to investthe time
neecedto becaneexpeat in interfaceprogrammirg, anarea
of progammingvely far from their basicexpetise. The
gereral assumptions thatindividualswho canbridgethe
gap are very rare. Thusresearchhas con@ntratedupon

LindaPetzold
University of CaliforniaSantaBarbara
Departmentf ComputerScience
SantaBarbaraCalifornia93106
petzold@engieering.ucskedu

communication betweenthe developers of nuneric soft-
ware on the onehand andinterfaceprogrammers on the
other

Researclinto this problemis dividedbetweerassistance
for theinterface progammerin theform of tool-kits [3, 5]
andvisual ervironmerts [9, 5], andcommuicationassis-
tance(enforcemet) in the form of tagsdevelopersplace
in their code[3] or softwarewrappers[7] developersbuild
arownd their code. Thesetags or wrapgers can then be
scannedo provide the information neededo refornulate
auserinterfacefor arevisedapplication. The prablemwith
thisappoachis thatit placesaconsideableburdenuponthe
developerto wrapandre-wraptheunderlying softwarewith
eachrevision. In ourresearchve seekto deterninewhatas-
sistancecanbe provided to the interfaceprogammerwith
only minimal participationof the numeic softwaredevel-
oper

The interface programme’s first goal whenupdating a
user interfae is to identify which code segmerts in the
uncerlying applicationhave remainel largely unchaged.
The supprting interface coce for thesesectionscanthen
bereusedwith only minor modification. Theremairder of
the codein the new version mustthen either be new, or
chan@d andreomganizedso radically that it would not be
usefulto try to presere theinterfacecoderelatingto these
sections. We term this processrevision recaynition. For
small codes revision recognition canbe solved by inspec-
tion. However, for large, comgicated multi-module scien-
tific compuing codesthe prodem is so overwhelmirg that
it is mostoftenhardledby starting over from scratch. We
believe that this is one of the root causesf the geneally
poa quality of userinterfacesfor scientificcomputing.

In this paperwe presenta revision modelwhich throuch
aseriesof transfamationsredu@stherevision recogtition
prodem to a 0-1 binary optimization prablem. The solu-
tions derived in this way closely mirror thosederived by
hand Severd exampesaregiven,andanexamge of how
thesesolutionscanbe usedto helpmaintainuserinterfaces
is presented

2. The “Reticent Programmer”

Revision recogition canbe though of abstractlyasa
gragh mappng problem Giventwo versionsof a progam,
corsiderboth progamsasdirectedgrapts in which nodes
are Basic Blocks and edgesare directiors which progam
executioncantake. A BasicBlock is a seriesof codestate-
mentsin acomputerprogramsuchthatprogamflow enters
only at the first statementind exits only at the last state-
ment. EachBasicBlock in the old versian may eitherbe
mapped to a BasicBlock in the new version or mustbein
the“deletedset”. EachBasicBlock in thenew versionmust
eitherbe part of a mappingfrom old to nev or mustbein
the“added set”.

If the olderversionhas N Basic Blocks andthe newer
version has M Basic Blocks thenthe numter of possible
mappngsis of the order of Max(N, M)!/|M — N|!. The
nurrber of basicblocksin anapplicationis geneally pro-
pottional to the numker of lines of code,with atypical ra-
tio beingarourd 1.8 lines of codeperbasicblock A large
scientificcomputing applicaion with onehurdredthousand
linesof codewill haveabou 60thousandBasicBlocks. The
spaceof all possiblemappngsis clearlyenornous. Yetit is
possiblefor theinterfaceprogammerto solve this problem
by inspectiorfor smallto mediumsizedcodes.Thisimplies
that althowgh the spaceof all possiblemappngs is enor
mous, the “searchspace”which the progammertraverses
by making comparisonsback and forth betweenold code
andnew is relatively smallandcompact. Our aim hereis to
designanalgorithm which exploresbasicallythe samesub-
spaceof reasomable solutionsthe progammerwould look
at, evenfor programsthatare solarge thattheir inspection
by handwould be prohbitive.

To identify this subspaceof reasonble mappirgs we
needto make a conjectue abou the behaior of progam-
mers. Suppsea proglammeris assignedhetaskof revis-
ing a softwareappication andthenexplaining exhaistively
the purppseandeffect of eachchan@. We assumeéhatthe
programner will make revisionsin sucha way asto mini-
mize the amoun of explandion necessary Intuitively we
canimaginethe progammerwith block diagamsof the
programandits revision making notatims: “theseblocks

arethe samein bothversions”,“this block waschangd to
fix anerror”“this blockwasaddedasanew level of contrd”
andsoon. Our assumptions essentiallythatthe progam-
merwill prodwcethenew versionwhichminimizesthetotal
sizeandcompleity of such“notes”. We call this assump-

tion the ReticentProgrammer Conjectue.

3. Minimum Information DistanceMapping

Abstractlywe wish to choosehe mappirg from old ver
sionto new which allows usto constrct the smallestpos-

sible machne which fully describesthe mappng. Kol-
mogorov Compleity is definedasthe size of the smallest
machire which canprodice a given string. 'Machine’ is
thenusuallyexterdedto mean’computer program’. Thus
for small or repetitve stringsa few lines of codewill suf-
fice, while for large stringsof a more complex structurea
muchlargerprogiamis requited. The propertiesof theKol-
mogorav Compleity have beenextersively studied[10].
Many methals of appraximating the Kolmogorov Com-
plexity have beendescribe in theliterature[10]. Thesim-
plestmethal is by usingcompresionsoftwareasdescribed
in [10]. By “zipping” afile we createa smallmachinecon-
sistingof the zippedfile andtheunap utility, which canre-
producethe original string. It hasbeenshowvn thatthe size
of the zippedfile is then proportiond to the Kolmogaov
Compleity.

TheKolmogorov or informationdistancecanalsobeap-
proximatedusingcompeessionsoftware. Suppsewe have
two files A and B andwe wish to find the distanceof A
givenB. We zip B andthentake B’s Huffman encoding dic-
tionaryanduseit asa guideto compessA. If A andB are
the sameor very similar, thenthesizeof A zippedwith B’s
dictionary will becloseto thesizeof A zippedwith its own
ideal dictionay. If A andB arefar apartthenB’s dictio-
narywill doa poa job of compessingA. Normalizedfor
thesizesof A andB thismethal yieldsanappoximationto
the informationdistance[10]. We call this appraximation
Kd(4, B).

Theinformationdistancebetweertwo versiors of acode
gives arelatve measuref how closelyrelatedthetwo ver
sionsare to eachother We call this the Simple Infor-
mation Distance betweenthe two versiors. This simple
distances not the maximum rateof compessionpossible.
Suppaethe old versionof a codeconsistedof the blocks
AB andthe new versim consistedof AB’. If we take A
givenA andB’ givenB togetherwe will achieve a greater
rate of compessionthan if we took AB’ given AB. Our
goalis to find the mappirg betweerblocks in the olderand
newer versiors which if we compesseachmapping sepa-
rately producesthe greatespossiblecompession.We call
this mappingthe Minimum Information Distance Map-
ping [MIDMapping] andtherateof compresionfoundthe
Minimum Information Distance[MIDistance]. We de-
fine the “cost” of eitherdeletingor creatinga block sothat
if we find thatall the blocksof the old versionhave been
deletedandall theblocksof the new versionhave beencre-
atedthenthe MIDistancewill bethe sameasthesimplein-
formation distance.Similarly, we nomalizethe individual
compessionratesso thatif the two versiors arethe same
andall old blocks mapto identicalblocksin thenew version
thentheMIDistancewill bezera

The MIDistancecanbe thought of asa measuref how
mucheffort is needd to understad the new versionif the

old versionis compldely uncerstood. If the two versiors
arethesamethena perfectundestandingof theold version
leadsto a perfect understandingof the new version. If the
two programsare not essentiallydifferent versionsof the
sameprogam,thenstudyingoneof the programswill only
be usefulto the degreethatthetwo progamsaregenerally
related

Suppaethatthe old versionof a progam hasthe two
blocks (“abcdff”, “x"), andthenew versionhastheblocks
(“abcd”,"fffx"). Thesesectionsof codewould clearly be
relatedbut by mappig single blocks to single blocks our
algoithm might missthis conclwsion. We therefae con-
siderthe classnot just of all blockto-block mappirgs but
of all isomorphic subgrghsof which block-to-bock is the
smallestpossiblecase.Thisis alsousefulcompuationally.
For vely large codesthe setof all block-to-block mapping
is vely large. By settinga minimum subgrgh sizewe can
dramatically reducethe sizeof theresultingalgelyaic prob-
lem.

A seconccompuationalissueis block coloring We can
colorthegraph representatias of the progiamsasbrancles
andnonbrarchesby assuminghatbranclesin theold ver
sion canonly be mappedto brarchesin the new version.
This is impottant becausdhe geneal prodem of finding
isomophic subgaphshasbeenfound to be NP — Hard
[8]. Becausecodegraghs are“densely colored, the com-
plexity of our algorithmto find subgrap isomorghismsis
on the order of the factorial of the “meanfree path” (the
averge lengthof a sectionof blocksall of the sametype).
The lengthof the meanfree pathincreaesonly gradially
with increasingorogamlength.

Coloring is interestingin anotter sense. Supposewe
hadtwo versionsof a codeboth of which hadno brarches.
Thenthe prablem of finding the MIDMapping would be
equvalentto the “Single Alignment” problemfrom bioin-
formatics. If the two versiors consistedof nothing but
brarchesthenthe MIDMapping problemwould be equiv-
alentto “Multiple Alignment”.

4. Transformations

In this sectionwe outline the seriesof transfomations
neecedto calculateheMIDMapping andMIDistance.Sup-
posewe aregiventwo versiors V; andV, of anapplicdion.
We begin by strippingthe codesof commaents and contin-
uationmarlers. We thencalculatethe Simple Information
DistanceKd(V1, V).

4.1 BasicBlock Graphs
Thefirst transfom is from codeto a BasicBlock gragh.

We usethe procedire outlinedin [1] for deriving the Ba-
sic Block grapls G; of size M and G, of size N from

V1 and V; respectrely. Dende the blocks of G by b;;

andthe blocks of G2 by bj2. The blocks of both grapts
are colored as brarch or nonbrarch. It shouldbe noted
that Basic Block networks are directedand semi-odered.
A semi-oreredgraphis onein which somesiblings may
be swappedwith eachotherwhile othes maynot, depenl-

ing on the type of paren nock involved. If the parentis

a BranchBlock thenthe ordeing of child blocks is arbi-
trary andtherefae unodered.All otherblocksareordeed
amorg siblingsfrom left to right. Thenetworkis usuallynot
atreebut it doeshave aroot: the beginning of the primary

subraitine,andat leastoneleaf: anexecutian end-pant of

theprimary subrautine.

4.2 Isomorphic Subgraphs

The secondtransfomation is from two Basic Block
graghs to a setof their isomophic subgaphs. Giventwo
versiors of a programin Basic Block represetation, we
find thesetof all subgaphswhich have thesameconnetiv-
ity, parentto-child andsiblingto-sibling relationshig and
aretherebreisomoric. The subgaphsfound mustmatch
block for block in type, meaningthat they have the same
coloiing.

A geneal overview of thealgoiithmis asfollows. (I) We
exanine eachblock of the original of the codein turn. (I1)
We find the setof all possiblel-to-1 mappngsbetweerthe
chosenblock andblocks in the revised codewhich are of
the sametype. Theseisomorhismsof sizeoneareadded
to the solutionset. (Ill) Around eachisomorghism of size
onewe recusively build largerandlargerisomorgismsby
consideing the setof subgrghswhich codd becreatechy
addirg onemore conrectedblock of the sametypein both
versiors. Isomaphic subgrahsfound areaddedto the so-
lution setunlessthey have alreadybeenaddedpreviously.
(IV) When no further isomophismscan be found we are
finishedwith this block in the origind versionof the code
andwe move on to the next block Whenall the blocksin
thefirst versionof the coce have beenexamined, we have
collectedall possiblesubgrap isomorptisms betweenthe
two versiors.

It shouldbenotedthatthis proaessis complicatedy the
factthatchildrenof brarchesareunorcered. Thuswe must
conside the pernutationsamongthe children of brarches.
If thesechildrenarealsobrarchesthenwe needto further
conside permuationsamongthesegrardchildren andso
on. Severd nested‘IF” statementsn a row canleadto
dozers of isomorghic subgrap canddates.

Thereis oneothercorsiderationjoops. Suppaethatin
the old versionof a codewe find theloop A-B-C-A, while
in the new versian we find A-B-C-X-A. Theseloops are
clearlyrelatedbut we would not necessarilyecogize this
becase the two loopsare not isomorghic. Therearetwo

possibilities. We could considerloops to be in their own
class,making all loops effectively isomorghic. Consider
ing thatlarge applicatiors may have hurdredsof loopsthe
nunber of combirationswould be astronanical. Instead,
we chooseto ignore the backjump of aloop sothatin the
abore examplewewouldbecompringA-B-C with A-B-C-
X, andcorrectly find thatthe A-B-C sectionwaspresered.

Our solutionsetS consistf s pairsof isomorghic sub-
graphs ((I11, I12), ...(Is1, Is2)) wherethe left subgrap is
from V7 andtheright subgaphis from V5. If we aregoing
to limit our solutionto isomorghic subgaphsof size L or
greder, thenall pairsof isomorghic subgraps of sizeless
thanL areremovedfrom thesolutionset.We call theresult-
ing set@, sothat@; = (I;1, I;2). Q is thesetof poteriial
mappngsbetween’; andVs.

4.3 Computing the Kolmogorov Distances

We next derive the rate of compessionfor the isomor
phicsubgaphin Q. Theundelying text of eachsubgaphis
corstructedby concdenatingthe text of eachblock “depth
first”. Thus,for a block cortainingthe text “XXXX” with
two child blocks with text “YYYY” and“ZzZzZ" the con-
structedext wouldbe“XXXXYYYYZZZZ . Inthespecial
caseof a“join” wheretwo or moreedgesleadinto a block
wewill take theblockto bethechild of its rightmostparent.
Dending this depthfirst conatenationfunction CAT (1),
wherel isasubgrap, for eachpairof isomophicsubgaphs
q; in @ wefind

¢; = KAd(CAT(I;1), CAT(I;2)).

The ideal rate of compiessionfor the right handsubgaph
text is alsorecoracedasz;.

We notethat X (theaverage of thez;’s) would bethecom-
pressiomrateif V; wasidenticalto V5.

4.4 Algebraic System

The next stepis to reformulate the problem of decid-
ing which mappngsin @ maximze the compessionof V,
given V7 asanalgebréc system. This systemconsistsof
an objective function which is to be minimized together
with constraims upon the solution. Define the varialles
(q1, 92, ---,qs) suchthatif the mappng Q; is part of the
MIDMapping theng; takesthe value 1, othewise g; is O.
We introducethe variables(y1, ya, ..., ¥m), which take the
value 1 if the correspading blockin Version2 is created
and 0 othewise, and the variable (z1, 2, ..., 2,) which
take the valuel if the correspondig blockin Versionl is
deletedandO otherwise.The“costs” for theq; aregivenby

thecorrespndingcompessiorrates,c;. Thecostsfor both
y; andz; aresetto Kd(V7, 2) (theSimplelnformationDis-
tance). If our MIDMapping solutionwerethat all blocks
in Vi have beendeletedand all blocksin V5 have been
addedthenthe MIDistancewould be equalto Kd(V7, V»)
(theSimplelnformationDistance).

Theobjective function canbewrittenas

qr¥c1+ga*cat ... gsxcs+ (Y1t Fym+2z1+...+2,)*D.

Constraintarisefrom thefactthatsomemaypingspreclule
othes from alsobeingin the MIDMapping. Take left(b;;)
to be the setof all mappngsin which theblock b;; in G
participates. Only one of thesemapping can be part of
the MIDMapping. The block could also be deleted. We
formulatethe corstraintson b;; as:

For blocksin G2 we cansimilarly formulatethe constraims
onb;s as

> right(bsz) +y; = 1.
Thustherewill be N + M constraims onthe system.

4.5 0-1Optimization

Thesystemwe have constrietedis an“0-1 optimizatian”
prodem. Thestatevariablesy;, y;, andz; cantake the val-
ueszeroor oneexclusively. The objective function, which
is reallythe overall rateof conpressionijs the sumof these
statevariablestimestheir costs.

Thefinal stepis thesolutionof theoptimization prodem.
Thealgebaicconstrintsaregeneratdin text, MPSformat,
astandardor encaling algebraicsystemsWe thenusethe
0-1 optimizationsoftware packa@ “opbdp” [4]. The solu-
tion is alisting of thevalues0,1 of the statevarialdes. The
setof ¢'s,y'sandz’s setto 1 in thislisting is the MIDMap-
ping. The calculatedvalue of the objective function is di-
vided by the numberof mappingpairsin the MIDMapping
solutionto getan average compessionrate. The MIDis-
tancecompessionrate canbe comparedto the ideal com-
pressiorrate X, which it approachedor smaller lesscom-
plicatedrevisions.

5.Results

We bagin this sectionby introducingour target applica-
tions. LAPACK is a well-known collectionof commaly
usedFORTRAN nurreric routines[2]. It is corvenientfor
this study becauseprevious releasesla, 1b, 1.1, 2.0 and
3.0 are available, allowing us to trace throwgh 15 years
of revisions. The codes which we follow for this paper
areSLANV, a Schurfactorizdion routing andSSYTF2,a

Application Lines Blocks Edges Branches
SLANV2ver2.0 82 20 31 7
SLANV2ver3.0 99 21 30 8
SSYTF2ver1.0 183 85 155 31
SSYTF2ver2.0 181 84 153 32
SSYTF2ver3.0 193 94 143 33

Table 1. Properties of the target software .

BunchKaufman factorizatiorroutine. Table1 summaizes
thepropertiesof SLANV andSSYTF2.

Table 2 shavs the numbe of isomorplic subgaphs
found betweenversiors of SLANV andSSYTF2. We also
include a setof isomophic subgrphsderivedfrom a hypo-
theticalrevisionfrom SLANV version2 to SSYTF2version
1. We will alsofollow this exanple to shav thatgiventwo
codes which are not versionsof the sameapgication the
MIDistancewill not improve muchover the Simple Dis-
tance.

Isomaphic Subgaphs 1 2 4
SLANV2 ver2tover3 225 203 58

SSYTF2ver1tover?2 3800 3231 3236
SSYTF2ver2tover3 4228 2965 1215
SSYTF2verltover3 4317 3001 1390

SLANV2v2to SSYTF2vl 893 186 48

Table 2. The isomorphic subgraphs of
SLANV2 and SSYTF2 by size. By limiting the
subgraph size to 4 or larger, the number of
state variables in the algebraic problem is re-
duced.

Table3 shavs Kd, thecompessiorrateachieved by zip-
ping the columnapplicatia usingtherow applicdion’s en-
codng dictionap, for versionsof SLANV2 andSSYTF2.

Table 4 shows the averageideal comgessionachiered
by compessingthe codes block by block The MIDis-
tanceapprachesthe ideal compressionrate with smaller
and less compgex revisions. For codes which are essen-
tially unrelated the MIDistancewill apprach the simple
compessionrateat shovn in Table3. Thus,for the prob-
lem MIDMapping(SSYTF2v1,SSYTF2v3) we find a
MiDistancecloseto the ideal of 28%, and for the prob-
lem MIDMapping(SLANV 2v1, SSYT F2v3) wefind the
MIDistanceto becloseto 45%.

Table5 shavs the MIDistancecompessionfor the two
sampleprodems. We usedthe opldp [4] binary opti-
mizationpaclkageto find thesesolutiors. The global min-
imum of the objective function is divided by the num-
ber of mappngs found to arrive at the MIDistance, the

SSYTF2vl SSYTF2v3 SLANV2vl1
SSYTF2vl 41% 45% 7%
SSYTF2v3 42% 43% 79%
SLANV2v1 78% 80% 40%

Table 3. Compression rates of column ap-
plication given the row application. Thus,
SSYTF2v3 compresses to a little less then
one half of its size using its own Huffman
encoding dictionar y and to about 70 percent
of its size using the dictionar y of SLANV2,
therefore Kd(SSYTF2v3,SSYTF2v3) = 0.45
and X(SLANV2v1, SSYT F2v3) = 0.70.

SSYTF2vl SSYTF2v3 SLANV2vl
23% 28% 27%

Table 4. The ideal compression rate calcu-
lated by compressing the Basic Blocks of
a code one at a time. Compression soft-
ware does have some overhead and although
care was taken to suppress extraneous labels
and header s the theoretical rate of ideal com-
pression is probably somewhat greater than
shown.

averag compresion rate. In the caseof the prodem

wherethetwo applicdionsarenotversiors of the sameap-
plication MIDMapping(SLANV 2v1,SSYT F2v3), the
MiDistancewasfound to be 44%. Thisis animprovement
over the simple compessionrate of 80%, but doesnot ap-
proach theidealcompessionfor thenaew code,SSYTF2v3
of 27%. Any two numeic codeswritten in the samepro-
gramming languagesharesomeof the samefeaturesike

double loops, andtherefae are more compessedby con-
sideringblock-to-block compession. Giventwo unknown

codesthe MIDMapping algorithm deterninesthemto be
versiors of the sameapplication if the MIDistance ap-
proachesthe ideal compessionrate and if the resulting
MIDMapping shavs a high degree of organizationrather
thantherandm pairingof matchingfeatues.

Figure 1 shavs the result of the
MIDMapping(SLANV2v1,SSYTF2v3), with square
boxes indicating matching isomorplic subgrphs and
ovds indicatirg blocks that have either beendeletedin
SLANV2v1 or addedin SSYTF2v3. SLANV2vl1 and
SSYTF2v3arenot versionsof the sameapplication sothe
mappng shaws little organization. Parentehild relation-
shipsamorg mappedsubgaphsarenotpresered. Theris
no sectionof blocksin the old versionwhich appea intact

RO

q45_OLD °
q5_OLD qu_OL@ q45_NEW 0
q29_OLD q16_NEW

%
()
G [[wavew

& &

Figure 1. We would expect the MIDMapping of
two closely related versions of an application
to show a certain degree of organizatio n indi-
cating where revision had taken place. The
MIDMapping (SLANV2v1,SSYTF2v3) shows
only arandom association of blocks.

in thenew version.

CompressioniRate

MIDistance(SSYTF2¢,SSYTF2v3} 0.32

MIDistanceGLANV2v1,SSYTF2v3) 0.44

Table 5. The MIDistances for our two sample
problems.

Figures 2 and 3 shav the solution to
MIDMapping(SSY T F2v1, SSYT F2v3). In con-
trast to the MIDMapping(SLANV2v1,SSYT F2v3)
solutionthereis a strongsenseof organization The core
of the original versionof SSYTF2v1remairs intact and
it is possibleby inspectionto seewherecodesliceshave
beenaddedto the new versi;m, SSYTF2v3 The filled
blackrectandes arecodethathasbeenpresered from the
previousversion.

6. Usingthe MIDMapping

This prgectis partof alarger prgectcalledJMPL - Java
Math Packag Launcler. Theideais to provide an ernvi-
ronmentfor geneating andmaintainng graghic userinter
facesfor comple scientificapplicatiors. JIMPL usesSIFT,
amodule we have developedfor discoveringuserinterface
requrementg11] andMAUI XML-to-GUI [6] techrology
to generge a GUI skeleton. The techrology develapedin
this pape is intendedasa first steptowards autonatingthe
mainteranceof thesegeneratedhterfaces.

6.1 Discussion

This studywasdoneusingapplicatiors codedin FOR-
TRAN77,whichis still animportantresearctanddevelop-
mentlanguaefor scientificcompting. We believe thatthe
methalology develgped hereis largdy languag indepe-
dentandwould give similar resultsfor C or Pascal. Ob-
ject orientedlangua@s presen significantnew challenges.
Genericclassinstantiationwould have to be treatedas a
brarch with edgesfor eachpossibleinstancetype, lead-
ing to a “fan-ait” of combirations of possibleinstantia-
tions. Objectorierted languayesarealsoorganizeddiffer-
ently. Typically aprogammerusesa hierarclical toolkit of
objectssuchasthe JSwinglibrary. Theseobjectlibraries
form a corvenientsublamguagefor the programme. The
challeng is to recogiize revisionsin both the applicdion
andsublangiagesimultaneasly. We planto purste thisre-
searchssuein future work.

O O

Figure 2. The MIDMapping solution for
SSYTF2v1 shows a compact core of functio n-
ality whic h has been preser ved in the current
version. The black filled rectangles are sub-
graphs of size 4 which map to isomorphic
subgraphs in the new version SSYTFv3.

Figure 3. The MIDMapping

solution for

SSYTF2v3 shows the addition of several
slices of new code.

7. Acknowledgments

This work was supprted by grans: NSF/ITR ACI-
008061, NSF/KDI ATM-987313, and DOE DE-FG(B-
00ER25430.

References

(1]
(2]

(3]

(4]

(5]
(6]

(7]

A.Aho. Compiles - Principles, Techniquesand Tools
Addison-Weésley, 1988

E. Anderson,Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J.Dongarra,J.D. Croz,andA. GreenbaumLAPACK Users’
Guide

S. Balay K. Buschelman, W. Gropp, D. Kaushik,
L. Mclnnes, and B. Smith. PETSc: The Portable Exten-
sible Toolkit for ScientificComputation ArgonneNational
Lab.

P. Barth. A Davis-PutnanBasedEnumeation Algorithmfor
Linear Pseudo-Boolea®ptimization Max-Plankinstitute.
D. Beazlg. Softwae Wrappe and Interface Geneator,
2002. SWIG HomePagehttp://wwwswig.og.

P. Boggs, L. Lehoucq, K. Long, A. Rothfuss,
E. Walsh, and R. Whiteside. A maui users guide.
http://csmrca.sandia.gdprojects/maui/dos/MauiTutorial/.
D. Gannon Theinformationpower grid andthe problemof
componat systemsfor high performancedistributed com-
puting. In Globus Reteat200Q

[8] M. Gargy andD. Johnsm. Computes and Intractability.
A Guideto the Thory of NP-CompletenesswW.H.Freeman,
1979.

[9] N.A. Group. IRIX Explorer, 2002. http://www.nag.com.

[10] M. Li andPViytanyi. AnIntroductionto Kolmogorov Com-
plexity andits Applications SpringerVerlag,1997.

[11] A. Strelzof andL. Petzold. Automateduserinterfacere-
quiremensdiscovery for scientificcompuing. In 11thIEEE
Confeenceon Requiements€Engineering 2003.

