
Revision Recognitionfor Scientific Computing: Theory and Application

Andrew Strelzoff
University of CaliforniaSantaBarbara

Departmentof ComputerScience
SantaBarbara,California93106

strelz@engineering.ucsb.edu

LindaPetzold
University of CaliforniaSantaBarbara

Departmentof ComputerScience
SantaBarbara,California93106
petzold@engineering.ucsb.edu

Abstract

Scientificcomputing applications are rarely equipped
with high quality graphic user interfaces(GUIs), in part
becausetheinterfacescannot berevisedquickly enough to
keeppacewith rapid changes in the underlying applica-
tion. A critical stepin user interfacemaintenance is re-
vision recognition: the processof determining, giventwo
versionsof a program,which partsof theoriginal program
have beenchanged,deletedor preserved.For large, highly
complex scientificapplicationsthis problemis a significant
barrier to interfacemaintenance. In this paper wepresent
the“r eticentprogrammermodel” which transformsthere-
vision recognition probleminto an optimization problem.
Thesolutions obtainedusingthis modelare exactfor small
applications andare high quality estimatesfor mediumto
large applications. An exampleof howthesesolutionscan
beusedto facilitateuserinterfacemaintenanceis alsopre-
sented.

Keywords

Revision recognition, graph mapping, software
evolution,scientificcomputing.

1. Intr oduction

Maintaining user interfaces for scientific computing is
a long standingproblem. Fundamentally, the user inter-
faceprogrammerrarely hasthe mathematical background
to understandthe complex changes that take placein nu-
mericsoftwarepackagesasthey arerevised. Developersof
numeric softwareareusuallyunwilling to invest the time
neededto becomeexpert in interfaceprogramming, anarea
of programmingvery far from their basicexpertise. The
general assumptionis that individualswho canbridgethe
gap are very rare. Thus researchhas concentratedupon

communication betweenthe developersof numeric soft-
wareon the onehand, andinterfaceprogrammers on the
other.

Researchinto thisproblemis dividedbetweenassistance
for the interface programmerin theform of tool-kits [3, 5]
andvisual environments [9, 5], andcommunicationassis-
tance(enforcement) in the form of tagsdevelopersplace
in their code[3] or softwarewrappers[7] developersbuild
around their code. Thesetags or wrappers can then be
scannedto provide the information neededto reformulate
auserinterfacefor a revisedapplication. Theproblemwith
thisapproachis thatit placesaconsiderableburdenuponthe
developerto wrapandre-wraptheunderlyingsoftwarewith
eachrevision. In ourresearchweseektodeterminewhatas-
sistancecanbeprovided to the interfaceprogrammerwith
only minimal participationof the numeric softwaredevel-
oper.

The interfaceprogrammer’s first goal whenupdating a
user interface is to identify which code segments in the
underlying applicationhave remained largely unchanged.
The supporting interfacecode for thesesectionscan then
bereusedwith only minor modification. Theremainderof
the codein the new versionmust then either be new, or
changed andreorganizedso radically that it would not be
usefulto try to preserve theinterfacecoderelatingto these
sections.We term this processrevision recognition. For
small codes,revision recognition canbesolvedby inspec-
tion. However, for large, complicatedmulti-module scien-
tific computing codestheproblem is sooverwhelming that
it is mostoftenhandledby starting over fr om scratch. We
believe that this is oneof the root causesof the generally
poor qualityof userinterfacesfor scientificcomputing.

In thispaperwepresenta revisionmodelwhichthrough
a seriesof transformationsreducestherevision recognition
problem to a 0-1 binary optimization problem. The solu-
tions derived in this way closely mirror thosederived by
hand. Several examplesaregiven,andanexample of how
thesesolutionscanbeusedto helpmaintainuserinterfaces
is presented.

2. The “Reticent Programmer”

Revision recognition canbe thought of abstractlyas a
graph mapping problem. Giventwo versionsof a program,
considerbothprogramsasdirectedgraphs in which nodes
areBasicBlocks andedgesaredirections which program
executioncantake. A BasicBlock is a seriesof codestate-
mentsin acomputerprogramsuchthatprogramflow enters
only at the first statementandexits only at the last state-
ment. EachBasicBlock in the old version may eitherbe
mapped to a BasicBlock in thenew versionor mustbe in
the“deletedset”. EachBasicBlock in thenew versionmust
eitherbepartof a mappingfrom old to new or mustbe in
the“added set”.

If the older versionhas
�

BasicBlocks andthe newer
version has � Basic Blocks then the number of possible
mappings is of the order of Max � ��� �����
	�� �� � ��� . The
number of basicblocksin an applicationis generally pro-
portional to thenumber of linesof code,with a typical ra-
tio beingaround 1.8 linesof codeperbasicblock. A large
scientificcomputingapplication with onehundredthousand
linesof codewill haveabout 60thousandBasicBlocks.The
spaceof all possiblemappingsis clearlyenormous.Yet it is
possiblefor theinterfaceprogrammerto solve this problem
by inspectionfor smalltomediumsizedcodes.Thisimplies
that although the spaceof all possiblemappings is enor-
mous, the “searchspace”which the programmertraverses
by making comparisonsbackand forth betweenold code
andnew is relatively smallandcompact.Ouraimhereis to
designanalgorithm whichexploresbasicallythesamesub-
spaceof reasonablesolutionsthe programmerwould look
at, evenfor programsthatareso large that their inspection
by handwouldbeprohibitive.

To identify this subspaceof reasonable mappings we
needto make a conjecture about the behavior of program-
mers.Supposea programmeris assignedthetaskof revis-
ing a softwareapplicationandthenexplaining exhaustively
thepurposeandeffect of eachchange. We assumethat the
programmer will make revisionsin sucha way asto mini-
mize the amount of explanation necessary. Intuitively we
can imaginethe programmerwith block diagramsof the
programandits revision makingnotations: “theseblocks
arethesamein bothversions”,“this block waschanged to
fix anerror”,“this blockwasaddedasanew levelof control”
andsoon. Our assumptionis essentiallythat theprogram-
merwill producethenew versionwhichminimizes thetotal
sizeandcomplexity of such“notes”. We call this assump-
tion theReticentProgrammer Conjecture.

3. Minimum Inf ormation DistanceMapping

Abstractlywewish to choosethemapping from old ver-
sion to new which allows us to construct thesmallestpos-

sible machine which fully describesthe mapping. Kol-
mogorov Complexity is definedas the sizeof the smallest
machine which canproducea given string. ’Machine’ is
thenusuallyextendedto mean’computer program’. Thus
for small or repetitive stringsa few lines of codewill suf-
fice, while for large stringsof a more complex structurea
muchlargerprogramis required.Thepropertiesof theKol-
mogorov Complexity have beenextensively studied[10].
Many methods of approximating the Kolmogorov Com-
plexity have beendescribed in theliterature[10]. Thesim-
plestmethod is by usingcompressionsoftwareasdescribed
in [10]. By “zipping” a file we createa smallmachinecon-
sistingof thezippedfile andtheunzip utility, whichcanre-
producetheoriginal string. It hasbeenshown that thesize
of the zippedfile is thenproportional to the Kolmogorov
Complexity.

TheKolmogorov or informationdistancecanalsobeap-
proximatedusingcompressionsoftware. Supposewe have
two files A andB and we wish to find the distanceof A
givenB. Wezip B andthentakeB’sHuffman encoding dic-
tionaryanduseit asa guideto compressA. If A andB are
thesameor verysimilar, thenthesizeof A zippedwith B’s
dictionarywill becloseto thesizeof A zippedwith its own
ideal dictionary. If A andB arefar apartthenB’s dictio-
narywill do a poor job of compressingA. Normalizedfor
thesizesof A andB thismethod yieldsanapproximationto
the informationdistance[10]. We call this approximation
Kd ��� ��� � .

Theinformationdistancebetweentwo versionsof acode
gives a relativemeasureof how closelyrelatedthetwo ver-
sions are to eachother. We call this the Simple Inf or-
mation Distance betweenthe two versions. This simple
distanceis not themaximum rateof compressionpossible.
Supposethe old versionof a codeconsistedof the blocks
� � andthe new version consistedof � ��� . If we take A
givenA andB’ givenB togetherwe will achieve a greater
rate of compressionthan if we took AB’ given AB. Our
goalis to find themapping betweenblocks in theolderand
newer versions which if we compresseachmapping sepa-
ratelyproducesthegreatestpossiblecompression.We call
this mappingthe Minimum Inf ormation DistanceMap-
ping [MIDMapping] andtherateof compressionfoundthe
Minimum Inf ormation Distance [MIDistance] . We de-
fine the“cost” of eitherdeletingor creatinga block sothat
if we find that all the blocksof the old versionhave been
deletedandall theblocksof thenew versionhavebeencre-
atedthentheMIDistancewill bethesameasthesimplein-
formationdistance.Similarly, we normalizethe individual
compressionratesso that if the two versions arethe same
andall oldblocksmapto identicalblocksin thenew version
thentheMIDistancewill bezero.

TheMIDistancecanbethought of asa measureof how
mucheffort is needed to understand thenew versionif the

old versionis completely understood. If the two versions
arethesamethenaperfectunderstandingof theold version
leadsto a perfect understandingof thenew version. If the
two programsarenot essentiallydifferent versionsof the
sameprogram,thenstudyingoneof theprogramswill only
beusefulto thedegreethatthetwo programsaregenerally
related.

Suppose that the old versionof a program hasthe two
blocks (“abcdfff ”, “x”), andthenew versionhastheblocks
(“abcd”,”f ffx”). Thesesectionsof codewould clearly be
relatedbut by mapping singleblocks to singleblocksour
algorithm might miss this conclusion. We therefore con-
siderthe classnot just of all block-to-block mappings but
of all isomorphic subgraphsof which block-to-block is the
smallestpossiblecase.This is alsousefulcomputationally.
For very large codesthesetof all block-to-block mappings
is very large. By settinga minimum subgraph sizewe can
dramatically reducethesizeof theresultingalgebraicprob-
lem.

A secondcomputationalissueis blockcoloring. We can
color thegraph representationsof theprogramsasbranches
andnon-branchesby assumingthatbranchesin theold ver-
sion canonly be mappedto branchesin the new version.
This is important becausethe general problem of finding
isomorphic subgraphshasbeenfound to be

��� ��������
[8]. Becausecodegraphs are“densely colored”, the com-
plexity of our algorithmto find subgraph isomorphismsis
on the orderof the factorial of the “meanfree path” (the
average lengthof a sectionof blocksall of thesametype).
The lengthof the meanfree pathincreasesonly gradually
with increasingprogramlength.

Coloring is interestingin another sense. Supposewe
hadtwo versionsof a codebothof which hadno branches.
Then the problem of finding the MIDMapping would be
equivalentto the “Single Alignment” problemfrom bioin-
formatics. If the two versions consistedof nothing but
branchesthenthe MIDMapping problemwould be equiv-
alentto “Multiple Alignment”.

4. Transformations

In this sectionwe outline the seriesof transformations
neededtocalculatetheMIDMappingandMIDistance.Sup-
posewearegiventwo versions "! and $# of anapplication.
We begin by strippingthe codesof comments andcontin-
uationmarkers. We thencalculatetheSimpleInformation
DistanceKd �� %! � &#'� .
4.1 BasicBlock Graphs

Thefirst transform is from codeto a BasicBlock graph.
We usethe procedure outlinedin [1] for deriving the Ba-
sic Block graphs ()! of size � and (*# of size

�
from

 $! and $# respectively. Denote the blocks of (+! by ,�-.!
and the blocksof ()# by ,0/1# . The blocksof both graphs
are colored as branch or non-branch. It shouldbe noted
that Basic Block networks aredirectedandsemi-ordered.
A semi-orderedgraphis onein which somesiblingsmay
beswappedwith eachotherwhile others maynot,depend-
ing on the type of parent node involved. If the parentis
a BranchBlock then the ordering of child blocks is arbi-
trary andtherefore unordered.All otherblocksareordered
amongsiblingsfromleft to right. Thenetwork is usuallynot
a treebut it doeshave a root: thebeginning of theprimary
subroutine,andat leastoneleaf: anexecution end-point of
theprimary subroutine.

4.2 Isomorphic Subgraphs

The secondtransformation is from two Basic Block
graphs to a setof their isomorphic subgraphs. Given two
versions of a program in Basic Block representation, we
find thesetof all subgraphswhichhavethesameconnectiv-
ity, parent-to-child andsibling-to-sibling relationships and
arethereforeisomorphic. Thesubgraphsfound mustmatch
block for block in type, meaningthat they have the same
coloring.

A general overview of thealgorithm is asfollows. (I) We
examine eachblock of theoriginal of thecodein turn. (II)
We find thesetof all possible1-to-1 mappingsbetweenthe
chosenblock andblocks in the revisedcodewhich areof
thesametype. Theseisomorphismsof sizeoneareadded
to thesolutionset. (III) Around eachisomorphism of size
onewe recursively build largerandlargerisomorphismsby
considering thesetof subgraphswhich could becreatedby
adding onemore connectedblock of thesametypein both
versions. Isomorphic subgraphsfound areaddedto theso-
lution setunlessthey have alreadybeenaddedpreviously.
(IV) Whenno further isomorphismscanbe found we are
finishedwith this block in theoriginal versionof thecode
andwe move on to thenext block. Whenall theblocksin
the first versionof the code have beenexamined,we have
collectedall possiblesubgraph isomorphismsbetweenthe
two versions.

It shouldbenotedthatthisprocessis complicatedby the
factthatchildrenof branchesareunordered.Thuswe must
consider thepermutationsamongthechildrenof branches.
If thesechildrenarealsobranchesthenwe needto further
consider permutationsamongthesegrandchildren, andso
on. Several nested“IF” statementsin a row can lead to
dozens of isomorphic subgraph candidates.

Thereis oneotherconsideration,loops. Supposethat in
theold versionof a codewe find the loop A-B-C-A, while
in the new version we find A-B-C-X-A. Theseloops are
clearlyrelatedbut we would not necessarilyrecognize this
because the two loopsarenot isomorphic. Therearetwo

possibilities. We could considerloops to be in their own
class,making all loops effectively isomorphic. Consider-
ing that largeapplications mayhave hundredsof loopsthe
number of combinationswould be astronomical. Instead,
we chooseto ignore theback-jump of a loop sothat in the
aboveexamplewewouldbecomparingA-B-C with A-B-C-
X, andcorrectlyfind thattheA-B-C sectionwaspreserved.

Oursolutionset 2 consistsof 3 pairsof isomorphic sub-
graphs �4�65�!1! � 5'!7#'� �98:8:8 ��59;4! � 59;7#'�1� wherethe left subgraph is
from <! andtheright subgraphis from =# . If we aregoing
to limit our solutionto isomorphic subgraphsof size > or
greater, thenall pairsof isomorphic subgraphsof sizeless
than> areremovedfromthesolutionset.Wecall theresult-
ing set ? , so that ?*-A@B�65�-.! � 5�-:#'� . ? is thesetof potential
mappingsbetween C! and $# .
4.3 Computing the Kolmogorov Distances

We next derive the rateof compressionfor the isomor-
phicsubgraphin ? . Theunderlying text of eachsubgraphis
constructedby concatenatingthetext of eachblock “depth
first”. Thus,for a block containing the text “XXXX” with
two child blocks with text “YYYY” and“ZZZZ” thecon-
structedtext wouldbe“XXXXYYYYZZZZ ”. In thespecial
caseof a “join” wheretwo or moreedgesleadinto a block
wewill taketheblockto bethechild of its rightmostparent.
Denoting this depthfirst concatenationfunction CAT ��5�� ,
whereI isasubgraph, for eachpairof isomorphicsubgraphsD - in ? wefind

E -F@ Kd � CAT �659-.!'� � CAT �65�-:#G�4� 8
The ideal rateof compressionfor the right handsubgraph
text is alsorecordedas H - .

H$-"@ Kd � CAT ��5�-:#G� � CAT �65�-:#��4� 8
We notethat I (theaverage of the H"- ’s)wouldbethecom-
pressionrateif <! wasidenticalto $# .
4.4 Algebraic System

The next step is to reformulate the problem of decid-
ing which mappingsin ? maximize thecompressionof J#
given %! asan algebraic system. This systemconsistsof
an objective function which is to be minimized, together
with constraints upon the solution. Define the variables
� D ! � D # �98:8:8K� D ; � suchthat if the mapping ? - is part of the
MIDMapping then D - takesthe value 1, otherwise D - is 0.
We introducethevariables�6L ! � L # �M8K8:8:� LONP� , which take the
value 1 if the corresponding block in Version2 is created
and 0 otherwise, and the variables ��Q ! � Q # �98:8K8:� QGRS� which
take thevalue1 if thecorresponding block in Version1 is
deletedand0 otherwise.The“costs” for the D - aregivenby

thecorrespondingcompressionrates,E - . Thecostsfor both
LO- and Q�- aresetto Kd �T %! � &#M� (theSimpleInformationDis-
tance). If our MIDMapping solutionwere that all blocks
in ! have beendeletedand all blocks in # have been
addedthenthe MIDistancewould be equalto Kd �� ! � # �
(theSimpleInformationDistance).

Theobjective function canbewrittenas

D !�U E !GV D #OU E #OV 8:8K8 V D ;'U E ;GV �6L !GV 8:8K8 V LON V Q !GV 8:8K8 V QGRS� U�W 8
Constraintsarisefrom thefactthatsomemappingspreclude
others from alsobeingin theMIDMapping. Take left ��,S-.!��
to be the setof all mappings in which theblock ,�-X! in (*!
participates. Only one of thesemappings can be part of
the MIDMapping. The block could also be deleted. We
formulatetheconstraintson , -.! as:

Y
left �T, -.! � V Q - @[Z 8

For blocks in (\# wecansimilarly formulatetheconstraints
on ,0/1# as Y

right �T,�/1#G� V LG/]@�Z 8
Thustherewill be

�
+ � constraints on thesystem.

4.5 0-1 Optimization

Thesystemwehaveconstructedis an“0-1 optimization”
problem. ThestatevariablesD - , LO- , and Q�- cantake theval-
ueszeroor oneexclusively. Theobjective function, which
is really theoverall rateof compression,is thesumof these
statevariablestimestheir costs.

Thefinal stepis thesolutionof theoptimizationproblem.
Thealgebraicconstraintsaregenerated in text, MPSformat,
a standardfor encodingalgebraicsystems.We thenusethe
0-1 optimizationsoftwarepackage “opbdp” [4]. Thesolu-
tion is a listing of thevalues0,1of thestatevariables. The
setof D ’s, L ’sand Q ’s setto 1 in this listing is theMIDMap-
ping. The calculatedvalue of the objective function is di-
videdby thenumberof mappingpairsin theMIDMapping
solutionto get an average compressionrate. The MIDis-
tancecompressionratecanbecomparedto the ideal com-
pressionrate I , which it approachesfor smaller, lesscom-
plicatedrevisions.

5. Results

We begin this sectionby introducingour target applica-
tions. LAPACK is a well-known collectionof commonly
usedFORTRAN numeric routines[2]. It is convenientfor
this study becauseprevious releases1a, 1b, 1.1, 2.0 and
3.0 are available, allowing us to trace through 15 years
of revisions. The codes which we follow for this paper
areSLANV, a Schurfactorization routine, andSSYTF2,a

Application Lines Blocks Edges Branches
SLANV2 ver2.0 82 20 31 7
SLANV2 ver3.0 99 21 30 8
SSYTF2ver1.0 183 85 155 31
SSYTF2ver2.0 181 84 153 32
SSYTF2ver3.0 193 94 143 33

Table 1. Proper ties of the target software .

Bunch-Kaufman factorizationroutine.Table1 summarizes
thepropertiesof SLANV andSSYTF2.

Table 2 shows the number of isomorphic subgraphs
found betweenversions of SLANV andSSYTF2.We also
includeasetof isomorphicsubgraphsderivedfrom ahypo-
theticalrevisionfromSLANV version2 toSSYTF2version
1. We will alsofollow this example to show thatgiventwo
codes which are not versionsof the sameapplication the
MIDistancewill not improve much over the Simple Dis-
tance.

IsomorphicSubgraphs 1 2 4
SLANV2 ver2 to ver3 225 203 58
SSYTF2ver1 to ver2 3800 3231 3236
SSYTF2ver2 to ver3 4228 2965 1215
SSYTF2ver1 to ver3 4317 3001 1350

SLANV2 v2 to SSYTF2v1 893 186 48

Table 2. The isomorphic subgraphs of
SLANV2 and SSYTF2 by size. By limiting the
subgraph size to 4 or larger, the number of
state variab les in the algebraic problem is re-
duced.

Table3 showsKd, thecompressionrateachieved by zip-
pingthecolumnapplication usingtherow application’sen-
coding dictionary, for versionsof SLANV2 andSSYTF2.

Table4 shows the averageideal compressionachieved
by compressingthe codes block by block. The MIDis-
tanceapproachesthe ideal compressionrate with smaller
and less complex revisions. For codes which are essen-
tially unrelated, the MIDistancewill approach the simple
compressionrateat shown in Table3. Thus,for the prob-
lem MIDMapping ��2^2`_*a]bdc�e$Z � 2^2`_Pa]bdcfe�g�� we find a
MIDistancecloseto the ideal of 28%, and for the prob-
lemMIDMapping��2`>J� � *c�e$Z � 2h2`_ia]bdc�ejgk� wefind the
MIDistanceto becloseto 45%.

Table5 shows theMIDistancecompressionfor the two
sampleproblems. We used the opbdp [4] binary opti-
mizationpackageto find thesesolutions. The global min-
imum of the objective function is divided by the num-
ber of mappings found to arrive at the MIDistance, the

SSYTF2v1 SSYTF2v3 SLANV2v1
SSYTF2v1 41% 45% 77%
SSYTF2v3 42% 43% 79%
SLANV2v1 78% 80% 40%

Table 3. Compression rates of column ap-
plication given the row application. Thus,
SSYTF2v3 compresses to a little less then
one half of its size using its own Huffman
encoding dictionar y and to about 70 percent
of its size using the dictionar y of SLANV2,
theref ore Kd ��2^2`_da]bdc�ejg � 2^2`_ia]bdcfe�g���@ml 8 njo
and X ��2^>h� � dc�e$Z � 2^2`_ia]bdcfe�g��=@pl 8�q l .

SSYTF2v1 SSYTF2v3 SLANV2v1
23% 28% 27%

Table 4. The ideal compression rate calcu-
lated by compressing the Basic Bloc ks of
a code one at a time . Compression soft-
ware does have some overhead and although
care was taken to suppress extraneous labels
and header s the theoretical rate of ideal com-
pression is probab ly some what greater than
sho wn.

average compression rate. In the caseof the problem
wherethetwo applicationsarenotversions of thesameap-
plication, MIDMapping ��2`>J� � \c�e$Z � 2^2`_ia]bdcfe�g�� , the
MIDistancewasfound to be44%. This is animprovement
over thesimplecompressionrateof 80%,but doesnot ap-
proach theidealcompressionfor thenew code,SSYTF2v3
of 27%. Any two numeric codeswritten in the samepro-
gramming languagesharesomeof the samefeatures,like
double loops,andtherefore aremore compressedby con-
sideringblock-to-block compression.Giventwo unknown
codesthe MIDMapping algorithm determines them to be
versions of the sameapplication if the MIDistance ap-
proaches the ideal compressionrate and if the resulting
MIDMapping shows a high degree of organizationrather
thantherandompairingof matchingfeatures.

Figure 1 shows the result of the
MIDMapping��2`>J� � dcfe&Z � 2^2^_ra]bdc�ejgk� , with square
boxes indicating matching isomorphic subgraphs and
ovals indicating blocks that have either beendeletedin
SLANV2v1 or added in SSYTF2v3. SLANV2v1 and
SSYTF2v3arenot versionsof thesameapplication so the
mapping shows little organization. Parent-child relation-
shipsamong mappedsubgraphsarenotpreserved.There is
no sectionof blocksin theold versionwhich appear intact

q5_OLD

q29_OLD

q16_OLD

z17 z19

q45_OLD

z12

q5_NEW

y5

q16_NEW

y18

q29_NEW

y13 y23

q45_NEW

z1

y6

y19

y20

Figure 1. We would expect the MIDMapping of
two closel y related versions of an application
to sho w a cer tain degree of organizatio n indi-
cating where revision had taken place . The
MIDMapping ��2`>J� � dcfe&Z � 2^2^_ia]bdc�ejgk� sho ws
onl y a random association of bloc ks.

in thenew version.

CompressionRate
MIDistance(SSYTF2v1,SSYTF2v3) 0.32
MIDistance(SLANV2v1,SSYTF2v3) 0.44

Table 5. The MIDistances for our two sample
problems.

Figures 2 and 3 show the solution to
MIDMapping��2^2`_da]bdc�e$Z � 2^2`_Pa]bdc�ejgk� . In con-
trast to the MIDMapping �T2`>h� � dc�e$Z � 2^2`_ia]bdcfe�g��
solutionthereis a strongsenseof organization. The core
of the original versionof SSYTF2v1remains intact and
it is possibleby inspectionto seewherecodesliceshave
beenaddedto the new version, SSYTF2v3. The filled
blackrectanglesarecodethathasbeenpreservedfrom the
previousversion.

6. Using the MIDMapping

Thisproject is partof a larger projectcalledJMPL- Java
Math Package Launcher. The idea is to provide an envi-
ronment for generatingandmaintaining graphic userinter-
facesfor complex scientificapplications. JMPL usesSIFT,
a module we have developedfor discoveringuserinterface
requirements[11] andMAUI XML-to-GUI [6] technology
to generate a GUI skeleton. The technology developedin
this paper is intendedasa first steptowards automatingthe
maintenanceof thesegeneratedinterfaces.

6.1 Discussion

This studywasdoneusingapplications codedin FOR-
TRAN77,which is still animportantresearchanddevelop-
mentlanguagefor scientificcomputing. Webelievethatthe
methodology developedhereis largely language indepen-
dentandwould give similar resultsfor C or Pascal. Ob-
ject orientedlanguagespresent significantnew challenges.
Genericclassinstantiationwould have to be treatedas a
branch with edgesfor eachpossibleinstancetype, lead-
ing to a “f an-out” of combinations of possibleinstantia-
tions. Objectoriented languagesarealsoorganizeddiffer-
ently. Typically a programmerusesahierarchical toolkit of
objectssuchas the JSwinglibrary. Theseobject libraries
form a convenientsublanguagefor the programmer. The
challenge is to recognize revisions in both the application
andsublanguagesimultaneously. Weplanto pursue this re-
searchissuein future work.

Figure 2. The MIDMapping solution for
SSYTF2v1 sho ws a compact core of functio n-
ality whic h has been preser ved in the current
version. The black filled rectangles are sub-
graphs of size 4 whic h map to isomorphic
subgraphs in the new version SSYTFv3.

Figure 3. The MIDMapping solution for
SSYTF2v3 sho ws the addition of several
slices of new code .

7. Acknowledgments

This work was supported by grants: NSF/ITR ACI-
0086061, NSF/KDI ATM-9873133, and DOE DE-FG03-
00ER25430.

References

[1] A.Aho. Compilers - Principles, Techniquesand Tools.
Addison-Wesley, 1988.

[2] E. Anderson,Z. Bai, C. Bischof,S. Blackford,J. Demmel,
J.Dongarra,J.D. Croz,andA. Greenbaum.LAPACK Users’
Guide.

[3] S. Balay, K. Buschelman, W. Gropp, D. Kaushik,
L. McInnes, and B. Smith. PETSc: The Portable, Exten-
sible Toolkit for ScientificComputation. ArgonneNational
Lab.

[4] P. Barth.A Davis-PutnamBasedEnumerationAlgorithmfor
Linear Pseudo-BooleanOptimization. Max-PlankInstitute.

[5] D. Beazley. Software Wrapper and Interface Generator,
2002.SWIGHomePagehttp://www.swig.org.

[6] P. Boggs, L. Lehoucq, K. Long, A. Rothfuss,
E. Walsh, and R. Whiteside. A maui user’s guide.
http://csmr.ca.sandia.gov/projects/maui/docs/MauiTutorial/.

[7] D. Gannon. Theinformationpower grid andtheproblemof
component systemsfor high performancedistributedcom-
puting. In GlobusRetreat2000.

[8] M. Garey and D. Johnson. Computers and Intractability.
A Guideto the Thory of NP-Completeness. W.H.Freeman,
1979.

[9] N. A. Group. IRIX Explorer, 2002. http://www.nag.com.
[10] M. Li andP.Viytanyi. An Introductionto Kolmogorov Com-

plexity andits Applications. SpringerVerlag,1997.
[11] A. Strelzoff and L. Petzold. Automateduserinterfacere-

quirementsdiscovery for scientificcomputing. In 11thIEEE
Conferenceon RequirementsEngineering, 2003.

