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Abstract. In this paper we describe a new algorithm for the calculation of consistent initial
conditions for a class of systems of differential-algebraic equations which includes semi-explicit index-
one systems. We consider initial condition problems of two types—one where the differential variables
are specified, and one where the derivative vector is specified. The algorithm requires a minimum
of additional information from the user. We outline the implementation in a general-purpose solver
DASPK for differential-algebraic equations, and present some numerical experiments which illustrate
its effectiveness.
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1. Introduction. This paper is concerned with the calculation of initial con-
ditions for systems of differential-algebraic equations (DAEs). We write the DAE
system in the general form

G(t, y, y′) = 0,(1.1)

where G, y, and y′ are N -dimensional vectors. The initial value problem for this
system is the problem of finding a solution that satisfies a consistent set of initial con-
ditions y(t0) = y0, y

′(t0) = y′0. Two software packages have been written for solving
initial value problems for the DAE system (1.1)—DASSL [4], and an extension of it
called DASPK [9]. Both use variable-order, variable-stepsize backward differentiation
formulas. DASSL solves the linear system at each time step by dense or banded direct
linear system methods. In DASPK, the linear systems that arise at each time step
are solved with either direct linear system methods or with a preconditioned Krylov
iterative method, namely, generalized minimal residual (GMRES) [20]. For large-scale
systems, the iterative method combined with a suitable preconditioner can be quite
effective.

When using either of the solvers DASSL or DASPK, the integration must be
started with a consistent set of initial conditions y0 and y′0. Consistency requires, in
particular, that G(t0, y0, y

′
0) = 0. Usually, not all of the components of y0 and y′0

are known directly from the original problem specification. The problem of finding
consistent initial values can be a challenging task. The present DASSL and DASPK
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solvers offer an option for finding consistent y′0 from a given initial y0, by taking a small
artificial step with the backward Euler method. However, initialization problems do
not always arise in this form, and even for the intended problem type, that technique
is not always successful. In any case it is unsatisfactory in that it produces values
at t = t0 + h (h = stepsize) rather than at t = t0. In this paper, we propose an
alternative procedure for a class of DAE problems. We will show that this method,
in combination with the modified Newton methods of DASSL or the Newton–Krylov
methods of [6], [7], [8], yields an algorithm which converges nearly as rapidly as the
underlying Newton or Newton–Krylov method. The new method is very convenient
for the user, because it makes use of the Jacobian or preconditioner matrices which
are already required in DASSL or DASPK.

The class of problems that we consider is a generalization of semi-explicit index-
one DAE systems. Semi-explicit index-one DAE systems are characterized as follows.
The dependent variable vector y can be split into a vector u of size Nd, called the
differential variables, and a vector v of size Na, called the algebraic variables, such
that the equations have the form

u′ = f(t, u, v),

g(t, u, v) = 0,(1.2)

in which gv = ∂g/∂v is a nonsingular square matrix. We will be concerned with the
initialization problem of finding the initial value v0 of v when the initial value u0 for
u is specified.

We can easily generalize the class of problems considered to those where the ODE
subsystem for u may be implicit. Thus we consider systems of the form

f(t, u, v, u′) = 0,

g(t, u, v) = 0,(1.3)

where u, f ∈ RNd and v, g ∈ RNa , with the matrix fu′ = ∂f/∂u′ also being square
and nonsingular. We will continue to refer to problems of the form (1.3), with fu′

and gv nonsingular, as semi-explicit index-one, even though they may not be explicit
in u′. In fact, our main initialization technique applies to an even more general class
of problems, as we will explain later.

We also consider a second type of initialization problem, in which the initial
derivatives are specified but all of the dependent variables are unknown. That is, we
must solve for y0 given y′0. For example, beginning the DAE solution at a steady
state corresponds to specifying y′0 = 0. This problem does not involve a split of the y
vector into differential and algebraic parts or a semi-explicit form for the equations.

In later sections, we will refer to these two problems as Initialization Problem 1
and Initialization Problem 2.

The consistent initialization problem has been studied in a number of contexts.
The method used by Berzins, Dew, and Furzeland in SPRINT [3] is based on a small
artificial step with the backward Euler method. An improvement to the error esti-
mate for this approach is suggested in [14]. Campbell [10, 11] suggests an approach
based on Taylor’s series expansions for determining consistent initial conditions. This
method requires a knowledge of the derivatives of the Jacobian matrix of the prob-
lem, which can be obtained via automatic differentiation software. Leimkuhler et
al. [16] propose an algorithm based on Taylor’s series expansions where the deriva-
tives are approximated numerically. Kröner, Marquardt, and Gilles [14] show how to
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reduce the computational complexity of these methods by making use of structural
information on the DAEs derived via symbolic preprocessing. Pantelides [18] uses a
graph-theoretic algorithm to determine the minimal set of equations to be differenti-
ated in order to solve for consistent initial values. The differentiations are then to be
carried out exactly, as in Campbell’s algorithm. Barton and Pantelides [2] describe
an implementation of these ideas in a general-purpose chemical process modeling en-
vironment. Bachman et al. [1] propose an algorithm for determining consistent initial
values based on a thorough decomposition of the system structure. This algorithm
isolates the algebraic constraints by index reduction and also requires exact differen-
tiation. Simeon, Führer, and Rentrop [21] initialize the higher-index DAEs describing
multibody mechanical systems via static equilibrium solution, analogous to solving
Initialization Problem 2. The potential of continuation methods for robust solution
of the nonlinear consistency conditions in initial condition calculations is investigated
in [17, 21].

2. The basic method. The main contribution of this paper is an algorithm
to solve Initialization Problems 1 and 2 in the context of DAE solvers like DASSL
and DASPK, with the help of mechanisms already in place for the solution of the
DAE system itself. The algorithm is convenient for users because it requires al-
most no information from the user beyond what is already required for solving the
time-dependent DAE system. It does not need symbolic or automatic differentiation
software, and is immediately applicable to a wide range of problems, including very
large-scale systems, for which a DAE solution is sought.

Consider first Initialization Problem 1 for the semi-explicit index-one system (1.3),
where v0 = v(t0) is to be determined, given u0 = u(t0) at the initial point t = t0. We
expand this problem to include the calculation of u′0 = u′(t0). Thus we can form a
nonlinear system in the N -vector

x =

(
u′0
v0

)
,(2.1)

namely,

F (x) ≡
(

f(t0, u0, v0, u
′
0)

g(t0, u0, v0)

)
= 0 .(2.2)

This general approach of solving the expanded problem has also been used in [15]. A
Newton iteration for the solution of F (x) = 0 would require the Jacobian matrix

F ′(x) =

(
fu′ fv
0 gv

)
.(2.3)

By assumption, this matrix is nonsingular, at least in a neighborhood of the desired
solution.

In the course of integrating a DAE system with DASSL or DASPK, the user must
call upon one of several linear system algorithms to solve N × N linear systems at
every time step. These arise from a Newton-like method for solving algebraic systems
G(t, y, c(y − a)) = 0 for y, where a is a vector containing past values, and c is a
constant, set by the solver, that is inversely proportional to the stepsize h. Thus the
linear systems have the form

J∆y = R ,



1498 P. N. BROWN, A. C. HINDMARSH, AND L. R. PETZOLD

in which R is a residual vector, ∆y is a correction to y, and the matrix J is the DAE
system iteration matrix

J = c
∂G

∂y′
+
∂G

∂y
.(2.4)

The user is encouraged to supply an approximation to J , for use either as the Newton
matrix itself in the case of direct methods or as a preconditioner in the case of a Krylov
method. In the direct case, J is generated by difference quotient approximations if
not supplied by the user. In the case of the system (1.3), we have

J = c

(
fu′ 0
0 0

)
+

(
fu fv
gu gv

)
=

(
cfu′ + fu fv

gu gv

)
.(2.5)

In order to make use of J in solving F (x) = 0, we pick an artificial stepsize h, and
set c = 1/h in (2.5). Then, to recover the block fu′ , we rescale the first block-column
of J by h, using the scaling matrix

S =

(
hId 0
0 Ia

)
,(2.6)

where Id and Ia are the identity matrices of size Nd and Na, respectively. Thus we
consider the matrix

J̄(x) ≡ JS =

(
fu′ + hfu fv

hgu gv

)
,(2.7)

evaluated at t = t0, (u, v) = (u0, v0), and u′ = u′0. Note that J̄(x) = F ′(x) + hC(x)
with

C(x) =

(
fu 0
gu 0

)
.

If h is small in some appropriate sense, we can expect that J̄ will be a good approxi-
mation to F ′(x).

The proposed initialization procedure is to carry out a Newton-like iteration with
corrections

∆x = −J̄−1F (x) .(2.8)

Each iteration will call on the linear system solution procedure that is to be used later
in solving the DAE system itself. It will also require information about which com-
ponents of y are differential and which are algebraic, in order to apply the correction
∆x to the vectors y and y′. But otherwise, the procedure requires no additional infor-
mation or methodology. Upon convergence, we have all components of y(t0), and we
have the components of y′(t0) corresponding to u′0, the derivatives of the differential
variables. The remaining components of y′(t0), corresponding to v′0, will simply be set
to zero, as the integration procedure is insensitive to these (since v′ does not appear
in (1.3)),1 and the first time step will produce accurate values for them. The next two

1 Although the backward differentiation formulas (BDFs) do not depend on these values, the error
test at the end of the first step depends on them, unless the v variables are excluded from the error
test (which is an option in DASPK).
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sections will present this procedure in a more formal manner and prove convergence
for it.

For Initialization Problem 2, we are given the initial value of y′ and must compute
the initial y. In this case, we are simply interested in solving for x = y0 in the system

F (x) ≡ G(t0, x, y
′
0) = 0 ,(2.9)

with y′0 given. We assume that this problem is well posed as provided by the user,
so that F ′(x) = Gy is nonsingular in a neighborhood of the solution, including the
initial guess supplied. As in the first problem, we will call for the user to supply the
DAE iteration matrix J , but this time we set c = 0, so that the matrix involved is
simply J = ∂G/∂y; there is no stepsize h. We then proceed with Newton iterations
using J , with corrections

∆y0 = −J−1G(t0, y0, y
′
0) .(2.10)

Finally, we remark that an extension of these ideas to Hessenberg index-two DAE
systems is under way by the authors.

3. More general problems. In the case of Initialization Problem 1, the full
scope of problems for which the above idea can be applied is more general than
systems of the form (1.3).

3.1. Index-0 systems. While the main focus of this work is the initialization
of index-one systems, we note here that the easier case of index-0 systems is taken
care of as a special case. Here the problem is to compute all of y′0 given y0, with the
assumption that Gy′ is nonsingular. This problem is in fact treated by the general
procedure of (2.1)–(2.8), by taking Na = 0 (no algebraic components). The unknown
vector is x = y′0 and satisfies F (x) = G(t0, y0, x) = 0. The true Jacobian is F ′(x) =
Gy′(t0, y0, x) and is approximated by J̄ = JS = hJ = Gy′ +hGy for h suitably small.

3.2. Permuted variables. We first wish to generalize the system (1.3) by drop-
ping the requirement that the differential and algebraic components are separated into
blocks in y. Thus we assume there is a permutation matrix P of size N such that

Py = z =

(
u
v

)
, u ∈ RNd , v ∈ RNa ,(3.1)

and that, in terms of z, the system function G has the blocked form H(t, z, z′) =

( f(t,u,v,u′)
g(t,u,v)

) as in (1.3). The vector of unknowns in terms of z is w = (u
′
0

v0
), and in

terms of y it is x = P−1w. The system to be solved is

0 = F (x) ≡ G(t0, y0, y
′
0) ,(3.2)

in which only Na components of y0 and Nd components of y′0 are in the vector x of
unknowns. The Jacobian F ′(x) and the iteration matrix J are given by the expressions
in (2.3) and (2.5), multiplied on the right by P . The scaling by h of the differential
variables in y is given by S̄ = P−1SP , with S as in (2.6). The scaled system matrix
(again with c = 1/h) is

J̄(x) = JS̄ = (h−1Hz′ +Hz)SP =

(
fu′ + hfu fv

hgu gv

)
P .(3.3)
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So it remains clear that J̄ approximates F ′(x) for small h.
In the same way, we need not require that the components of G are blocked as in

(1.3). Thus we allow a permutation Q in the components of G, such that QG has that
blocked form. Then, of course, so does QF . However, in our initialization procedure,
we can work with G (hence F ) in its original ordering.

3.3. Implicit constraints. To generalize further the form of the problem we
can solve, suppose that, after permuting the y vector to z = Py, the DAE system
function G has the form

G(t, y, y′) = H(t, u, v, u′), u ∈ RNd , v ∈ RNa , with Hu′ having full rank Nd .
(3.4)

This class of problems generalizes (1.3) in that the algebraic constraints, g(t, u, v) = 0
in (1.3), need not be identified explicitly. As above, we define the vectors w = (u′0, v0)

T

and x = P−1w of unknowns, and the system to be solved is

0 = F (x) ≡ G(t0, y0, y
′
0) = H(t0, u0, v0, u

′
0) .(3.5)

Here the Jacobian F ′(x) is given by

F ′(x) = [∂H(t0, u0, v0, u
′
0)/∂w]P = (Hu′ , Hv)P .(3.6)

The nonsingularity of F ′ can be shown from the assumptions of full rank for Hu′

and index one for the system. The system iteration matrix J being supplied (or
approximated) by the user is now

J = cGy′ +Gy = cHz′P +HzP = (cHu′ +Hu, Hv)P .(3.7)

Taking c = 1/h, and using the scaling matrix S̄ = P−1SP as above, the scaled system
matrix is

J̄(x) ≡ JS̄ = (h−1Hu′ +Hu, Hv)SP = (Hu′ + hHu, Hv)P .(3.8)

Comparing (3.6) and (3.8), we again expect J̄ to work well as an approximation to
F ′(x) in a Newton iteration, for sufficiently small h. The corrections to x now take
the form

∆x = −J̄(x)−1F (x) = −S̄−1J(x)−1F (x) .(3.9)

Here S̄−1 is a scaling of the differential variables in y by h−1.
It is the class of problems given by (3.4) that we take as the scope of Initialization

Problem 1, for which we have implemented the algorithm described above.

3.4. General index-one systems. Note that (3.4) does not include all fully
implicit index-one DAEs, because the rank and dependency conditions combined ex-
clude certain index-one systems. A simple example is the system

y′1 + y′2 = g1(t, y1),

y2 = g2(t) .(3.10)

This has index one, and it is well posed for any given value of y1(t0). But it does not
fit into the scheme of (3.4), because it contains the derivatives of both variables, but
the rank of the 2× 2 matrix Gy′ is only 1.
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In principle, our scheme can be applied to more general index-one DAE systems
by allowing P to be a more general matrix, not just a permutation. If a constant
nonsingular matrix P can be found that transforms y into z = Py = (u, v)T such that
G(t, y, y′) = H(t, u, v, u′) with Hu′ having full rank, as in (3.4), then our procedure
can be applied, as follows: defining w, x = P−1w, and F (x) as before, we again have
F ′(x) = HwP = (Hu′ , Hv)P and J̄(x) ≡ JS̄ = (Hu′ + hHu, Hv)P . Thus, as long
as the problem is well posed (hence F ′ is nonsingular), the Newton iteration using J̄
should work well. However, in contrast to the case where P is a permutation, once
a solution vector x is found, the vector y0 = P−1z0 = (u0

v0
), where v0 is defined by

(u
′
0

v0
) = Px, may differ from the input value of y0 in all of its components.

For the example system (3.10) above, an appropriate matrix P is

P =

(
1 1
0 1

)
,

making u = y1 + y2 and v = y2. Our procedure would determine v0 = y2,0 correctly.
But if the input initial value of y2 differs from g2(t0), both components of y0 would be
altered by the procedure, while u0 = y1 + y2 is unaltered. If preserving y1(t0) = y1,0

is required, another approach would have to be used.

The procedure with more general constant P determines a consistent set of initial
conditions only in the sense that the initial values of the transformed variables are
consistent. Initial values for the derivatives of the original variables may or may
not be consistent. For example, in the system (3.10) above, y′1 + y′2 is initialized
correctly, whereas y′1 or y′2 individually can only be determined if information about
the constraint derivative g′2(t) is used [16]. Our procedure would leave v′0 = y′2,0
undefined.

For the most general index-one systems, the matrix P which achieves the form
(3.4) would generally not be constant: P = P (t, y, y′). Due to the complications and
expense of finding such a smooth P and continuing with this change of variables in
later time steps, we have chosen not to implement this extension of our algorithm,
instead restricting P to the class of permutation matrices. If necessary, the user may
be able to bring the problem to the form (3.4) by a change of variables as described
above.

4. Convergence theory. In Initialization Problem 1, given by (3.4)–(3.5), the
use of an approximate Jacobian J̄(x, h) raises the question of convergence of the
Newton iteration, for which we give a convergence theorem here. In order to cover all
situations, the theorem below includes both full and modified Newton iteration for
the same problem. Here “full Newton” refers to the fact that the Jacobian, though
approximate, is evaluated at every iteration xk, while “modified Newton” means that
it is evaluated at a fixed argument x̄. We give the main convergence theorem without
proof, but with citations of similar results in [13]. Then we discuss the application
of the theorem to the DAE initialization problem, and give a similar convergence
theorem that applies to the use of Newton–Krylov iteration.

4.1. Newton iteration convergence. For a general system F (x) = 0, consider
the iteration

xk+1 = xk − J̄(x̄k, h)−1F (xk) ,(4.1)



1502 P. N. BROWN, A. C. HINDMARSH, AND L. R. PETZOLD

where both types of Newton iteration are included by taking

x̄k =

{
xk for full Newton iteration, or
x̄ for modified Newton iteration ,

(4.2)

and x̄ is fixed. The iteration uses an approximate Jacobian J̄(x, h) assumed to have
the form J̄(x, h) = F ′(x) + hC(x) for all x and h of interest. The following theorem
says that this iteration converges, at least linearly, under mild smoothness assumptions
on the functions F and C. The norm ‖ · ‖ used here is arbitrary.

Theorem 4.1. Let F : RN → RN be continuously differentiable in an open
convex set D ⊂ RN . Assume that

(a) there exists x∗ ∈ D such that F (x∗) = 0;
(b) F ′(x∗) is nonsingular, and ‖F ′(x∗)−1‖ ≤ β for a constant β > 0;
(c) there exists ρ > 0 such that the neighborhood N(x∗, ρ) = {x : ‖x−x∗‖ < ρ} ⊂

D, and F ′(x) satisfies a Lipschitz condition in N(x∗, ρ) with constant γ; and
(d) there exist matrix-valued functions J̄(x, h) and C(x), for all h ≥ 0 and x ∈ D,

related by

J̄(x, h) = F ′(x) + hC(x) ,(4.3)

with C(x) satisfying a Lipschitz condition in N(x∗, ρ) with constant γc.
Then there exist constants ε > 0 and h̄ > 0 such that for x0 ∈ N(x∗, ε), any

0 ≤ h ≤ h̄, and any x̄ ∈ N(x∗, ε) in the modified Newton case, the sequence generated
by (4.1) is well defined and converges to x∗. Under these conditions, the iterates obey

‖xk+1 − x∗‖ ≤ 2βγ‖xk − x∗‖2 + 4β(γηk + h̄C0)‖xk − x∗‖ ,(4.4)

where ηk = ‖xk − x̄k‖ and C0 ≡ εγc + ‖C(x∗)‖. In the full Newton case, ηk = 0, and
in the modified Newton case, ηk < 2ε.

The proof is an extension of the proof in Dennis and Schnabel [13, p. 90], which
treats the full Newton case with exact Jacobian. The main complication is due to the
inaccuracy in the iteration matrix. For that, the perturbation relation (3.1.20) in [13,
p. 45] is useful. We also make use of Lemma 4.1.12 of [13, p. 75].

4.2. Application to DAE systems. The general time step within DASSL and
DASPK involves the solution of linear systems J∆y = R in which the matrix is the
DAE system iteration matrix of (2.4), J = cGy′(t, y, y′) + Gy(t, y, y

′). In order to
use values of J inside a Newton or modified Newton iteration for solving the system
F (x) = 0 from Initialization Problem 1, we exploit the relationship between the
Jacobian matrix F ′(x) and J . From (3.6)–(3.8), we have

J̄ ≡ JS̄ = F ′(x) + hC(x) ,(4.5)

where S̄ = P−1SP in terms of the permutation P from y to u and v, and C(x) =
(Hu, 0)P in terms of the system function H(t, u, v, u′). Starting from input initial
guesses y0 and y′0 for y(t0) and y′(t0), we will set h and c = 1/h in J . The Newton
corrections are given by (3.9), ∆x = −S̄−1J−1F (x).

In DASPK, when direct methods are selected, then J(t, y, y′) is either supplied by
the user (possibly in approximate form) or generated by difference quotients, and J−1

is realized by the LU method. In this case, J = J(t0, y0, y
′
0) is fixed, and therefore

(3.9) represents a modified Newton method (x̄k = x0). Theorem 4.1 can be applied to
this iteration. If one assumes differentiability of G with respect to y and y′, and that
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the partial derivatives of G with respect to y and y′ are locally Lipschitz continuous,
then for well-posed initialization problems of the type discussed in sections 2 and 3,
it is clear that the assumptions of the theorem hold. Thus, the iteration on x will
converge, given h small enough, and given sufficiently good initial guesses.

When Newton–Krylov iteration is selected, the linear systems Jp = −F are solved
with preconditioned GMRES [20] as the linear iteration, with finite-difference approx-
imations involving G(t, y, c(y − a)) to approximate the action of J on an arbitrary
vector, and with a user-defined preconditioner that approximates J . Theorem 4.1
applies here only if the linear iteration error is neglected. In fact, GMRES computes
an approximate solution pk such that ‖F (xk) + Jpk‖ is small, and for the step given
by ∆xk = S̄−1pk, ‖F (xk) + J̄∆xk‖ is also small.

The reason finite differences of G are used above (instead of F ) is that the GM-
RES solver in DASPK uses finite differences of G to approximate J times an arbitrary
vector for the DAE time step. Thus, we are able to apply machinery that is already
available, and the user only need be concerned with J , not F ′. Because of the rela-
tionship between J̄ and F ′, it is also clear that a good preconditioner for J will suffice
in the iteration.

The presence of Krylov iteration error leads us to consider the convergence of the
following inexact Newton iteration for a general function F (x). Given x0, consider
the following iteration, where for k = 0, 1, 2, . . . we have

J̄(xk, h)sk = −F (xk) + rk , such that ‖rk‖ ≤ η‖F (xk)‖ ,(4.6)

xk+1 = xk + sk ,

with 0 ≤ η < 1. In the general inexact Newton setting, it is not important how the
step sk is computed, only that such an sk can be found. With the same assumptions
as before, the following theorem says that this iteration converges. Its proof is also
a fairly easy modification of that of Theorem 2.3 in Dembo, Eisenstat, and Steihaug
[12].

Theorem 4.2. Let F : RN → RN be continuously differentiable in an open
convex set D ⊂ RN . Assume that conditions (a)–(d) of Theorem 4.1 hold. Then there
exist constants ε > 0 and h̄ > 0 such that for x0 ∈ N(x∗, ε), any 0 ≤ h ≤ h̄, and any
0 ≤ η < 1, the sequence generated by (4.6) is well defined and converges linearly to
x∗.

5. The linesearch algorithm. In order to improve the robustness of the New-
ton algorithm discussed above, we also employ a linesearch backtracking algorithm.
Consider a general function F (x) ∈ RN for x ∈ RN , and define

f(x) ≡ 1

2
F (x)TF (x).(5.1)

Let x and δ in RN be such that the residual norm condition

‖F (x) + F ′(x)δ‖2 ≤ η‖F (x)‖2(5.2)

holds, where 0 ≤ η < 1, and ‖ ·‖2 is the Euclidean norm. The vector δ can be thought
of as an approximate solution of the Newton equations F ′(x)∆x = −F (x). Given
(5.2), it is shown in Brown and Saad [8] that δ is a descent direction for f at x; i.e.,
f(x + λδ) < f(x) for small positive λ. Given a descent direction δ for f at x, we
employ the following backtracking algorithm.
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Algorithm 5.1. Given 0 < θmin ≤ θmax < 1 and 0 < α < 1,
1. Set λ = 1.
2. If f(x+λδ) ≤ f(x)+αλ∇f(x)T δ, then set λfinal = λ and exit; otherwise,

continue.
3. Choose λ̂ ∈ [θminλ, θmaxλ], set λ = λ̂, and go to step 2.

The global convergence of this algorithm used in connection with an inexact Newton
iteration is discussed at length in [8]. The simplest choice for the θ’s is to take

θmin = θmax = 1/2, and this makes λ̂ = λ/2. We use this choice in the implementation
here, and also use α = 10−4, so that only a small decrease in f is required.

From (5.1), we have ∇f(x)T δ = F (x)TF ′(x)δ. Now, if δ is the exact Newton step
at x, δ = −F ′(x)−1F (x), then ∇f(x)T δ = −F (x)TF (x) = −2f(x). Hence in this
case, the Armijo condition in step 2 of Algorithm 5.1 is simply

f(x+ λδ) ≤ (1− 2αλ)f(x).(5.3)

On the other hand, if δ is the GMRES solution at the mth step when applied to
F ′(x)δ = −F (x), then it is shown in [7] that F (x)TF ′(x)δ = −F (x)TF (x)+ρ2

m, where
ρm ≡ ‖F (x)+F ′(x)δ‖2. Thus, in this case the condition in step 2 of Algorithm 5.1 is

f(x+ λδ) ≤ (1− 2αλ)f(x) + αλρ2
m.(5.4)

In the present context, we want to solve the nonlinear system F (x) = 0 given by
(2.9) or (3.5). However, because F is the DAE system function, we have no suitable
measure of the size of F (x) that is directly available. The weighted root-mean-square
(WRMS) norm used in DASPK for norms of y suggests that we solve instead the
problem

0 = F̃ (x) ≡ DA−1F (x),

where the matrix A is the current approximate system Jacobian matrix J of (2.4) in
the direct case, or the preconditioner P in the Krylov case,2 and D is a diagonal matrix
containing the weights used in the WRMS norm. The vector A−1F is dimensionally
consistent with the vector y, and F̃T F̃ is just the square of the WRMS norm of
A−1F . Thus it is likely that F̃ (x) is well scaled in the WRMS norm, and we apply
Algorithm 5.1 to f̃ = F̃T F̃ /2 instead of to f .

The direction vector δ that is available to us is the Newton correction given
by (2.10) or (3.9). Thus δ = −J̄−1F (x), where J̄ = JS̄ from (3.8) in the case of
Initialization Problem 1, or J̄ = J in the case of Initialization Problem 2. In both
cases, we expect J̄ ≈ F ′(x), but the question arises then as to whether or not δ will be
a descent direction for f̃ at the current approximate solution x. An easy calculation
gives

δ = −J̄−1(AD−1)F̃ (x) = −(J̄−1F ′(x))F̃ ′(x)−1F̃ (x) .

Thus if we can assure that J̄−1F ′(x)− I is small, δ will be a descent direction for f̃
at x.

6. Implementation. We implemented the algorithms described above for Ini-
tialization Problems 1 and 2 as new options in the general-purpose DAE solver DASPK
[9]. Initialization Problem 1 is solved for the more general class of index-one systems

2 The preconditioner P is not to be confused with the permutation matrix of section 3.
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(3.4) described in section 3.3. Here we give a few details of the implementation and
describe briefly how to use the new options. Within the dependent variable vector
Y in DASPK, we denote by Yd and Ya the subvectors of differential and algebraic
variables, respectively.

DASPK has an integer array argument INFO which is used to specify a variety of
options. In this latest version of DASPK, the user is to set INFO(11) to have DASPK
solve one of the two initialization problems.

• INFO(11) = 0 means initial values are already consistent (the default).
• INFO(11) = 1 means solve Initialization Problem 1 (given Yd, calculate Ya

and Y ′
d). In this case, the user must identify the differential and algebraic

components of Y, by setting an array ID (of length N) as part of the integer
work array IWORK:

— ID(I) = +1 if Y(I) is a differential variable, and
— ID(I) = −1 if Y(I) is an algebraic variable.

• INFO(11) = 2 means solve Initialization Problem 2 (given Y ′, calculate Y ).
In any case, the input arrays Y and Y ′ must contain the initial values for the given
components and initial guesses for the unknown components.

The algorithm for Problem 1 requires a stepsize h, to determine c = h−1. Initially,
we try the initial stepsize h0 which is used by DASSL and DASPK ([4, p. 128]).
If convergence is not achieved in the Newton iteration, we divide h by 10. If the
algorithm fails for MXNH (nominally = 5) different values of h, DASPK returns an
error flag to the user. In our experience, if the initialization succeeds, it usually
succeeds with the initial choice h0. For Initialization Problem 2, we always set c = 0.
Once the initialization has been completed, we reset the initial stepsize h0 for the first
time step of DASPK, based on the newly computed initial values.

For a given value of c, the initialization problem is solved with either a modified
Newton method or an inexact Newton method similar to that used in the general
time step, augmented by the linesearch algorithm. For both problems, we must solve
a system F (x) = 0, where F (x) is the residual of the DAE system at t0, y, y

′, and x
is the vector of unknown components in y or y′. A Jacobian or preconditioner matrix
is obtained, either internally or by calling a user routine, depending on the option
specified. The user routines to specify the system function G and the Jacobian or
preconditioner are exactly the same ones which are needed for the time integration.
The Newton iteration is given in terms of an approximation to the system Jacobian
J by

∆x = −λ(JS̄)−1F (x) = −λS̄−1J−1F (x) ,

where λ is the relaxation steplength (0 < λ ≤ 1) from the linesearch algorithm. For
Initialization Problem 2, the scaling matrix S̄ is absent. The vector p = J−1F (x) is
computed either by direct LU/backsolve operations, or by the preconditioned GMRES
algorithm. The code is organized so that the Newton solver is independent of which
initialization problem is being solved. After p is computed, a separate routine is called
to apply the increment ∆x = −λS̄−1p as follows. For Problem 1, we increment Ya by
the algebraic components of −λp and increment Y ′

d by the differential components of
−λcp. For Problem 2, we increment Y by −λp.

The complete algorithm involves three loop levels for Problem 1 and two levels for
Problem 2. At the innermost level, up to MXNIT Newton iterations are performed
with a given value of h and J or P . We consider the iteration to have converged if
the scaled residual is small in norm:
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ρ ≡ ‖A−1F (x)‖ ≤ EPCONI,

where A is the current approximate system Jacobian J in the direct case, and
the preconditioner matrix P in the Krylov case. The test constant is EPCONI =
EPINIT*EPCON, where EPCON = 0.33 is the tolerance for the Newton iteration
in the subsequent time steps, and EPINIT is a heuristic factor, nominally 0.01. The
WRMS norm is used throughout.

The values ρ = ρm from the mth iteration are used to infer a convergence rate,
RATE = ρm/ρm−1. If convergence is not achieved in MXNIT iterations, the strategy
for repeated attempts depends on RATE. If convergence failed, but RATE ≤ 0.8 (the
iterations are converging, but slowly), then we retry the Newton iteration with the
current values of y and y′ and a new value for A (i.e., for J or P ), up to a limit of
MXNJ such attempts. In addition, in the case of the Krylov method, if the GMRES
solver failed to converge after at least two Newton iterations, but RATE < 1, the
Newton iteration is retried with a new value for P . If the limit of MXNJ retries is
reached, we reduce h and retry the iteration (again with a new A and the current y
and y′) in the case of Problem 1, or give up and return an error flag in the case of
Problem 2. If convergence of the inner Newton iteration failed but RATE > 0.8 (or
some other recoverable failure occurred), we retry the iteration with a reduced value
of h and the initial y and y′ (Problem 1) or give up (Problem 2). The total number of
iterations performed can therefore be as large as MXNH*MXNJ*MXNIT in Problem
1 and MXNJ*MXNIT in Problem 2.

Currently we have set MXNH = 5 and EPINIT = 0.01. We have set MXNIT =
5, MXNJ = 6 in the case of direct methods, and MXNIT = 15, MXNJ = 2 in the case
of Krylov methods. However, all four of these controls are optional inputs to DASPK,
so that a user may specify different values. In addition, an option is provided to turn
off the linesearch algorithm.

An additional outer layer of logic is required, because the error weights involved in
all convergence tests depend on the current solution vector: wi = RTOLi|yi|+ATOLi.
With weights set using the input y vector, the initialization algorithm is called, and if
it succeeds, we update the weights and call it a second time. If it again succeeds, we
update the weights again, and proceed to the first time step. If either initialization
fails, an error flag is returned to the user. In the case of the Krylov method, on the
second initialization call, the preconditioner is not updated unless and until there is
a convergence failure.

We have added another useful feature to our implementation of the initialization
algorithm—the ability to enforce certain constraints on the components of Y. In ad-
dition to the option (previously included in DASSL and DASPK) of forcing all Y(I)
≥ 0, the revised version allows the user to specify that each Y(I) is to be either posi-
tive, nonnegative, nonpositive, or negative, or else is to be unconstrained, during the
initialization. This option is activated by way of INFO(10), and the user must then
load a second integer array (also part of IWORK) with the constraint specifications
on each Y(I).

7. Numerical experiments. We tested the initialization algorithm on several
problems and found that it performed much as expected. In the course of develop-
ment and debugging, we used a simple index-one system of size 2, having a known
analytic solution. For both the first and second initialization problem types, and for a
wide range of initial guesses, the initialization algorithm converged within the limits
imposed, for both the direct and Krylov method options. All attempts to integrate
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the system without the initialization option failed except when the initial values were
consistent.

For a more realistic test, we used a model of a multispecies food web [5], in
which mutual competition and/or predator-prey relationships in a spatial domain are
simulated. Here we consider a 2-species model, species 1 being the prey and species 2
being the predator, and with the predator assumed to have an infinitely fast reaction
rate. Specifically, the model equations for the concentration vector c = (c1, c2)T are:{

∂c1

∂t
= f1(x, y, t, c) + d1(c

1
xx + c1yy),

0 = f2(x, y, t, c) + d2(c
2
xx + c2yy),

(7.1)

with

fi(x, y, t, c) = ci


bi +

2∑
j=1

aijc
j


 .(7.2)

The interaction and diffusion coefficients (aij , bi, di) could be functions of (x, y, t) in
general. The choices made for this test problem are as follows:

A = (aij) =

( −1 −0.5 · 10−6

104 −1

)
,(7.3)

b1 = 1 + αxy + β sin(4πx) sin(4πy) = −b2 ,(7.4)

and

d1 = 1 , d2 = .05 .(7.5)

The domain is the unit square 0 ≤ x, y ≤ 1, and 0 ≤ t ≤ 10. The boundary
conditions are of homogeneous Neumann type (zero normal derivatives) everywhere.
The coefficients are such that a unique stable equilibrium is guaranteed to exist when
α = β = 0 and time derivatives appear in the equations for species 2 [5]. Empirically,
a stable equilibrium appears to exist for (7.1) when α and β are positive, although it
may not be unique. In our tests on this problem we take α = 50 and β = 100, for
which there is considerable spatial variation in the solution.

The PDE system (7.1), together with the boundary conditions, was discretized
with central differencing on an L×L mesh, as described in [9]. We have taken L = 20,
which is quite sufficient for accurate spatial resolution. The resulting DAE system
G(t, Y, Y ′) = 0 has size N = 2L2 = 800. The tolerances used were RTOL = ATOL =
10−5. All tests were run on a Sun Sparc-10 workstation.

7.1. Initialization Problem 1. In the tests on this problem reported in [9],
the initial conditions were taken to be mildly peaked functions that nearly satisfy the
constraint equations: {

c1 = 10 + [16x(1− x)y(1− y)]
2
,

c2 = −(b2 + a21c
1)/a22.

(7.6)

The predator value c2 above, determined by the equation f2(x, y, 0, c) = 0, is an
approximate quasi-steady state (QSS) value. The original DASPK solver has no
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difficulty with this problem, without further adjustment of the initial values. However,
we expect that in a typical application of this type it is impractical to find such
accurate initial values. So for our tests, we will prescribe a flat value

c2 = cpred0

as the initial guess in the input Y array, and invoke the new algorithm for Initialization
Problem 1. For the present problem parameters, the QSS values of c2 at time t = 0
are all within 10% of 105 (= −a21 · 10/a22), and so we vary cpred0 about 105.

We will report here only tests with the Krylov method (GMRES) option in
DASPK, and as a preconditioner we use a product of a spatially based factor and
a reaction-based factor. In the notation of [9], this is given by

PSR ≡ (I − c−1SY )(cĪ1 −RY ) .(7.7)

Here R and S are (respectively) the reaction and diffusion terms of the right-hand side
of the DAE system, so that the problem has the form G(t, Y, Y ′) = Ī1Y

′−S−R (Ī1 is
the identity matrix with 0 in place of 1 in positions corresponding to the components
c2). The spatial factor in PSR consists of five Gauss–Seidel iterations, and the reaction
factor uses difference quotient approximations for the diagonal blocks. For the DASPK
input parameters relating to the Krylov method, default values were specified.3

In Table 7.1, we summarize the results of the DASPK tests with the new initial-
ization algorithm incorporated in it. For each value of cpred0 (with QSS denoting the
values in (7.6)), the tabulated quantities are:

NNI0 = number of Newton iterations in the initial condition calculation,

NLI0 = number of linear iterations in the initial condition calculation,

NNI = total number of Newton iterations to complete the integration,

NLI = total number of linear iterations to complete the integration,

NRE = total number of residual evaluations to complete the integration.

The numbers NNI0 and NLI0 measure the cost of the initialization algorithm, while
NNI, NLI, and NRE measure the total cost of solving the problem. Convergence (to
correct values) in the initialization was achieved at a very reasonable additional cost

for .6 · 105 ≤ cpred0 ≤ 107. Evidently, the convergence region for the initialization of
this problem is strongly skewed to the high side, but does permit errors of at least
40% on the low side. In the case cpred0 = 104, the algorithm converged, but to the
value c2 = 0, which corresponds to a solution that is valid but different from the one
of interest here.

For comparison, when the initial condition calculation option was not selected,
only the QSS initial values were successful, and in that case the total cost figures were
NNI = 338, NLI = 371, NRE = 709. These are slightly larger than with the initial-
ization, indicating that even the approximate QSS values from (7.6) are somewhat in
error. The unmodified DASPK solver, when run with its initial condition option on,
was also unable to solve any case except the QSS initial values, and in that case the
total costs were NNI = 366, NLI = 605, NRE = 971. The failed cases either halted
in the initialization algorithm or (when the initialization option was off) failed in the
first time step with either repeated corrector convergence failures or repeated error
test failures.

3 On the basis of experience with these tests, however, we have changed the default value of
NRMAX, the maximum number of GMRES restarts, from 2 to 5.
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Table 7.1
Test results for new initialization algorithm on food web problem.

cpred0 NNI0 NLI0 NNI NLI NRE Notes

QSS 1 1 336 361 699

104 5 12 - - - predator → 0

.5 · 105 - - - - - failed in I.C. calculation

.6 · 105 5 46 341 417 762

.7 · 105 4 23 370 652 1025

.8 · 105 5 24 368 626 996

.9 · 105 4 17 367 618 987

105 3 10 338 384 724

106 8 22 342 383 727

107 11 25 375 629 1006

7.2. Initialization Problem 2. In these tests, we specify the initial time deriva-
tives y′ to be 0; i.e., we are posing the steady-state problem for (7.1). Since we have
no explicit time-dependence in the right-hand sides, once the consistent initial values
are determined, the solution to the DAE problem is constant in time.

By comparison with Initialization Problem 1, the absence of the time derivative
operator changes the basic nature of this type of problem considerably. The possi-
bility of a singular Jacobian for the right-hand side function or multiple steady state
solutions, neither of which causes much difficulty in a pure time integration problem,
can cause considerable numerical difficulty in the time-independent problem. More-
over, the preconditioners devised in [9] for the DAE problem itself are much less useful
here.

We first describe tests using the direct method. These specified a banded Jaco-
bian, generated internally by difference quotients, where the two half-bandwidths are
equal to 2L = 40. For simplicity, the initial guesses for the discrete ci values were
taken to be spatially flat values with

c1 = cprey0 (given), c2 = 104c1 .(7.8)

Because the subsequent time integration is not an issue here, we stopped it at t = 10−8.
We performed tests for a variety of values of α and β, revealing, as in the case of
Problem 1, a nontrivial region of convergence in each case. Table 7.2 (upper half)
gives the results for the case α = 50, β = 100, where the tabulated counter NNI0
is defined as before. Convergence is achieved with no difficulty (always using the
full Newton step) for (at least) the values 45 ≤ cprey0 ≤ 100. In an interval about
cprey0 = 40 and in the interval cprey0 ≤ 10, the algorithm fails to find a solution. In
an interval about cprey0 = 20, it converges to an incorrect solution (that has negative
values of ci). In an interval about cprey0 = 30, it converges to the correct solution,
but with difficulty, in that the linesearch algorithm must choose values of λ < 1. For
reference, we note that the true steady state values of c1 in this case range from 9.9
to 66.

For this two-dimensional problem, using a Jacobian with the full bandwidth is
quite costly. In an attempt to reduce costs, we also tested with half-bandwidths equal
to 1, corresponding to an approximate Jacobian that ignores the diffusion terms.
However, the results were completely unsuccessful. The resulting lumped tridiagonal
approximate Jacobian is evidently too inaccurate.
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In considering tests with the Krylov method for this problem, the choice of a
preconditioner is problematical. In terms of the form G = Ī1Y

′ − S − R, the true
Jacobian for the steady state problem is J = −SY − RY . Since the initialization
algorithm sets c = 0 in any user-supplied preconditioner, the choice PSR of (7.7) used
for Problem 1 is undefined. We therefore use PR = −RY , a block-diagonal matrix
involving only the reaction Jacobian elements. We again tried a variety of values of
α and β, and provided flat initial guesses (7.8). However, for the larger values of
these parameters, it was found that convergence of the GMRES iteration was much
slower than in the case of Initialization Problem 1. This is to be expected, since the
diffusion terms contribute significantly to the system but are completely absent in the
preconditioner. In order to achieve convergence, we therefore increased the Krylov
subspace parameters over their default values, setting the maximum size of the Krylov
subspace (MAXL) to 20, and the number of GMRES restarts allowed (NRMAX) to
19. This allows a total of 400 GMRES iterations on each linear system. For values
of cprey0 ≤ 50, the algorithm appears to fail, while for values of 60 ≤ cprey0 ≤ 100 (at
least), it converges to the correct solution.

Table 7.2
Test results for food web problem, Initialization Problem 2.

cprey0 Linear method NNI0 NLI0 Notes

10 direct - - fails in I.C. calculation
20 direct 11 - incorrect solution
30 direct 11 - linesearch min λ = 1/4
40 direct - - fails in I.C. calculation
50 direct 11 -
60 direct 11 -
80 direct 12 -

50 Krylov - - fails in I.C. calculation
60 Krylov 6 1349
70 Krylov 6 708
80 Krylov 6 551
90 Krylov 6 457
100 Krylov 6 444

In all of the cases tabulated, we compared the computed solution vector from
the initialization algorithm with that from a more accurate solution with the direct
method, integrated with tighter tolerances to t = 100, where it is virtually at steady
state. All of the values from the Problem 2 tests had errors less than the tolerances
imposed. For example, for α = 50, β = 100, cprey0 = 70, the maximum relative error
observed was about .49 · 10−5.

Users of DASPK should be cautioned that Initialization Problem 2 is potentially
more difficult than Initialization Problem 1, and that some extra effort may be nec-
essary. In contrast with Problem 1 and with the time integration, the tests above
indicate that a singular Jacobian or multiple solutions can occur, making convergence
of the algorithm for Problem 2 more sensitive to the initial guess and to the quality
of the approximate Jacobian J or preconditioner P . If the J or P used in the time
steps is a good approximation only in the limit c→∞ (h→ 0), as was the case in the
Problem 1 food web tests, a different preconditioner for the steady-state initialization
problem (where c = 0) should be seriously considered. The user can easily determine
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within JAC and PSOL whether the preconditioner has been called for a steady-state
initial condition calculation, because the parameter CJ will be equal to zero (it is
nonzero in any other situation), and can then branch accordingly to the appropriate
preconditioner.

7.3. Other preconditioners and general-purpose modules. This food web
model has also been tested with a preconditioner based on sparse incomplete LU fac-
torization. The results compare quite well with those reported above for the product
preconditioner. With ILU preconditioning, the cost of each preconditioner evaluation
is generally higher, but the number of linear and nonlinear iterations is lower.

Because this preconditioner is applicable quite generally, we have written a sepa-
rate module that incorporates it. Likewise, we have written a banded preconditioner
module for general use, and a module of tools for product preconditioners of the type
described above for reaction-transport systems. These preconditioner modules are
being distributed along with the DASPK solver.
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