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NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEMS
IN DIFFERENTIAL-ALGEBRAIC SYSTEMS*

KENNETH D. CLARK! AND LINDA R. PETZOLD?

Abstract. This paper extends the theory of shooting and finite-difference methods for linear
boundary value problems (BVPs) in ordinary differential equations (ODEs) to BVPs. in differential-
algebraic equations (DAEs) of the form

E()y'(t) + F(t)y(t) f(t), te€lab),
Bay(a) + Byy(b) B,

where E(-), F(-), and f(-) are sufficiently smooth and the DAE initial value problem (IVP) is solvable.
E(t) may be singular on [a,b] with variable rank, and the DAE may have an index that is larger
than one. When E(t) is nonsingular, the singular theory reduces to the standard theory for ODEs.
The convergence results for backward differentiation formulas and Runge-Kutta methods for several
classes of DAE IVPs are applied to obtain convergence of the corresponding shooting and finite-
difference methods for these DAE boundary value problems. These methods can be implemented
directly without having to (1) regularize the system to a lower index DAE or ODE or (2) convert
the system to a particular canonical structure. Finally, some numerical experiments that illustrate
these results are presented.
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1. Introduction. In this paper we extend the theory of shooting and finite-
difference methods for linear boundary value problems (BVPs) in ordinary differential
equations (ODEs) to BVPs in differential-algebraic systems (DAEs) of the form

(1.1a) Ly(t)
(1.1b) By(t)

E(t)y'(t) + F(t)y(t) = f(t), t€[a,b],
Bay(a') + Bby(b) =B,

where E(-), F(-), and f(-) are sufficiently smooth and the DAE initial value problem
(IVP) is solvable. We allow E(t) to be singular on [a,b] with variable rank, and the
DAE (1.1a) may have an index that is larger than one. See [14] or [33] for a detailed
discussion of the index of a DAE. Intuitively, ODEs have index 0, while the solutions
to higher index DAE systems (index > 1) involve derivatives of the coefficients E,
F, and the input f. Index one systems contain algebraic variables that are uniquely
determined by the state variables (not including derivatives).

IVPs in DAEs have been extensively studied in recent years from both a theo-
retical and a numerical perspective. These problems arise frequently in applications,
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including circuit and control theory [6], [17], [36]; chemical kinetics [25]; fluid dy-
namics [33], [38]; and robotics [35]. In some cases, the models lead to the nonlinear
semi-explicit formulation

(1.2a) ¥y = fy,21),
(1.2b) 0 = g(y,2t)

and with it the interpretation of (1.1a), (1.2) as constrained ODEs or differential equa-
tions on manifolds [42]. However, in many applications the fully-implicit formulation
(cf. (1.3)) is more appropriate.

As an extension to the initial value theory, it is natural to consider BVPs in
DAEs. DAE BVPs arise in the modeling of semiconductor devices [1]; control the-
ory [4], [17]; detonation modeling [28]; the design of heat exchangers [37]; and in
parameter-estimation problems for multibody systems [5]. We believe that as in-
formation regarding DAEs and software for these problems becomes more widely
disseminated in the scientific and engineering community, the number and variety of
applications will increase.

In recent years, several researchers have studied various approaches to the general
solution of DAE BVPs. The work of Mérz and Griepentrog [34], [23] focuses on
difference and shooting methods for BVPs for nonlinear fully-implicit systems:

(1'33') F(yl$y7t) = 0,
(1.3b) G(y(a),y(®)) = 0

under a transferability hypothesis that guarantees that (1.3a) is a regular, index one
system and the nullspace of F is independent of 3, y and has constant dimension. All
linear solvable index one systems (1.1a) are transferable, as are semi-explicit systems
(1.2) where g, is bounded and invertible. The numerical approach in [23] requires
knowledge of some projector onto ker(Fy) and its derivative at each meshpoint. There
are some theoretical results for the subclass of tractable index two systems [22], but
it is implied that a successful numerical approach involves regularizing the DAE to a
nonsingular or index one system and then numerically solving the regularization (cf.
(31], [32]).

Ascher [1] gives a convergence result for collocation schemes applied to semi-
explicit index one DAESs, where the collocation methods are applied in such a way that
the algebraic components of the system are approximated in a piecewise discontinuous
space. In Ascher [1], a convergence result is outlined and order conditions are given
for Gaussian collocation methods applied directly to fully-implicit index one systems.
Hanke [24] describes a least-squares collocation method for linear differential-algebraic
equations that is applicable to higher index systems.

Bock, Eich, and Schloder [5] describe numerical methods based on multiple shoot-
ing and collocation for equality-—and inequality—constrained DAE BVPs arising from
parameter-identification problems for multibody systems. Their approach is restricted
primarily to semi-explicit index one systems, and the methods distinguish the alge-
braic from the differential components in their numerical treatment. This distinction
in the method between the algebraic and differential components—a distinction that
is inherent in methods proposed for semi-explicit systems by Méarz and Griepentrog;
Ascher; and Bock, Eich, and Schléder—is natural and highly appropriate in the semi-
explicit index one case, but for the fully-implicit case it is unclear how to accomplish
the distinction in general without the expensive computation of projectors at each
meshpoint.
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This paper serves several purposes. First, we show that under an appropriate
formulation, the theory of shooting and finite-difference methods for linear systems
(e.g., simple and parallel shooting with partially or completely separated boundary
conditions, one-step difference schemes with extrapolation) for ODE BVPs can be
formally extended to DAE BVPs, using the characterization of the solution manifold
given in [11]. We note that we have not addressed here the issue of conditioning for the
DAE BVP and for the numerical methods. For a discussion of these issues for the DAE
BVP, see Lentini and Mérz [29], [30]; and for ODE BVPs and numerical methods for
ODE BVPs, see Ascher, Mattheij, and Russell [3]. Ascher [1] addresses these issues for
a limited class of numerical methods for DAE BVPs. We make no assumptions on the
index of the DAE (1.1a), except what is required for convergence of the corresponding
methods applied to related DAE IVPs. Thus for many of the methods, the results
apply to the solution of higher index systems. The results and details of the theory
are straightforward extensions of the results in [26], [27] and reduce to the ODE case
when E(t) is nonsingular; thus it is possible to treat ODE and DAE BVPs within
the same theoretical framework. For the purposes of clarity and consistency, we will
adopt the notation and presentation in these papers to the greatest possible extent.
As in the ODE case, the shooting theory provides a necessary theoretical basis for the
development of more direct techniques, such as finite differences. We discuss shooting
methods in § 3 and treat the finite-difference case in § 4. In § 5 we present the results
of some numerical experiments that reinforce the theory of the previous sections.

A consequence of this approach is that the initial value methods that exhibit the
restricted convergence and stability properties for certain subclasses of numerically
solvable DAEs (1.1a), e.g., backward differentiation formulas (BDF) ([6], [7], [16]-[21],
[33], [41], [43]); implicit Runge-Kutta methods (IRK) ([8], [40]); or the ith order jth
block (i.e., (i,7)-) series methods ([11], [12]) can in principle be used to construct
convergent approximations to the BVP (1.1) under similar restrictions. Furthermore,
the DAE can be solved directly by these methods without having to convert the system
to a canonical structure. In particular, it is unnecessary to transform the DAE BVP
to an ODE BVP on a lower-dimensional space or to regularize the DAE. Knowledge
of the solution manifold (which may require derivative information) is required only
at the initial time point £y = a, or in the case of parallel shooting at each parallel
node 75, and not at every numerical meshpoint ¢,.

2. Background and terminology. We assume that E(-), F(-), and f(-) are
real matrix- and vector-valued functions of ¢t € I = [a,b], with dimensions m x m
and m X 1, respectively. The space of s-times continuously differentiable functions
on [ is denoted by C?(I), or more conveniently C®, with the range (e.g., matrix- or
vector-valued) understood from the context. Throughout this paper we assume that
E, F are at least C?>™, while f is at least C™, although in many cases it suffices to
have E, F, f € C°, where o is the global index (see the discussion below). As in [11],
we adopt the following definition of solvability for (1.1a).

DEFINITION 2.1. The system (1.1a) is solvable on I if and only if

(1) for all f there exists a C! solution y;

(2) all solutions corresponding to f are defined and at least C! on the entire
interval I and are uniquely determined by their values y(t) for each t € I;

(3) all solutions of the homogeneous system Ly = 0 are at least C?*™*1; and

(4) if f € C® for m < s < 2m, then any corresponding solution y is C*~™+1.

Conditions (1) and (2) of the definition constitute the standard definition of solv-
ability (cf. [14], [16]) and imply that solutions are pointwise linearly independent
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and do not exhibit finite escape on I. The vector yq is a consistent initial condition
for (1.1a) if there exists a solution y such that y(a) = yo. Let Mj(a) (or simply
My) denote the set of consistent initial conditions for (1.1a) at t = a. When E(t) is
nonsingular My = R™, while if E(t) is singular My forms a linear manifold properly
contained in R™ (a proper subspace if f = 0).

If Ly = 0 has the unique solution y = 0 (equivalently, Ly = f has a unique
solution y,), we say (1.1a) is degenerate; otherwise, it is nondegenerate. If (1.1a)
is nondegenerate, there exists an integer » > 0 and linearly independent functions
é1, -, ¢y such that (¢1(t),: -, ¢r(t)) forms a basis for the solution manifold My(t)
for each t € I. In particular, r = dim M, is the rank or dimension of the solution
manifold for (1.1a) and every solution y can be written

(21a) y(t) = yp(t) + Y &idi(t)-

i=1

If (1.1a) is degenerate then r = 0, while if E(¢) is nonsingular then r = m. As in the
case for ODEs, (2.1a) will be the starting point for the development of a theory for
shooting methods applied to (1.1).

The addition of conditions (3) and (4) to the standard definition of solvability
guarantees the characterization of the solution manifold at ¢t = 7, 7 € [a, }] as a linear
system involving F, F, f, and their derivatives up to order m evaluated at t = 7.
Without going into lengthy detail, we briefly describe its derivation and refer the
reader to [11] or [12] for a more detailed discussion. Let j > 1 be an integer and
define E;(7), F;(1), y;(7), and f;(7) by

Ey
E, + Fy 2E,
(2.1b) Ej(r)=| E2t+h 2E:1+F, 3Ep ,
Ej 1+ Fj_2 2E; 2+Fj—3 ... ... jEp

(2.10) Fj(T)=(ngFF)"’,Fﬁ1)T7 fj(T)___(fgaf'irv'”’f_;'r—l)Ta

(21d) y](T) = (y{a yg', T y}")T,
where ¢; = ¢ (7)/i! for c = E, F, y, and f. Then (1.1a) implies
(2.2) E;(r)y;(r) = £;(7) = F;()%.

Note that (2.2) is an (mj) x (mj) system. The matrix E; is 1-full if (2.2) uniquely
determines y;. If (1.1a) is solvable on I, then E; is 1-full with constant rank for
Jj =m+1[11]. It follows that Mg(7) is the set of all yo such that (2.2) is a consistent
linear system, i.e.,

(2.3) M;y(r) = {yolf;(r) — Fj(r)yo € im(E;(r))},

where im(-) denotes the range space. Let = dim ker(E;(7)). Solvability implies 7 is
constant on I. Let W(7) be a smooth (mj) X  matrix-valued function whose columns
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form a basis for ker(E;(7)T). Then Q@ = W(WTW)~'W7 is an orthogonal projector
onto ker(E;r) and I — @ is an orthogonal projector onto im(E;) = ker(Ef)l. Clearly
(2.2) implies

(2.4) W(T)TFj (T)yo = W(T)Tfj (7).

But (2.4) implies f; — Fjyo € ker(Q) = im(I — Q) = im(E;), hence (2.2) and (2.4)
are equivalent. In § 4, we write the system (2.4) as

(2.5) M:yo = g(7),

where M, is n xm with full row rank, g(7) = 0if f = 0 and r = dim ker(M,) = m—.
It follows that My = ker(M,), where M, = M, at 7 = a. Although numerically
impracticable or expensive in many cases, this tells us that if r is not known a priori,
in principle it can be determined from the rank of E;.

Frequently, it is possible to take j < m + 1 in (2.2). If 0 + 1 is the smallest
integer such that E,; is 1-full and constant rank, then o is the global indez of (1.1a)
and it suffices to take j = o + 1. It is relatively straightforward to show that this
definition agrees with the definition of global index given in [21]. (See also [17] for
an equivalent definition of global index in a slightly different context.) If for each
7 € I there exists a scalar A\, € R such that (A, E(7)+ F(7)) ™! exists, then (1.1a) is a
regular system and the local indez of (1.1a) at ¢t = 7 is the index of nilpotency of the
matrix Ex(7) = (A+E(7) + F(7))"'E(7), denoted ind(E(r), F()). It is well known
that the local and global indices for higher index (index > 1) systems may differ when
E, F are time varying, although for index one systems they are the same.

The main results of this paper depend only on solvability and (2.4) and therefore
are independent of the index. However, since the index one systems are well under-
stood and arise most frequently in applications, we briefly review several facts for this
case. In the following proposition let (-)! denote the Moore—Penrose inverse, while
(-)P is the Drazin inverse [15].

PROPOSITION 2.1. If (1.1a) is solvable, then im([I — EEY|F) = im ([I — EEY)) for
all t € I. Consequently, if rank (E(t)) = r, then rank ([I — E@Q)E@®)Y|F(t)) =m —r
and dim ker ([I — E(t)E(t)T|F(t)) = r.

Proof. Solvability of (1.1a) implies for every solution y(t),

(2.6) [I - EEY)Fy= I — EE']f forallt€ [a,b],

since [I — EE'] is the orthogonal projector onto ker(ET) = im(E)~+. Clearly, im([I —
EE*)) D im([I — EE']F) but if the inequality is strict, there exists smooth f(t) such
that (2.6) is not satisfied for some t* € [a,b]. This contradicts solvability, hence
im({I — EE!)) = im([I — EEY|F). O

Proposition 2.1 follows directly from the proof of Theorem 2.2 in [16] and is
independent of the index of (1.1a). In the special case ind(E,F) = 1, the system
(1.1a) is solvable if and only if rank(E(t)) is constant on [a,b]. Equivalently, there
exist invertible P(t), Q(t) as smooth as E(t) and F(t) such that

@7  POE®Q()= (g 8) P(t)F(t)Q(t)=(C(gt) ?)

where the identity block in PEQ has size rank(E(t)). Thus the dimension r of the
solution manifold for solvable index one systems is rank(E(t)), while if the index is
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greater than one, 7 < rank(E(t)). In particular, from Proposition 2.1 we have the
following.

COROLLARY 2.1. If (1.1a) is solvable index 1, the m — r linearly independent
relations in (2.6), evaluated at t = T, completely specify the set of consistent initial
conditions for (1.1a) starting att = 7.

Of course, the additional consistency requirements for higher index systems are
obtained from differentiations of (1.1a), as in (2.4). Note that if only one consistent
initial condition yg is needed and F(7)v = f(7) is a consistent linear system, then we
may choose yg = v. Also, compare (2.6) with the equivalent characterization (2.4)
with j = 2, or the system

(2.8) (I — EPE))y = (I — EPE)\)F\fx, evaluated at t =T,

where g\ = (AE+F)~!q for ¢ = E, F, f, which is derived in [14]. Using the approach
in [23], one can also show that My () is the set of all z such that

(2.9) z=(P-Q[E+FQ|"'FP)xo + Q[E + FQ]™'f, =0 arbitrary

evaluated at ¢ = 7, where @ is an arbitrary projector onto ker(E) and P = I — Q.
Which characterization is appropriate depends on the circumstances, but for our
purposes it will be convenient to use (2.5), since it is independent of the index.

3. Shooting theory for linear DAEs. Assume that r = m —dim(ker(E;)) has
been determined by a careful rank determination of E; using, for example, a singular
value decomposition [22] or Gauss elimination with pivoting and scaling if the linearly
independent rows of E; are not nearly linearly dependent in the numerical sense. In
many cases of interest (e.g., constant coefficients or the structural forms discussed in
[13], [16], and [17]), 7 = core-rank(E)) = rank(EY E)). The core-rank of a matrix A
is the size of the block corresponding to the nonzero eigenvalues in the Jordan form
for A. In order for the boundary conditions (1.1b) to uniquely determine solutions
for all B, it is necessary that B,, B, € R"™™ with rank[B,, By] = r. Thus a correct
formulation for the BVP is

(3.1a)  Ly(t)
(3.1b)  By(t)

E@)y' (t) + F(t)y(t) = f(¢), tel,
Boy(a) + Bpy(b) = B8, B,,B, € R™*™, BeR.

i

DEFINITION 3.1. The BVP (3.1) is solvable if and only if (3.1a) is a solvable DAE
and for every 8 € R" there exists a unique solution y to (3.1).

Let yp € My(a) and assume (¢7)] is any basis for My = ker(M,), where M,
is given in (2.5). Correspondingly, let y,(t) and the fundamental matrix Y (t) =
[@1(t),- -+, ¢r(t)] be the solutions to the r + 1 IVPs

(3-2a) ‘Cyp(t) = f(t), yp(a) = yg € Mf(a)a
(3.2b) LY() = 0, Yia)=Yo=[¢h o)

Note that Y (¢) has full column rank for all ¢ € I, since (3.1a) is solvable. Using the
representation (2.1a) and imposing the boundary conditions (3.1b), we find that y is
a solution of (3.1) if and only if the vector £ = (£1,---,&,)7 satisfies

(3.3) [BoYo + ByY (b)|€ = B — (Bayg + Byyp(d))-
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As in the ODE case, the 7 x 7 matrix
(3.4) S = B,Yy + ByY (b)

is the shooting matriz for (3.1) and is unique up to a change of basis for My, i.e., if
S is any shooting matrix for (3.1), there exists a constant invertible r x r matrix @
such that S = 5SQ. Thus we have Theorem 3.1.

THEOREM 3.1. The BVP (3.1) is solvable if and only if S is invertible. The
desired solution is given by (2.1a), where yg, Y satisfy (3.2) and £ is the solution to
(3.3).

Therefore, simple shooting consists of solving the r + 1 IVPs in (3.2) over [a, b],

forming the shooting matrix (3.3), solving the linear system (3.4) for &, and finally
solving the IVP

(3.5) Ly(t)=f(t), wla) =9+ Ye¢

for the unique solution y to (3.1). At the end of this section we discuss numerical im-
plementations of shooting procedures. Unfortunately, if the differential part of (3.1a)
exhibits stiffness, the shooting matrix may be ill conditioned. One way to inhibit the
effects of exponential growth of solutions on the conditioning of the shooting equation
is to consider separate shooting problems on smaller subintervals of [a,b] and join
the resulting solutions by imposing continuity. This technique of parallel or multiple
shooting is discussed momentarily. As we have already noted, the details are essen-
tially the same as for ODEs, with the exception that we must incorporate information
about the solution manifold. To this end the following intuitive result is very useful.

PROPOSITION 3.1. Suppose (3.1) is solvable with solution manifold determined by
(2.5). Let the m x 2m matriz X and m x (r +m) matriz Z be defined by

_( Ba By (S Ba
=(n ®) 2= R)
Then rank(X) = rank(Z) = m.
Proof. Clearly rank (Z) = m, since S is nonsingular and M, has full row rank

m — r. It suffices to show that im(X) D im(Z). Suppose z = (2F,23)T € im(2).
Then there exists v = (v, v )T such that

21 = 8Svy+ Bgvy = [BaYo + BbY(b)]'v1 + B,ve
= B,(Yov1 + v2) + BpY (b)vy,
2y = Ma'vz.

Let u; = Yov1 + v, uz = Y(b)v1, u = (uf,ud)T. Then z = Xu, since MYy = 0.
Therefore im(X) D im(Z) and more specifically im(X) = im(Z), implying rank(X) =
m. O

Partially separated boundary conditions. If either B, or B, are rank
deficient, the number of IVPs to be solved in (3.2) can be reduced to ¢ + 1, where
¢ = min(rank(B,),rank(Bp)). In this case the boundary conditions are partially
separated. Without loss of generality, assume rank(Bp) = ¢ < r. There exists a
nonsingular matrix R such that premultiplying (3.1b) by R yields

(3.6&) Cay(a) = fa,
(3.6b) Chay(a) + Cpy(d) Be,
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where 8, € R™79, B, € RY, C, is (r —¢) x m with full row rank (r —¢) and Cp is g xm
with full row rank ¢q. If Cp, = 0, the boundary conditions are completely separated.
From Proposition 3.1, the matrix [CT, MT]7 has full row rank m — g. Let D, be
a ¢ x m matrix such that U = [CT, MT, DT|T is invertible. We impose the left-hand
boundary conditions (3.6a) on the particular solution y,. Thus, suppose y, satisfies

(3.7) Lyp(t) = f(t),  Uypla) = [7,9@)", 7"

for an arbitrary vector v € R9 (e.g., take v = 0). Partition U™! as
U™! = [Uy,Us,U,), U, € R™*9,

and let V (¢) satisfy

(3.8) LV(t) =0, V(a) = U,.

Note that a unique solution to (3.8) exists, since (3.1a) is solvable and M U, = 0 by
definition of U,. Now let

(3.9) y(t) = yp(t) + V(t)p, peRI,

and impose the g remaining boundary conditions (3.6b) to get a linear system for the
parameters pu

(3.10) [CoalUs + CoV (b)]1t = B — (Cratip(a) + Chyp(b)).

To see that [CpoUs + CpV (b)) is invertible, note that RS is invertible, where

- Ca¥o
RS = (CbaYO + C’bY(b))

where Y} is any basis for ker(M,) and Y (t) is the corresponding homogeneous solution.
In particular, we can let Yy have the form [Z(a),U,], hence Y (b) = [Z(b), V(b)]. By
definition of U,, C,U, = 0, which implies

_ CaZ(a) 0
RS = (Cbaz(a) +aCbZ(b) CraU, + CbV(b)) ‘

Thus (CpeUs + CpV (b)) is invertible.

Parallel Shooting. Suppose (3.1) is solvable, and let the nodes (7;) define a
partition of [a, b]

To=a<n<--<T7=bh

On each subinterval [rj_y,7;], j =1,-+,J, the BVP solution y(t) can be represented
as

(3.11) y(t) = y;(t) = v;(t) + V;(1)&;, t € [rj-1,75),
where v; is any particular solution to

(3.12) £’Uj(t) = f(t), vj(‘rj_l) = v;-’ € Mf('rj..l),
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and Vj is a fundamental solution to
(3.13) LVi(#) =0,  Vj(rj-1) =V),  im(V) = Mo(7;-1).

Continuity of y on [a, )] and the boundary conditions (3.1b) yield the following equa-
tions for the ¢;’s

B,V ByVy(b) & B — [Bav} + Byus(b)]
-Vi(n) Wy & vi(m1) — 03
~Va(ra) V4 & = v3(72) — 0§
—Vl-l(.TJ-l) vy 6.1 vJ—l(TJ;l) -9
or
(3.14) AL =B,

where A is [(J — 1)m + r] x [rJ]. Since (3.1) is solvable and v;(7;) and V;(r;) are
uniquely determined by vj and V°, respectively, we must have 8 € im(A) and the
solution £ is unique. Thus A has full column rank rJ. The exact solution is given by

(3.15) £=A'B.

From a numerical standpoint, the fact that A has full column rank is important. If
v;(7;) and Vj(7;) are numerically computed to O(h*) accuracy, then (3.14) is actually

(3.16) Apu = éha

which may be inconsistent. However, 8, = 8+ O(h*) and Ap = A + O(h*), which

implies A} = At + O(h*) for h > 0 sufficiently small [14]. Therefore the least-squares
solution €, = Al B3, satisfies

§-¢ = A8, -~ A8
(3.17) 2 2 ATOUR) + O(hR)B + O(h) = O(k¥).

The numerical least-squares problem has been extensively investigated [22], and
there currently exist well-developed and tested codes for its solution. Generally, the
algorithms involve stable implementations of the singular value decomposition (SVD)
or some variant of the QR factorization. Thus it is reasonable to expect (3.17) to
remain valid under perturbations due to roundoff error if h is not too small. However,
for higher index problems, effects due to roundoff become more pronounced as h — 0%
for certain classes of numerical methods (e.g., BDF [39]).

The variations of parallel shooting based on the choice of parameters ('u?), (Vjo) are
restricted by the consistency requirements (2.5). Thus, for example, standard parallel
shooting (v;’ =0, Vjo = I) is generally not a valid approach for DAEs. However, at
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least one important variation, the stabilized march technique [27], is legitimate in that
the selections for v?, Vjo automatically satisfy the constraint equations. We briefly
sketch the details.

Suppose the boundary conditions are partially separated as in (3.6b). Represent
y;(t) asin (3.9). Let V2 = Uy(m x gq), v} = y,(a), as in (3.7), (3.8). Inductively define
Vﬁ,_l, for j =1,---,J to be the columns of V;(7;) orthogonalized, i.e.,

(3.18) Viss = Vi(1)Ps,

where P; is a ¢ X ¢ nonsingular upper triangular matrix. But im(V;(7;)) = ker(M,,)
so that

M;, Vi =0,

that is, Vﬁ,_l is consistent for the homogeneous problem at ¢y = 7;. Defining v‘]? +1 @8
the projected component of v;(7;) in [im(V2 )]+ = im(M]),

(3.19) ”?+1 =[I- ‘G&I(quf-l)T]vj(Tj)a

we have M, v),, = My v;(r;) = g(7;) so that v),, is also consistent. Therefore
algebraic manipulation of (3.14) leads to the system

-1 P M Py(V3)Tvi(m)
-1 P B2 P2(V3°)T”2("'2)
(3.20) : = : '
-I Py '3 PJ(V}’H)T”J(TJ)
Crala Vi His1 Bs — [Crav + Cyv5 4]

which is square and nonsingular of size (J+1)g. Note that if ¢ = r (i.e., the boundary
conditions are completely mixed), then the stabilized march version of (3.14) will be
square and invertible also so that it will not be necessary to solve (3.14) as a linear
least-squares problem.

Numerical methods. Let G = (t,)8 define a grid on [a, 3],
to = a, th =tp—1+h, (1<n<N), tny = b,
where the stepsizes satisfy the boundedness criterion
(3.21) h = max(h,) < 0 - min(hy,)

for some 6 > 0, independent of n, h. Here we briefly discuss the use of numerical initial
value methods to approximate the BVP solution y(¢) on the grid G by employing the
shooting strategy previously described.

Suppose P is a globally O(h®)-convergent method for the DAE IVP (3.1a), given
O(hS) accurate starting values. Let (uy»)N_o (v = p, 1 < v < r) denote the numerical
approximations for the r + 1 IVPs in (3.2) generated by P. Then

llup,n — Yp(tn)ll < Lh3, 0<n<N,
(3.22) ||t — Gu(ta)|| S LR, 0<n<N, 1<v<r
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for some constant L > 0 (independent of n, h < hg). Define the matrix U, =
[©1,n, U2,ny + *  Ur,n] and let Sy, be defined by

(3.23) Sp = ByUp + ByUn = S + O(R%),

since Up = Y(a) and Uy = Y(b) + O(hS). For h > 0 sufficiently small, S;' =
S~1 4+ O(h®), hence if &, is the solution to the system

(3.24) Snén =B — [Bayg + Byup,n] = B — [Batp,0 + Bpup,al,

then &, = & + O(hS), where ¢ is the exact solution to the shooting equation (3.3).
Note that the initial condition y(a) = up,0 + Uoén is consistent if upo and Up are
exact. Therefore, if (u,) is the numerical approximation to the IVP

(3.25) Lyt) = f@t),  yla)=upo+ Uoln
and P is stable under O(h®) perturbations in the initial starting values, then
(3.26) llun = y(ta)ll = O(h®), 0<n<N,

where y(t) is the unique solution to the BVP (3.1).

Clearly, any stable method that converges for the DAE IVP can be used to solve
the BVP by shooting. But the class of methods that can be used to solve DAE IVPs
is limited. Explicit methods may lead to systems of equations that cannot be solved
uniquely for solution vectors at each timestep, and otherwise may not be applica-
ble unless the constraint manifold is explicitly known at each timestep. Symmetric
schemes have the problem that for fully-implicit index one and related higher index
systems, there is a potential instability. This instability can often be corrected for
BVPs by locating some of the consistency conditions at the correct boundary [2].
Even for IVPs, methods for DAEs must be very carefully chosen and implemented.

The traditional ODE methods that have been successful, namely BDF and some
implicit Runge-Kutta (IRK) methods, converge and are stable for index one systems
[21], [40] but do not converge for all higher index systems except in some cases where
the system has a special structure ([20], [13], [17]). Even when these methods do work,
they usually exhibit numerical behavior that is not characteristic of the same methods
applied to nonstiff ODEs, although there are similarities to stiff ODEs. For example,
constant stepsize BDF methods exhibit numerical boundary layers of instability and
reduced order (or non-) convergence due to inconsistencies in the starting values. That
is, the numerical solutions evolve for some fixed number of steps before achieving
the order of convergence expected for ODEs (differential order). The instability is
either local or transient in nature and is not a serious problem, unless the stepsize is
extremely small. Furthermore, even bounded stepsize variation (3.21) will initiate new
boundary layers if the index is greater than 2 [20], [39]. For parallel shooting, these
considerations imply the existence of boundary layers on each subinterval [;_1,7;].
Thus it is important to take h sufficiently small that the entries in the shooting
equations (3.14), (3.20) are accurate to the desired order and not taken from the
boundary layer, and large enough so that rounding errors do not dominate.

IRK methods are prone to global order reduction unless the method coefficients
satisfy order conditions in addition to the differential order conditions (8], [40], [1],
[9]. On the other hand, there exist IRKs that do not exhibit the boundary layer.
For example, one can construct extrapolation methods based on the implicit Euler
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method by taking enough steps at each stepsize so that the boundary layer has already
passed. But here the boundary layer is hidden inside the stages. We do not know
whether there exists an IRK method where the intermediate stages do not exhibit
boundary layers.

More recently, the (i,j) methods based on (2.2) have been developed and ana-
lyzed for linear systems in [11], [12] and extended to nonlinear systems in [10]. The
(¢,7) methods are based on solving (2.2) for g, (and possibly higher order derivatives)
in terms of yy, t, and then integrating for y,; using any consistent one-step method
that is stable for ODEs. In principle, these methods can be used to solve any singular
system that is solvable according to Definition 2.1. However, the (%,j) methods are
computation intensive, as they require solving a (mj) x (mj) singular linear system
involving derivatives of the coefficients and input at each step t,. In practical ap-
plications, it may not be easy or even possible to obtain the necessary derivatives,
especially if the functions are nonlinear.

4. Finite-difference methods. In this section we show that the more direct
approach of finite-difference methods can be used to solve the DAE BVP if the IVP
can be numerically solved, and the constraint manifold (2.5) is given at t = a. We
consider difference approximations to (3.1) of the form

N
(413) Chu" = chk(h)uk = FJ(h” f) J = 1127’N,
k=0
(4'1b) Brup, = Baug+ Byun =0,
(4.1c) Myuy = g(a),

where up = {u,}} is the approximation to the solution {y(t,)}}’ and h = max(h,)
as before. We also assume that (4.1a) satisfies the property that f = 0 implies
Fj(h, f) = 0 for every j, h. In matrix form (4.1) can be written as

(4.2) Apup, = F(h, f),
where
B, By
(i) o = o (7)
(4.3) Ap=| Cio Cin -+ Cinaa CGin
Cvo Cni -+ Cnn-1 Cnnw
up = (ug,uf7"‘,U£)T,

F(h’f) = ([ﬁTag(a)T]TaFl(h’f)Ta'"’FN(h”f)T)T'

Suppose the local truncation error associated with (4.1a,b) is O(hS). If (3.1a)
is an ODE, then (4.1) is stable if and only if the family of matrices {A;'} is uni-
formly bounded as h — 0%. Convergence of the method to O(h®) accuracy then
follows from stability and consistency. Furthermore, convergence is independent of
the forcing function f(t) and the boundary value 3, since A, is independent of these
parameters. Unfortunately, when E(t) is singular A; ' will in general contain terms
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that are unbounded, as h — 0. For example, if (4.1) is a constant stepsize implicit
Euler method, then ||4; || = O(h~"), where v = ind(E, F). On the other hand, it is
interesting to note that with a subtle variation the arguments used in the ODE case

to relate convergence of (4.1) to the convergence for IVPs can be used when E(t) is
singular.

Consider two solvable DAE BVPs BV(®), v = 0,1, with IVP (3.1a); boundary
conditions

(4.4) B®y = BMy(a) + BNy (b) = B;

and difference matrices Aﬁ"), respectively. Before proving the main result in this
section, we will need the following simple lemma.

LEMMA 4.1. Let y™, v = 0,1, denote the solutions to BV(®) with boundary value
B. Furthermore, let YO be the fundamental solution matriz (n x r) to the BVP

cy® = o,
(4.5) BOY©® =

where I is the identity matriz of size r xr. Then yV) is the unique solution to BV,
with boundary value

(4.6) 8= (3(l)y(0))—1(ﬂ — BWy©) 4 (3(1)y(0))ﬂ)_
Proof. Express y(V) as
y () =y ) + YO @)%,
where £ solves
(4.7) (BWY )¢ = g — By,
Now apply the boundary operator B to y() to get

BOyM) = BO,O) L (BOY©)e
= B+1-(BOY®)~1(g_ B1y0)
(BOY©)=1(g _ gy 4 (gMy0)g), 0

In the remainder of this section we prove the following theorem.

THEOREM 4.1. Let BV™"), v = 0,1, be solvable BVPs of the form (3.1a), (4.4)
with right-hand side f, and boundary value (3,, respectively. Consider the proposition
P®); Af:') is invertible and (4.1) converges to O(hS) accuracy to the solution of BV ("),
independent of f, and B,. Then P if and only if PV,

Proof. Assume P, Applying (4.1) to BV(D) with arbitrary but fixed f; = f
and B; = ( yields the system

(4.8) ADYY = F(h, f)
or equivalently

(4.9) [1+ Da(A) AP u) = F(h, f),
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where Dy, = A;,l) - A;LO):

BM =B o .. o (B;1>_B,§°>
0 0
Dy = 0 0 - 0 0
0 0 - 0 0

Thus, to show A;ll) is invertible it suffices to show the invertibility of [+ Dp, (Aflo))‘l].
Partition (Ag)))‘1 as (ZJ(.g)), 0 < j,k < N, where each block ZJ(.g) is m x m. Then

Qno Qni -+ @nn
0o I 0
(4.10) I+ Dp(ANED = | . )

where

1) _ p(0) (1) _ p(0)
Qo = I+(B° ;e )Zé?3+(Bb P )Zz‘é’,%

R €
(0 I) ’

since B Z{} + BV Z{} = (I 0) by definition of the Z{). Also,

B(l) _ nlo 0 B(l) _ B(O) 0
th = ( a 0 a Z((),]) + b 0 b Z](V,?y
(1) (0) (1) »(0)
(412) o G RO ) B R

Partition ZJ(.f:,) = (Z](.,OO)’1 | ZJ(.’%),z), where Z](.g,{l is m x r. Then the column of blocks
{ngf:,)’l}{)v is the solution to

(4.13) AP up = (I 0)7,0,--+,0)7,

where I is 7 x , (I 0)T is m x r, and the remaining zeros are m x r. That is, {Z;g,),l}(’)v
is the difference approximation to the homogeneous BVP (4.5). Note that solvability
of (4.5) follows from the solvability of BV(®). Furthermore, since BV (1) is solvable,
the shooting matrix

BOY© = BOY©)(g) + BNY©(p)
is invertible. Now

DI IOED, = (02, B 2| B2+ 5 )

= (Qh,o,l | Qh,0,2)~
If (4.1) globally converges to O(h®) accuracy for BV(®) independent of f and 3, then
it does so for (4.5), implying 23?3,1 =Y (a) + O(h®) and Z;\?,)O,l = YO (b) + O(h5).
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Hence C:);,,,o,l =By © 4 O(h%) is invertible, for h sufficiently small. It follows that
AS) is invertible, since the (1,1) block Qo in (4.10) is given by

(4.15) Qno = ( tho,l QhI,o,z )

Now we show that (4.1) converges for BV(}), From (4.9) we have that ugl) is the
unique solution to

(4.16) APuD = 1+ Dy (A 1F = F.
From the structure of [I + D;,,(Aﬁlo))‘l] given by (4.10), (4.11), and (4.15), we have

(417) F = ([B}{?g(a)T]TaFlTv'"aFXJ’)T’

where

N
(4.18) Br = Qnoa (ﬂ — Qnp,29(a) — Z(Bgl)zé?} + Bz(;l)Zz(g,)j)Fj) .

j=1

That is, ugl) is the difference approximation to BV (®), with input f and boundary
value B,. Simplifying (4.18), we obtain

N
B = Qnon (ﬁ - (B‘(zl) (z(()og 29(a) + Z(()"J)FJ)

j=1
N
+B§1) (ZN,o,zg(a) + Z Z}y’?’-Fj) ))
j=1
= Qi) (8- (aBO W — 2§ .18) + B (uy — 205.10)))-
Thus
(4.19) Br = Q5b 18— BYu + Qroah),

where ug) solves A;,O) 0 — = F, ie. ug) is the difference approximation to BV (®
with input f and boundary value 3. Smce (4.1) converges for BV(®) independent of
f, B by hypothesis, ,3;. is bounded independent of h for small h > 0.

Let y), v = 0,1, denote the exact solution to BV® with input f and boundary
value 3. From (4.19), we have

(4.20) B = A+ D,
where
(4.21) B = (BOY)-1(g - (By© 4 gy ©)g)

and ||A]| = O(hS). From Lemma 4.1, y() is the solution to BV (%), with boundary
value 3. We wish to estimate Hu(l) — yM(¢;)||. By the triangle inequality,

(4.22) llus?) = gD N1 < Nl = GntN + dn () — v @),
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where 7, is the exact solution to BV(® with input f and boundary value ﬁh. By
the argument immediately following (4.18) and hypothesis P(?), we have that Husg -

Jn(tj)|| = O(h®). Furthermore, ||7(t;) — y P (¢;)|| = O(hS) follows by variation of
parameters using (4.20) and the uniform boundedness of ||Y (%) (t)z|| on [a, ], i.e.,

llgn(t5) — O ¢3)ll 1Y O (t;)(Bn ~ B)|

Y @il Al
O(h5). o

I

IN

We note that (4.1) need not be globally convergent in order for Theorem 4.1 to
remain a valid result in the context of DAEs, where boundary layers may exist. We
only require HZ((,(B’1 —Y©(a)|| = O(h®) and N to be sufficiently large such that

128051 = Y Q)| = O(hS). Thus, by associating BV with the IVP
(4.28) Ly=f, yo€ My(a),

and taking B so that [BT, MT|T is invertible, we get Corollary 4.1.

COROLLARY 4.1. Suppose (4.1) converges with O(h®) accuracy to a solution of
(4.23) for n > J when initial values are consistent to O(hS). Then (4.1) converges to
a solution of the boundary value problem BV to O(h®) accuracy for n > J.

5. Numerical experiments. In this section we present the results of some nu-
merical experiments on linear and nonlinear index one and index two DAE BVPs.
The experiments confirm the results of the theory and also raise some interesting
questions.

The numerical experiments described in this section were all performed using the
finite-difference methods formulated as described in § 4. The nonlinear equations
at each timestep were solved by Newton iteration. The iteration was terminated
when the 5 norm of the difference between two successive iterates was less than a
specified tolerance. An analytic iteration matrix was provided to the code for all

of the problems. All of the computations were performed in double precision on an
Alliant FX/8 computer.

The first test problem was a linear variable-coefficient index one DAE BVP on
[0,1] given by

1 —t ¢ vl 1 —(t+1) (t2+2¢) () 0
(5.1) 0 1 —t yp |+ 10 -1 (t-1) ys | = 0 ,
0 0 O Y 0 0 1 Y3 sin(t)
with boundary conditions
y(0) = 1,
y2(1) —y3(1) = e
This problem has true solution
y1 = e t+tet,
Y2 e’ + tsin(t),
ys = sin(¢).
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This system is related to the linear constant coefficient DAE system

Vi o= -y,
!/'2 = Y2,
Yys = Sin(t)’

with boundary conditions y;(0) = 1, y2(1) = e by the nonsingular spatially dependent
change of variables y = Qf, where

1t 0
Q=10 1 ¢
0 01

This problem was constructed to show the effects, if any, of spatially dependent cou-
pling between the differential and algebraic parts of the system on solution accuracy.

We solved this linear problem using the implicit midpoint method, with the num-
ber of steps in [0,1] ranging from 2 to 64. We computed the approximate order by
comparing the errors of the solution with a given mesh spacing to the errors obtained
by halving the mesh spacing. In our tests, the error behaved consistently as O(h?).
It is to be expected from Corollary 4.2 (together with the results in [1], [9]) that the
implicit midpoint method is globally O(h?) when applied directly to index one DAE
IVPs.

Next we solved a simplified model of a steady-state semiconductor device de-
scribed in [1] with the same method. The system has the form

0 = n-p-C(t),

J, = 0,

(5.2) lea = 0,
Jn = (0 —ny),
Jp = - +py"),

and the boundary conditions are given by

n = 1/2(C+ v C? + 464), t=+1,-1,
p = 1/2(-C++/C?+48%), t=+1,-1,
b= O+ 30DV, = +,-L,

where 15 (t) = Inn(t) — In§2. For the free parameters and functions, we have chosen
§ =104 V =1, and C(t) = 1/2 + (tan~*(\t))/m, where X is a parameter that
determines the steepness of C(t). C(t) is constructed to be an approximation to a
square wave for sufficiently large A.

We rewrote the problem in a form that was easier to understand by performing
a nonsingular constant change of variables J = J, + Jp, J_ = J, — Jp, Ny = n+p,
N_ =n —p to arrive at the system
0 = N_-C(4),

I = o,
(5.3) J. 0,

Jy = (NL-Nuy),

Jo = (N -N_y),

I
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with boundary conditions

Ny = C?+ 464, t=+1,-1,

1
Y = "pbi+§(t+l)V, t=+1,-1.

This is the proper number of boundary conditions for this problem, which is index
one. Note that in the original formulation of (5.2), two of the boundary conditions
are redundant. The numerical solution of (5.3) will be the same as that for (5.2),
apart from errors due to roundoff, because the problems are related by a constant
nonsingular change of variables.

We can substitute N_ = C(t) into the system (5.3), to obtain the related ODE
system

Jo = 0,
J. =0,
(5.4) ¥ = (C'(t) - J4)/Ny,

N, = J_+C@)(C'(t) - J1)/Ny,

which we will refer to later.

We solved (5.3) for A = 20 with a fixed stepsize and the number of steps ranging
from 2 to 2056. We found that for large stepsizes (fewer than approximately 64 steps)
and for an odd number of nodes in the interval, there is a problem with oscillations in
the solution for ¢ > 0. After the stepsize is decreased sufficiently so that the solution
is resolved, there is no longer a problem with oscillations, and the error behaves as
O(h?). For an even number of nodes, there is no problem with oscillations, and the
error behaves as O(h?). We observed similar behavior for larger values of A\, where the
oscillation disappears when there are a sufficient number of meshpoints to accurately
resolve the solution.

There is an explanation for this oscillating behavior, which occurs only for an
odd number of nodes. In this test problem, the most rapid change in the solution
occurs at t = 0. For an even number of meshpoints, ¢ = 0 is in the center of a mesh
interval, whereas for an odd number of meshpoints there is a meshpoint at t = 0. It
is easy to see that for the midpoint method applied to an algebraic equation whose
solution is a step function, the solution is smooth if the step occurs at the center of
a mesh interval, and it oscillates otherwise. Since C(t) approximates a step function,
the behavior we have observed with respect to odd and even numbers of meshpoints
is what we would expect.

Of course, in this test problem if we did not discretize the algebraic equation with
the implicit midpoint method but instead evaluated N_ always at the meshpoints,
then the oscillation would disappear. This would give the same results as solving
the related ODE system (5.4) with the implicit midpoint method. However, it is not
always so easy to isolate the algebraic variable in applications, so we are interested in
seeing the effects of not treating that variable specially.

In comparison with the midpoint method applied to the related ODE, the ODE
formulation does not exhibit any oscillations. On the other hand, the DAE formulation
is apparently much less sensitive to perturbations in the initial guess for Ny. In our
experiments, the ODE solution only converged for initial guesses for N, that were
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very near the exact solution for that variable, whereas the DAE formulation converged
for a much wider range of initial values.

The third problem that we tested was a linear index two system on [0,1] given by

yi—t = —yi+ (1 -ty
0 = Py +(-1- Pty +sin(t),
(5.5) n =y,
22 = Yy

with boundary conditions

y1(0) = 1,
By1(1) + (=1 — B)y2(1) —sin(1).

I

This problem is an index two extension of an index one problem proposed by Ascher
[2]. The boundary conditions are posed such that the midpoint method is stable
for the index one part of the problem. We solved the problem for f = 10 and for
B = 100. The errors in y; and y, behaved consistently as O(h?). However, the
midpoint method is not convergent for the index two variables z; and 23, even for
IVPs, and for this problem the solutions for these variables exhibited oscillations
whose amplitudes did not decrease as h — 0. By modifying the formula slightly and
discretizing the subsystem z = y' by

— Yn+1 — Yn—1
2h ’

Zn

the formula becomes O(h2) accurate for z, IVPs and BVPs. In our experiments the
modified formula was O(h2) accurate for y and 2z, and the numerical results exhibited
no oscillations. These experiments confirm the results of § 4.

One interesting point on this index two example is that the condition number of
the matrix generated by straightforward application of the finite-difference technique
is O(h™*). We experimented with several different scalings of the DAE system that
reduced the condition number to O(h~3), but the scaling had almost no effect on the
errors that were obtained.

It is possible to transform a semi-explicit index two system

y = f(y, 2),
0 = g(ys z)
to an index one system
yl = f(y’ w’)’
0 = g(y,v')

coupled with w' = 2 [19]. Using this transformation and then scaling the resulting
matrix reduces the condition number to O(h~!). However, in our experiments we
found that the errors in z did not change appreciably from the other formulations.
The final problem that we tested was a linear index two system. This problem
has the property that the matrix E(t) is not of constant rank. The problem is given
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on [0, 1] by

@2+t 1 -t (1-¢) 2 -1 sin(t) + e~*? — ¢
-2 -1 0 v+ -3 -1 1 y = e~ —sin(t) ,
—tt+1) 0 ¢(t+1) 2+t) —-(1+¢) t eft+1)—et
with boundary conditions

(3 1 —1) (-2 1 0) (-(e+%))
-1 0 1 JyO)+]| 0 0 0)Jy)= 1 .
1 -1 1 0 00 1

This problem can be obtained via a nonsingular constant change of variables and a
nonsingular time-dependent scaling of the system from a simpler index two system
for which the matrix E(t) is also not of constant rank. The results of Clark [18]
imply that the implicit Euler method converges with order O(h) for IVPs of this
type. Thus the results in § 4 imply that the implicit Euler method, formulated as in
§ 4, should yield O(h) accuracy for this problem. Our numerical experiments confirm
these conclusions. It should be noted that it is possible to use a one-sided difference
scheme for this problem because it is not stiff, and also that there are index two
problems that are not in semi-explicit form for which the implicit Euler method, as
well as more general Runge-Kutta and multistep methods, is not stable [21]. The
results of this paper imply that a method is convergent for the BVP if and only if
it is convergent for the related IVP. They do not make any statements about which
methods are convergent for the IVP.
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