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This paper presents a dynamic-optimization algorithm that can be used
to minimize a generalized objective function. It is demonstrated for a
chemical-vapor-deposition (CVD) process in a stagnation-flow reactor.
The equations describing the chemically reacting flow are written in
a transient compressible similarity form. After discretizing the spa-
tial derivatives on a finite-volume mesh, the system becomes a set of
differential-algebraic equations (DAE). The optimization algorithm is a
shooting-type approach that is designed specifically to work with large
nonlinear systems of DAEs. The algorithm is demonstrated using an
example from the CVD growth of a thin-film YBCO high-temperature
superconductor.

INTRODUCTION

The objective of this paper is to present an algorithm for planning optimal time-
varying trajectories for chemical-vapor-deposition (CVD) processes and to discuss
the potential benefits of doing so. The traditional strategy for CVD is to control to
fixed setpoints, which are established to provide the best overall operating conditions.
While this approach has generally worked well in practice, it certainly represents a
highly restricted view of process control. There is potentially great value in time-
varying processing conditions. However, realizing the potential benefits requires the
ability to understand and control the interactions among strongly nonlinear fluid-
mechanical and chemical phenomena.

What are some of the potential benefits of transient processing? In polycrystalline
thin-film growth, for example, there is reason to believe that the optimal conditions
for film initiation and grain nucleation are different from those that provide the best
mature growth. If a single process is to operate in both regimes, there must be
a strategy to transition from one to the other. In the filling of vias or trenches in
semiconductor manufacture, throughput could be improved if the process itself varied
throughout the course of the fill. For example higher gas pressures could be used
early in the process when the features are relatively open and have low aspect ratios,
with lower pressure required to maintain good step coverage as the features fill and



the aspect ratios increase. Finally, growing any functionally graded materials, such
as compound semiconductors, have an obvious requirement for time-varying process
conditions to produce through-thickness compositional variations in the film.

Developing optimal processing strategies requires at least four essential elements.
First is a quantitative measure of the relative benefits and costs associated with any
particular processing trajectory, i.e., an objective function. For CVD processes, the
value of the film could be measured in terms of chemical composition, morphology and
microstructure, and uniformity. The cost to achieve the value might be measured in
terms of reagent consumption, energy costs, and throughput. A quantitative measure
of both the value and the cost to achieve the value can be cast in terms of an objective
function that is to be minimized by the optimal processing strategy. There may also
be constraints that a particular process or system must obey. For example, heaters or
mass-flow controllers have physical limitations on the rates at which they can respond.
In some cases, film properties could also be viewed as constraints. For example, if a
polycrystalline film is required, then an amorphous film simply will not do. Thus, the
film structure could be cast as an inequality constraint, rather than as an increased
objective function. In any case, the objective function and the constraints must be
represented as functions of the state variables and communicated to the optimization
software.

A second essential element for trajectory implementation is a means to actuate
change, i.e., controls. Typically the controls for a CVD system are at the reactor
scale, using heaters to actuate surface temperature, mass-flow controllers to vary the
relative flows of precursor chemicals and carrier gases, and throttling valves to control
process pressure. These controls usually appear as boundary conditions or parameters
in the model.

A third essential element in planning a trajectory is to understand and predict
quantitatively the effect of a control action on the objective function. Physically
based computational models serve this purpose, and provide a software connection to
the optimization algorithms. The models described in this paper concern stagnation-
flow reactors. The chemically reacting stagnation-flow equations are developed and
solved in a compressible form that is particularly well suited to transient analysis. [5]
Using a method-of-lines approach, the spatial-derivative operators are approximated
using finite-volume discretizations. The semi-discrete equations form a system of
differential-algebraic equations (DAE).

The final element of optimal trajectory planning is the optimization algorithm
itself. Here, the optimization algorithm is designed specifically to work with large
systems of DAEs or ordinary differential equations (ODE) [1]. The optimal-control
algorithm transforms the dynamic optimization problem for the process transients
to one of parameter optimization, which is then solved using sequential quadratic
programming (SQP) software [2]. This transformation is accomplished by a shooting
approach where the original time domain is divided into subintervals over each of
which the problem DAE’s are integrated. The results presented here use a single-
shooting method. However, a multiple-shooting approach is also described, which
holds considerable promise for faster convergence rates and improved robustness for
highly nonlinear problems.



Figure 1: The sketch on the left illustrates a stagnation-flow reactor that is designed
to grow YBCO thin films. The metal-organic precursors enter a heated plenum and
mixing chamber at the top of the reactor. A stagnation flow region is established
between a showerhead manifold and a heated wafer surface. Inert, relatively cool
purge gases flow downward along the reactor walls. The exhaust gases are pumped
out the bottom of the reactor chamber. The figure on the right illustrates the results of
a Navier-Stokes simulation, showing in gray scales the concentration of the yttrium
precursor, Y(thd)3. As evidenced by the radial independence of the concentration
field, the ideal stagnation flow is realized over most of the wafer surface.

Approaches similar to the one described herein have been developed by Barton,
et al.[3] for optimizing industrial chemical processes and plants, and by Petzold and
Zhu[4] for developing reduced chemical kinetics mechanisms using the stirred reactor
configuration. This paper uses an example of a stagnation-flow reactor to demon-
strate optimal control of chemically reacting flows.

STAGNATION FLOW REACTOR

An important objective in a stagnation-flow CVD reactor design is to assure that
the flow field can deliver spatially uniform chemical fluxes to the deposition surface
for a wide range of processing conditions. In this way, controls can be implemented
to alter the growth conditions, yet still retain the necessary film uniformity. The
design seeks to keep the fluid flow in a regime that approximates ideal self-similar
stagnation flow over most of the wafer, thereby assuring a uniform boundary layer
and deposition rate. The reactor shown in Fig. 1 achieves this objective and serves as
the basis for the example problem in this paper. The reactor geometry was designed
using extensive simulation.



GOVERNING EQUATIONS

The similar, axisymmetric, compressible, stagnation-flow equations are developed in
Raja, et al. [5] Here the equations are summarized.
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In these equations, the independent variables are time t and the axial coordinate
z. The dependent variables are the axial velocity u, the scaled radial velocity V =
v/r, the temperature T , and the species mass fractions Yk. The mass density ρ is
determined from the equation of state. The pressure-gradient term in the radial
momentum equation Λr = (1/r)(dp/dr) is an eigenvalue that must be determined
in the course of the solution. The diffusion velocity of the kth species in the axial
direction,
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has an ordinary-multicomponent contribution and a thermal-diffusive contribution.
Here, Dkj is the matrix of ordinary multicomponent diffusion coefficients, and DT

k are
the thermal diffusion coefficients.

The boundary conditions are specified at the inlet manifold as u = uin(t), V =
v/r = 0, T = Tin(t), and Yk = Yk,in(t). In the example problem here, the control
is imposed on the inlet mass fractions of the copper and barium precursors. At the
deposition surface, the boundary conditions include T = Tsur(t) and V = 0. The
gas-phase mass fractions at the surface involve the surface chemistry. The surface
states are determined from

dZk

dt
=

ṡk

Γ
(k = 1, · · · , Ks), (8)

where Zk are the surface site fractions, ṡk are the molar production rates of surface
species by heterogeneous reaction, and Γ is the molar density of potentially available
surface sites. The reaction mechanism for the surface and the gas phase is listed in



Table 1: Reaction Mechanism
Reaction A∗ E∗

G1 Y(thd)3 + O2 → Y + 3(thd) + O2 5.9×1015 27.0
G2 Y(thd)3 → Y + 3(thd) 2.2×109 34.3
G3 Cu(thd)2 → Cu + 2(thd) 6.03×109 27.06
G4 Ba(thd)2 → Ba + 2(thd) 2.2×109 34.3
G5 4Y + 3O2 → 2Y2O3 “fast”
G6 2 Ba + O2 → 2 BaO “fast”
G7 2 Cu + O2 → 2 CuO “fast”
S1 Y2O3 → Y2O3(d) 0.5†

S2 BaO → BaO(d) 0.5†

S3 CuO → CuO(d) 0.5†
∗ Arrhenius parameters for the rate constants written in the form:
k = A exp(-E / RT). The units of A are given in terms of mols, cubic centimeters,
and seconds. E is in kcal/mol.
† Sticking coefficient. The value 0.5 is simply assumed for this example

Table 1. The coupling between the gas and the surface is established through the
mass-flux balance at the surface

ρYk(ust + Vk) = ṡkWk, (k = 1, · · · , Kg), (9)

where ust is the Stefan velocity and Wk are the species molar masses.

The reaction mechanism provides for gas-phase decomposition of the metal-organic
precursors by oxidative reaction and by unimolecular decomposition. The rates for
the yttrium and copper precursors are measured, but the product species are not.
The authors are not aware of any measurements for barium decomposition. For the
purpose of this work it is assumed that the barium precursor undergoes unimolecular
decomposition in the gas-phase at the same rate as the yttrium precursor. This
mechanism also postulates that the “growth species” are volatile metal oxides that
result from gas-phase reaction. They are labeled as stable oxides, e.g. Y2O3, although
there is no evidence for the specific form of the oxides.

The system of partial differential equations is solved by a method-of-lines algorithm,
wherein the spatial derivatives are approximated using a finite-volume discretization.
In the semi-discrete form, the equations become a system of index-two DAEs. The
algebraic contributions come from the pressure-curvature eigenvalue Λr and the dis-
cretized continuity equation at the last spatial node adjacent to the inlet manifold.
With some manipulation, the equations can be reduced to an index-one system, which
is solvable by DAE software such as DASSL or DASPK [6].

ALGORITHMS AND SOFTWARE FOR OPTIMAL CONTROL

The physical problem (chemically reacting stagnation flow) can be represented as
a differential-algebraic equation (DAE) system

F (t, x, x′, p, u(t)) = 0, x(t0) = x0,



where x is a vector of the DAE state variables and the DAE is index one [5], [6], [7].
The initial conditions x0 have been chosen so that they are consistent (i.e. constraints
of the DAE are satisfied). The control parameters p and the vector-valued control
function u(t) must be determined such that the objective function

∫ tmax

t0
Ψ(t, x(t), p, u(t)) dt is minimized

and some additional inequality constraints

G(t, x(t), p, u(t)) ≥ 0

are satisfied. (Following convention, the variable u(t) is used here to represent the
control function and p the control parameters. Note that earlier in the paper the
variable u was used to represent a fluid velocity and p the pressure.) The optimal
control function u∗(t) is assumed to be continuous. In this application the DAE
system is large, i.e., roughly 500 state variables. Thus, the dimension nx of x is large.
However, the dimension of the control parameters and of the representation of the
control function u(t) is much smaller. To represent u(t) in a low-dimensional vector
space, we use piecewise polynomials on [t0, tmax], their coefficients being determined
by the optimization. For ease of presentation we can therefore assume that the vector
p contains both the parameters and these coefficients (we let np denote the combined
number of these values) and discard the control function u(t) in the remainder of this
paper. Hence we consider

F (t, x, x′, p) = 0, x(t0) = x0, (10a)
∫ tmax

t0
ψ (t, x(t), p) dt is minimized, (10b)

g(t, x(t), p) ≥ 0. (10c)

There are a number of methods for direct discretization of this optimal control
problem, Eq. 10. The single shooting method solves the DAEs, Eq. 10a, over the
interval [t0, tmax], with the set of controls p generated at each iteration by the op-
timization algorithm. However, in some problems single shooting can suffer from a
lack of stability and robustness [8]. Moreover, it can be more difficult to maintain
additional constraints and to ensure that the iterates are physical or computable.
The finite-difference method or collocation method discretizes the DAEs over the in-
terval [t0, tmax] with the DAE solutions at each discrete time and the set of controls
generated at each iteration by the optimization algorithm. Although this method is
more robust and stable than the single shooting method, it requires the solution of
an optimization problem which for a large-scale DAE system is enormous, and it does
not allow for the use of adaptive DAE or (in the case that the DAE system is the
result of semi-discretization of PDEs) PDE software.

The single-shooting approach has performed well for the limited number of CVD
problems that we have done and the results presented in this paper use the single-
shooting approach. Nevertheless, it appears that the overall efficiency and reliability
can be improved with a multiple-shooting method and a new modification of it that
exploits problem structure to reduce complexity. The single shooting can be explained



Figure 2: Illustration of the salient features of optimal control algorithm

within the context of the multiple shooting method and we are currently working
on extending the CVD optimal control model to incorporate the modified multiple
shooting method. In the multiple shooting method, the time interval [t0, tmax] is
divided into subintervals [ti, ti+1] (i = 0, . . . ,N − 1), and the differential equations,
Eq. 10a, are solved separately over each subinterval. Figure 2 is an illustration of the
multiple shooting subinterval. The initial conditions Xi, for the DAE solution on the
subintervals are treated as parameters to be optimized along with the controls p. On
each subinterval the DAE solution at time t with initial value Xi at ti is denoted by
x(t, ti, Xi, p).

DAE state continuity between subintervals is achieved via the state-continuity con-
straints on the optimization problem

C i+1
1 (Xi, Xi+1, p) := Xi+1 − x(ti+1, ti, Xi, p) = 0.

For the DAE solution to be defined on each multiple-shooting subinterval, it must be
provided with a set of initial values that are consistent (i.e., the initial values must
satisfy the algebraic constraints in the DAE). This is not generally the case with
initial values provided by methods like SQP because these methods are “infeasible”
(in other words, intermediate solutions generated by the optimizer do not necessarily
satisfy the above nonlinear constraints in the optimization problem although the final
solution does). To begin each interval with a consistent set of initial values, we must
first project the intermediate solution generated by SNOPT onto the constraints, and
then solve the DAE system over the subinterval.

Additional constraints can be specified (10c) at the boundaries of the shooting
intervals

C i
3(Xi, p) := g(ti, Xi, p) ≥ 0, CN

3 (XN , p) := g(tN , XN , p) ≥ 0,



and also at a finite number of intermediate times tik within each subinterval [ti, ti+1]

C ik
2 (Xi, p) := g(tik, x(tik, ti, Xi, p), p) ≥ 0.

In addition to the multiple-shooting subintervals of the entire time domain [t0, tmax],
each subinterval can be further subdivided into control intervals [tj , tj+1] as shown in
Fig. 2. The control in this interval uj(t, p) is represented as a polynomial of order M .
The continuity of the controls requires two linear constraints at the control interfaces.
The linear constraints enforce control continuity and differentiability along the entire
time domain and are satisfied by the optimizer at all iterations. These are represented
as

Cj
4(p) := uj(tj , p)− uj+1(tj, p) = 0 and Cj

5(p) :=
d

dt
uj(tj, p)− d

dt
uj+1(tj, p) = 0.

Following common practice, we write

Φ(t) =
∫ t

t0
ψ (τ, x(τ ), p) dτ,

which satisfies Φ′(t) = ψ (t, x(t), p), Φ(t0) = 0. This introduces another equation and
variable into the differential system (10a). The discretized optimal control problem
becomes

minimize
X1,...,XN ,p

Φ(tmax) (11)

subject to the constraints

C i+1
1 (Xi, Xi+1, p) = 0, (12a)

C ik
2 (Xi, p) ≥ 0, (12b)

C i
3(Xi, p) ≥ 0 and CN

3 (XN , p) ≥ 0, (12c)

Cj
4(p) = 0 and Cj

5(p) = 0. (12d)

The single-shooting method, without any constraints on the DAE state variables,
solves Eq. 11 along with the linear continuity constraints Eq. 12d. The parameters
that are optimized include only the controls p.

This problem can be solved by an optimization code. We use a modified version
of the solver SNOPT [2], which incorporates a sequential quadratic programming
(SQP) method (see [9]). The SQP methods require a gradient and Jacobian matrix
that are the derivatives of the objective function and constraints with respect to
the optimization variables. We compute these derivatives via differential-algebraic
equation (DAE) sensitivity software DASPKSO [10]. The sensitivity equations to
be solved by DASPKSO are generated via the automatic differentiation software
ADIFOR [11]. The basic algorithms and software for the optimal control of dynamical
systems are described in detail in [1].

This basic multiple-shooting type of strategy can work very well for small-to-
moderate size DAE systems, and has an additional advantage that it is inherently



parallel. However, for large-scale DAE systems there is a problem because the com-
putational complexity grows rapidly with the dimension of the DAE system. The
difficulty lies in the computation of the derivatives of the DAE state continuity con-
straints (12a-12b) with respect to the variables Xi. The computational complexity
of the multiple shooting method for this type of problem can be modified to make
use of the structure of the continuity constraints to reduce the number of sensitivity
solutions which are needed to compute the derivatives. This modification results in a
computational complexity that is roughly the same as that of single shooting. Details
of the modified multiple shooting method are given in [12].

EXAMPLE PROBLEM

The example problem considers a stagnation-flow reactor that is designed to grow
thin-film polycrystalline high-temperature superconductors of yttrium-barium-copper-
oxide YBa2Cu3O7−δ. Three beta-diketonate metal-organic compounds, Y(thd)3, Ba(thd)2,
and Cu(thd)2 carry the metals into reactor and are dilute in O2. For the example,
a wafer-surface temperature varition is imposed. Such a transient process might be
designed to promote film nucleation at one temperature, then transition to another
temperature that is preferable for mature film growth. Throughout growth it is crit-
ical to maintain the precise ratios of the metal atom fluxes to the substrate so that
the film preserves the correct stoichiometry. If the metal incorporation is permited to
vary very much, either a non-superconducting material will grow or phase-segregated
non-superconducting oxides will appear. Either alternative is unacceptable. Thus, as
the surface temperature changes, the precursor flow rate must be varied to compen-
sate for the temperature-dependent effects in the flow field and the chemistry and to
maintain the correct film composition. Planning these trajectories is the objective of
the example problem.

The metal flux variations are a consequence of gas-phase transport and chemistry
effects. As the surface temperature rises, the homogeneous reaction rates in the
gas-phase boundary layer increases, accelerating the decomposition of the precursors.
Also, variations in the gas-phase temperature gradients alters the molecular diffusion
of species, especially by thermal diffusion for the heavy precursor compounds. Fi-
nally, the surface reaction rates depend on the surface temperature. Thus, as the
temperature varies, the net gas-phase fluxes of the metal-containing compounds to
the surface can vary greatly and nonlinearly.

The above effects are illustrated in Fig. 3. Here, two steady-state gas-phase species
profiles are shown for the same reactor conditions but with different substrate temper-
atures. The precursor mole fractions at the inlet are such that the metal deposition
fluxes are in the correct stoichiometric ratios: Y/Ba/Cu:1/2/3, at the substrate tem-
perature of 1100 K. For a low substrate temperature of 800 K the barium precursor
shows the least decomposition while the copper precursor shows the most decompo-
sition. Clearly, the deposition of the growth species (metal-oxides) is limited by the
transport of the oxides in the boundary layer. However, since the abundance of the
different metal-oxides at the boundary-layer edge varies due to different precursor
decomposition rates, the flux of metals to the substrate depends primarily on the
gas-phase precursor decomposition rates. The barium deposition flux on the sub-



Figure 3: Gas-phase species profiles at two different substrate temperatures.

strate is thus about an order of magnitude less than the yttrium deposition flux. At
a substrate temperature of 1100 K the barium precursor decomposition is compara-
ble to the yttrium precursor and the corresponding deposition fluxes are comparable
for the two metals. A process designed to produce stoichiometric films at 1100 K
will produce films that are deficient in barium at lower temperatures. Thus, tem-
poral surface-temperature variations in a process without precursor control can have
deleterious consequences on film quality.

This paper discusses control of only the Ba(thd)2 precursor with the yttrium pre-
cursor inlet conditions remaining fixed. Since all precursors are very dilute (mole
fractions< 10−4) and the gas-phase chemistries for the three precursors are indepen-
dent of each other, the control of each precursor can be studied seperately. The
temperature at the surface is increased from 900 K to about 1100 K in 200 seconds
along an exponential trajectory as shown in Fig. 4. The initial precursor flow rates
are such that stoichiometric films are produced at 900 K. The time domain of 200
seconds is subdivided into 5 control intervals and the control function for the barium
precursor at the inlet is represented by a quadratic approximation in each control
interval. The quadratic approximation is the lowest order polynomial on which the
linear continuity and differentiability constraints can be imposed while still being able
to represent a sufficiently complicated control over the time domain. This results in
15 parameters for optimization and 8 linear control continuity constraints. The ob-
jective function used in this problem seeks to maintain the barium-to-yttrium flux
ratio at two is as follows

ψ (t, x(t), p) =
(
2− ṡBa

ṡY

)2

,

where the surface mole fluxes of barium atoms and yttrium atoms are given by ṡBa

and ṡY , respectively. While the above objective function represents a simple measure
of the quality of the film, one could certainly ”design” more complicated functions



that penalize barium fluxes that lead to barium rich films to a greater extent than
fluxes that lead to barium deficient films. This is certainly an important factor in
obtaining good quality superconducting films. One could also include other aspects
of the optimization problem such as precursor utilization in the objective function.

Figure 4: The panel on the left shows the trajectories of the specified surface temper-
ature, and the Ba(thd)2 inlet mole fractions, with and without control. The plot on
the right shows the Ba/Y atom-flux ratios that are incorporated into the film, with
and without control.

The optimal solution for barium precursor control is shown in Fig. 4. The barium
inlet mole fraction drops sharply from its initial value in the first 50 seconds of the
transient. This is followed by a relatively shallow decrease in the inlet flow mole
fractions for the rest of the transient. Figure 4 also shows the barium-to-yttrium
atom flux ratios at the substrate for the transient with barium precursor control and
without control. Clearly, the case without control leads to a large increase in the
fraction of barium to yttrium atom fluxes deposited on the substrate as the substrate
temperature is increased. When control is implemented on the barium precursor at
the inlet, the barium to yttrium atom fluxes remain close to the stoichiometric ratio
of two throughout the transient. The copper precursor inlet conditions can be opti-
mized similarly.

SUMMARY

Time-varying chemical-vapor-deposition processing is an alternative that potentially
offers significant advantages over traditional approaches. Optimal trajectory planning
provides an important simulation tool to assist development of such processes. The
overall strategy is to design path-following processes that miminimize a specified cost
function. The algorithm presented here is implemented in a general setting that ac-
commodates physical models that can be written as systems of differential-algebraic
equations, including those coming from the discretization of partial differential equa-
tions. The method and software are general, with potentially wide application.



ACKNOWLEDGEMENTS

This work was supported by NSF and DARPA within the Virtual Integrated Process-
ing program. The reactor illustrated in Fig. 1 was designed jointly with Prof. David
Goodwin and colleagues at the California Institute of Technology, where the reactor
is located and operated.

REFERENCES

1. L. Petzold, J. B. Rosen, P. E. Gill, L. O. Jay and K. Park, Numerical Optimal
Control of Parabolic PDEs using DASOPT, Large Scale Optimization with Ap-
plications, Part II: Optimal Design and Control, Eds. L. Biegler, T. Coleman,
A. Conn and F. Santosa, IMA Volumes in Mathematics and its Applications,
Vol. 93, p. 271, (1997).

2. P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algorithm for
large-scale constrained optimization, Numerical Analysis Report 97-2, Depart-
ment of Mathematics, University of California, San Diego, La Jolla, CA, (1997).

3. P.I. Barton, R.J. Allgor, W.F. Feehery, and S. Galan, Ind. Eng. Chem. Res.,
37, 966 (1998).

4. L.R. Petzold and W. Zhu, AIChE J., submitted (1998).

5. L.L. Raja, R.J. Kee, and L.R. Petzold, “Simulation of the Transient, Com-
pressible, Gas-Dynamic, Behavior of Catalytic-Combustion Ignition in Stagna-
tion Flows,” to appear, 27th Symposium (International) on Combustion, The
Combustion Institute, Pittsburg, PA, (1998).

6. K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-
Value Problems in Differential-Algebraic Equations, 2nd ed., SIAM, Philadel-
phia, (1995).

7. U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential
Equations and Differential-Algebraic Equations, SIAM, (1998).

8. U. M. Ascher, R. M. M. Mattheij, and R. D. Russell, Numerical Solution of
Boundary Value Problems for Ordinary Differential Equations, SIAM, Philadel-
phia, PA, (1995).

9. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic
Press, New York, (1981).

10. T. Maly and L. R. Petzold, Applied Numerical Mathematics, 20, 57 (1996).

11. C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, Scientific Pro-
gramming, 1, 11 (1992).

12. P. E. Gill, L. O. Jay, M. W. Leonard, L. R. Petzold and V. Sharma, An SQP
Method for the Optimal Control of Large-Scale Dynamical Systems, submitted,
(1998).



References

[1] L. Petzold, J. B. Rosen, P. E. Gill, L. O. Jay and K. Park, Numerical Optimal
Control of Parabolic PDEs using DASOPT, Large Scale Optimization with Ap-
plications, Part II: Optimal Design and Control, Eds. L. Biegler, T. Coleman, A.
Conn and F. Santosa, IMA Volumes in Mathematics and its Applications, Vol.
93, (1997), pp. 271-300.

[2] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algorithm for large-
scale constrained optimization, Numerical Analysis Report 97-2, Department of
Mathematics, University of California, San Diego, La Jolla, CA, 1997.

[3] P.I. Barton, R.J. Allgor, W.F. Feehery, and S. Galan, Ind. Eng. Chem. Res., 37,
1998, pp. 966-981.

[4] L.R. Petzold and W. Zhu, AIChE J., submitted (1998).

[5] L.L. Raja, R.J. Kee, and L.R. Petzold, “Simulation of the Transient, Compress-
ible, Gas-Dynamic, Behavior of Catalytic-Combustion Ignition in Stagnation
Flows,” 27th Symposium (International) on Combustion, Boulder, CO, Aug.
2-7, 1998.

[6] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of
Initial-Value Problems in Differential-Algebraic Equations, SIAM Publications,
Philadelphia, second ed., 1995. ISBN 0-89871-353-6.

[7] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential
Equations and Differential-Algebraic Equations, SIAM, 1998.

[8] U. M. Ascher, R. M. M. Mattheij, and R. D. Russell, Numerical Solution of
Boundary Value Problems for Ordinary Differential Equations, Society for In-
dustrial and Applied Mathematics (SIAM) Publications, Philadelphia, PA, 1995.
ISBN 0-89871-354-4.

[9] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic
Press, London and New York, 1981. ISBN 0-12-283952-8.

[10] T. Maly and L. R. Petzold, Numerical methods and software for sensitivity anal-
ysis of differential-algebraic systems, Applied Numerical Mathematics 20 (1996),
pp. 57–79.

[11] C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, ADIFOR—
generating derivative codes from Fortran programs, Scientific Programming, 1
(1992), pp. 11–29.

[12] P. E. Gill, L. O. Jay, M. W. Leonard, L. R. Petzold and V. Sharma, An SQP
Method for the Optimal Control of Large-Scale Dynamical Systems, submitted,
1998.


