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Abstract

In this paper an algorithm for identifying an index 1 or 2 differential-algebraic subsystem
from a possibly higher index path-constrained dynamical system is proposed. The algorithm
is useful for diagnostic purposes in model development, and in the formulation of dynamic
optimization problems to be solved by shooting or multiple shooting type methods.

1 Introduction

In this paper we study the problem of automatically detecting a high-index differential-algebraic
equation (DAE) and extracting the largest lower index (index 1 or index 2) subsystem which can be
solved by existing DAE software [5], [19].

There are several important applications of such a partitioning algorithm. The first is in the
development of models for simulation. If a proposed model is found to be high-index and the variables
and constraints associated with the high-index structure identified, then the model developer can
focus on revising the model and/or applying index-reduction techniques [14] to yield a system that
can be reliably simulated.

The second application arises when the shooting or multiple shooting method is used in dynamic
optimization of the DAE system. Then there 1s a choice of how to handle the constraints and the
associated algebraic variables: should they be included with the DAE and thus enforced by the DAE
solver at all times and on every optimization iteration, or are they better handled directly by the
optimizer (hence for an infeasible optimization method, the constraints may not be satisfied until
convergence). Partitioning of the DAE can affect both the structure and the stability of the resulting
subsystem. In this paper we present an algorithm to partition the DAE to yield the largest possible
subsystem with lower index (index 1 or mixed index 1/ Hessenberg index 2). In a companion paper
[17] we study the problem of partitioning for stability.

Several algorithms for partitioning have been proposed in the literature [7], [13]. In [7] a graph
based algorithm is given for determination of index 1 structure, and in [20] and in [8] a method is
described for determination of DAE structure based on non-singularity of the index 1 Jacobian. The
algorithm we describe here differs from the previous work in that it is designed to partition for index
1 and index 2, and in that it examines the index of the locally linearized system by a direct numerical
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approach rather than the global system by a structural approach. The latter is both an advantage
and a disadvantage of the proposed algorithm. On one hand as pointed out in [18], structural
algorithms can confuse certain types of index 1 systems with higher index systems. On the other
hand, the local index may not be equal to the global index for DAE systems of index 2 or greater [5].
Hence it should be emphasized that the algorithm described here is designed to determine whether
the local index is 0,1,2 or greater, and to partition the system so that the partitioned DAE is index
0, 1 or Hessenberg index 2.

2 Partitioning for Structure

Many physical systems are naturally described by DAEs. A general DAE system can be written as

F(y,y,t) = 0. (1)

The class of problems (1) includes standard form ODEs as well as other systems which may have
a high inder [5], [11] structure. The current generation of DAE software [5], [11], [2] is designed to
handle DAEs of index 0, index 1 and index 2 systems with Hessenberg structure, and combinations
of these systems. Hence it is important in formulating a problem for simulation to identify the index
and the source of any high index behavior (i.e., the variables and constraints contributing to the
higher index structure) for possible reformulation of the problem.

A general dynamic optimization problem can be written as

tinal
Minimize J = / x(y,u,t)dt (2a)
0
subject to
F(y:y:uat) =0 (2b)
9(y,u,t) =0 (2¢)
h(y,u,t) <0 (2d)

where (2¢) are additional equality constraints and (2d) are additional inequality constraints. In
shooting or multiple shooting type methods for solving the dynamic optimization problem, any
constraints included in the DAE (2b) will be enforced at all times on all optimization iterations by
the DAE solver, whereas the additional constraints will be enforced by the optimizer.

Given a DAE (1) for simulation, or (2b, 2¢) in the dynamic optimization problem where con-
straints (2d) are candidates for inclusion in the partitioned DAE along with corresponding compo-
nents of u, our goal is to determine whether the index of the DAE is 0, 1, 2 or higher and, to the
extent possible, to partition the DAE as follows

Fa(&,z,v,w,u(t),t) =0 (3a)
constraints to be included in the partitioned DAE:
¥y (z,v,t) =0 (index 1 constraints) (3b)
Uy(z,t) =0 (index 2 constraints) (3¢c)
additional constraints:
ply, ult), ) = 0 (34)

T . ..
where y = (z,v,w)", and %, %, and %% are non-singular. In the partitioned problem,

y has been partitioned into three types of variables: x are the differential variables, v the index 1
algebraic variables, and w the index 2 algebraic variables. The variables u(t) generally correspond
to higher-index variables of the original problem and enter into the partitioned problem as time-
dependent input functions.



We remark here that for DAEs where the differential and algebraic variables are strongly coupled
it may not be possible to partition the system in terms of the original variables. For these problems
we will make a determination of the index and then stop. We proceed by first identifying the
differential part (3a) of the DAE (1). Then we consider each of the algebraic constraints of the DAE
(1) and decide whether appending the constraints yields an index 1 or index 2 partitioned DAE
(pDAE). Thus we need to be able to determine whether any given constraint leads to index 1 or
index 2 structure. In the remainder of this section we derive conditions for identifying index 1 and
index 2 constraints.

A dynamic optimization problem for the pDAE is then given by

tfinal
Minimize J= / x(z,v,w,u,t)dt (4)
to

subject to the partitioned DAE (3a, 3b, 3c) and to the additional equality constraints (3d) and
additional inequality constraints (2d).

2.1 Index 1 Structure

A set of constraints of the form (3b) when appended to an implicit ODE of the form (3a) yields an
index 1 system if ¥, , is invertible. If the DAE system has been linearized at ¢ = 5, then it can be
rewritten as

Fg=2z— f(z,v,w,uz(t),t) =2 — (He+ Qv+ Tw+7r() =0 (5a)
U :=Cyv+Ciz+r(t)=0 (5b)
\112 = CQI‘ + TQ(t) =0 (5C)

where H € R*=*"= () € R*=*"v T € R*=*"w (), € R™**"v (1 € R*"*"= and Cy € R"wX"=,
The vectors z € R™, v € R™, w € R"¥, r(t) : R = R"=, ri(t) : R = R", and r5(t) : R = R"».

Lemma 1 (Index 1 Structure.) For the pDAF subsystem in the form (5a - 5b) to be index 1, C,
OF,
must be invertible. In general, the matriz < 305 g ) must be of full rank.

v

Proof. If C, is invertible, ¥; can be differentiated once with respect to ¢ and ¢ and v can be
determined explicitly and substituted in the ODE part to obtain the underlying ODE (UODE) for
the index 1 subsystem. The UODE corresponding to the index 1 subsystem is

&= (H—QC;'Ch)x + Tw(t) + r(t) (6)

and requires Cy, to be invertible. For systems where there is no clear distinction between a differential
variable and an index 1 algebraic variable, the pDAE may appear in the form

Fq:= Mgz + Myv — f(z,v,w(t),uz(t),7) =0 (7a)
Ciz+ Cyv+7r(t) = 0.

OFg
Then the matrix < %ﬁ C’Q ) is full rank if both % and C), are full rank invertible systems. O

v

Corollary. When n, = 1, i.e., a single constraint equation is being considered, C, is a scalar
and it is sufficient that |Cy| > 0 for the constraint to be index 1.

Lemma 2 When appending a single constraint of the form c,vq +C~'1m+crv—|—r11(t) =0 toan ODE
(3a) and a group of indexr 1 constraints of the form Cyv + Ciz + ccvy + ri(t) = 0, the constraint
under consideration leads to an index 1 pDAFE if |c, — ¢,Cle.| > 0.



Proof. The updated C,-matrix (fv Zc) must be invertible for the constraints (including the
T (4
new constraint) to be index 1 (Lemma 1). The updated matrix is invertible when |, — ¢, Cyte.| > 0.

The condition is obtained if the updated matrix is inverted as a partitioned matrix. O

9% ()
The rank r of the Jacobian matrix ( 305 c

equations/variables (both differential and algebraic) that can be included in an index 1 pDAE [20].
Any of the constraints, along with the ODEs, which can make a sub-matrix of full column rank
r along with corresponding algebraic variables v qualifies for this structurally partitioned index 1
pDAE.

Once the differential equations and variables have been identified, our algorithm examines one

) at the given time indicates the number of

constraint at a time, checking the condition in Lemma (2) to detect the index 1 structure. Associated
with deciding on an index 1 constraint equation is the problem of choosing the corresponding index
1 algebraic variable if more than one variable qualifies for this decision. This issue is resolved based
on the likely effect on the stability of the pDAE. The choice of variable is discussed later.

2.2 Index 2 Structure

The requirement for index 2 structure can be deduced by constructing an UODE. For a pDAE of
the form

Fo=z— f(z,v,w,us(?),t) =2 — (Hr+ Qu+Tw+r()) =0
U :=Cyv+Ciz+r(t)=0
\1’2 = CQCE + Tz(t) = 0,

if the appended constraint (5c) is index 2, differentiating it once with respect to ¢ and appending
the differentiated constraint to (5a - 5b) will yield an index 1 system if the condition in Lemma (1)
is satisfied. The differentiated form of (5c)

Cox + Coi+ 19 = Cox + Co(Hz + Qv+ Tw + r(t)) + 75 =0 (8)
is index 1 if (CyT) is invertible.
Lemma 3 A constraint of the form (5¢) is index 2 if (C2T) is invertible.

Proof. The equation (8) is obtained after one differentiation of the constraint (5¢) with respect to
t. Following Lemma (2), the equation (8) is index 1 if (C2T) is invertible. Thus (5c) is index 2. O

Lemma 4 The pDAE has an wndex 2 structure if each new algebraic constraint of the form ¢ =

Cox + 75 = 0 (along with a corresponding algebraic variable ws), being appended to an original
system of equations of the form
F;, = ab—(H:L‘+Tw2—|—Tw+r(t)) =0

U,

Coxz+1ry=0
s individually checked for index 2, 1. e., whether for the algebraic variable wo

|CyT — CoT(CT) ™1 CLT| > 0.

Proof. For asingle constraint Cy is arow vector and T is a column vector. The matrix (gz ) (T f)
2

must be invertible for the pDAE to have an index-2 structure. The condition claimed here ensures
the invertibility of this matrix (Lemma (2)). D

In our algorithm, the condition in Lemma (4) is checked to detect index 2 structure for each
constraint under consideration.



3 Incorporation of Stability Estimate in Partitioning

Partitioning can affect not only the structure but also the stability of the pDAE. Addition or deletion
of constraints and corresponding algebraic variables can either stabilize or destabilize the pDAE.
Consider the following simple example

z = 1000.0x 4+ u
br4+u=0.

The system 1s unstable when the constraint is not included in the pDAE and the ODE is integrated
(u being handled by the optimizer in a dynamic optimization problem). But the system is stable
for b = 10000 when integrated as an index 1 DAE.

We measure the change in local stability due to addition of one constraint and its corresponding
algebraic variables via the logarithmic norm [10]. Further details and results on the use of the
logarithmic norm in partitioning are given in [17]. Since stability as well as structural considerations
are an integral part of our partitioning strategy, we briefly describe the stability estimates here.

The logarithmic norm has been used extensively in nonlinear stability analysis for numerical

ODEs [10] and is defined as follows.

Definition 1 (Logarithmic Norm.) The logarithmic norm for a square matriz H in real or com-
plex space is defined as

. [T+ eH|| -1
A= e e

)

Part of the usefulness of the logarithmic norm as a stability measure arises because for any square
matrix H € R**"

max  RO\(H)) < u(H). (10)

Hence an ODE z = Hz is locally stable if y(H) < 0. The logarithmic norm has many other
properties that are useful for analysis [10], [17] and as we shall see later it is closely related to the
pseudoeigenvalues [12] of the matrix H, which have also been widely used to measure stability for
both differential systems and numerical solution methods.

Since we will be examining stability for one constraint and its corresponding algebraic variable at
a time, the logarithmic norm of a rank 1 matrix ulug (where uy and us are unit vectors of dimension
n) is of particular interest and is given by

,u(ulug) = max(0.5(ufu2 +1),0) for n>2 (11a)
p(ujul ) = max(0.5(uluy £ 1)) for n=2. (11b)

3.1 Index 1 Stability

The UODE (6) for an index 1 subsystem is locally stable if the largest real part of the eigenvalues
of H— QC;1C, is less than or equal to zero. For practical computations we require it to be less
than a positive real number (TOL) of suitable size. In terms of the logarithmic norm, the index 1
pDAE subsystem is stable if

u(H — QCT1Cy) < 0. (12)

An unstable ODE (u(H) > 0) or a pDAE already in place can be stabilized by appending index 1
constraints if for the resulting system

p(H = QCT'Cr) < u(H) + p(—QCT Ch) 0. (13)



For a single algebraic constraint, @ is a column vector (say, Q), C is a row vector (say, él) and

ol T _ sign(c,)Cy _ 118l lIC
g, and uo, = TyEg T and v = Tc] > 0.

Then pu(H — chlél) = u(H +yug ugl) Computationally, the condition for stability is

Cy is a scalar represented by c,. Let ug =

p(H + yuque,) < pu(H) + plyuqué,) = p(H) + 73 < TOL, (14)

where ¥ is defined by

3 (ubug +1)
,LL('yungl) =9 = ymax (0, — (15)
for ng; > 2 (where ng is the dimension of z). For ny = 2, the maximum is taken over —'5—— only.

Next we compute (15) for each index 1 constraint being appended to a group of already existing
index 1 constraints. Thus, let

U, =Ciz+ Cyvtcevn +r1(t) =0
be the existing group of constraints to which a constraint of the form
Ciz + cyvy + cpv + r11(t) =0
is considered for being appended. This is equivalent to appending the constraint

\ill = 01I+val —|—’Fl(t) =0

to the UODE
&= (H—QC; Ch)x + Tw(t) + r(t)
where
01 = él — chU_lCl (16&)
C, = cy — crcy_lcc (16b)
and 7 (t) represents the terms that are function of time only. While evaluating (15) uc, is computed
as ug = S8MCC hen ~ for second or later index 1 constraints is computed as
€ [1C112
~ = T
- Q 3|1C1]]2 (u’luQil)
Yappend = [1Qfl2[1C4 12 |||(/U | I max | 0, —4—~—— 5 (17)

(for ngy > 2), where Q is the column vector in the differential equations corresponding to the algebraic
variable chosen for the index 1 equation under consideration.

3.2 Index 2 Stability

We have obtained the stability estimate for index 2 pDAEs (5) as u(H)—i—Qu(—T(C’gT)_lCz) <TOL,
where H = H — QC;'Cy is the stability matrix of the index 0 or index 1 subsystem. Since
for all practical purposes H is the dominant matrix term in H, a parameter k is estimated as
pﬂmaxRpHymaX where pr max 1s the normalized eigenvector corresponding to the largest eigenvalue
of H and R = (I,, — T(C2T)~'C3). Then we obtain the stability condition

_ : TOL TOL
H) +2u(=T(CyT)™1Cs) < = .
F‘( ) F‘( ( 2 ) ‘7) |pgymaxRpH,max| |]i'|

(18)



For H = 0, |k| is taken as 1. Any index 2 algebraic constraint which is a candidate for being
appended to the already constituted pDAE system is checked for T'= CT' (it has been shown that
index 2 constraints do not destabilize the pDAE if T = C7 [17]), whether C3 is a constant (when
Cs is a constant, —T(CyT)~'C disappear) and for (CoH + C3) R = 0, failing which the check (18)
is done.

In the case of a single index 2 constraint being checked for stability, an analytical expression
for u(=T(C2T)~1C4) is obtained. In this case C3 is a row vector (denoted by 6'2), T is a column

vector (denoted by f) and R = [ — =

ul, ~ ~ - ~
272% where ue, = CF/||Colls and up = T/|[T]]. Then

C2
[|IR]| = ﬁ The change in the stability measure by appending a single index 2 constraint, which
Ca

can be estimated by

f | —sign(CyT)CoT + |G oI Tl TOL
() + 0.5 fitc, |2 + max I o)< (19)
2|CyT| ||
(for ngy > 2) is sufficient for determining the stability when including a single index 2 algebraic
constraint in the pDAE.

3.3 A Practical Criterion for Constraint Inclusion

For some types of systems, in particular non-linear highly oscillatory systems such as the stiff spring
pendulum and wheel set on rails examples described in [17] the logarithmic norm of the implicit ODE
subsystem may already be large. Thus the criteria (14) and (19) would partition all constraints out
of the DAE, even if they do not further increase the logarithmic norm. Hence in practice we relax
the criteria to require only that the constraints do not increase the logarithmic norm by much. Thus,
instead of checking simply if g4 < T'OL, the stability check for accepting a constraint is modified as

TOL

3TOL 20
|tﬁnal - t0| 0) ( )

pSmax(

where T'OLg is the logarithmic norm of the unconstrained dynamic system.

3.4 Physically Important Constraints

Some constraints may represent physically important relationships, and hence should be included in
the pDAE regardless of their effect on the index or stability (although the index should be checked
and if necessary reduced for numerical solution). For example, scleronomic constraints describe
physical or geometrical features of a mechanical system. In [17] we demonstrate that for the crane
model of section 5.7, failure to include these constraints in the pDAE can lead to unphysical results
in the simulation and non-convergence in dynamic optimization. In contrast, path constraints can
be added or deleted from the pDAE. Thus we allow in our software for the user to specify which
constraints and variables must be included in the pDAE.

4 The Partitioning Algorithm

Based on considering one algebraic constraint at a time, a partitioning algorithm that returns a
locally (at the point of linearization) index 2 or lower pDAE is designed. Constraints are examined
for their impact on structure and stability. In this section we discuss the essential components.



4.1 Design of the Algorithm

So far we have discussed only the tests for index 1 or index 2 system To build the complete pDAE
system, strategies for choice of algebraic variable and a global stability check are needed. The
algorithm is designed to proceed by examining one constraint at a time for its structure, stability
and physical significance (if known).

4.1.1 Step One: Linearization

The partitioning algorithm extracts a pDAE subsystem from the original DAEs linearized at a
particular value of {. Hence a pre-processing step for linearizing the DAEs is needed before the
partitioning algorithm can start working. The pre-processing step involves application of automatic
differentiation software (such as ADIFOR [4]) to the procedure evaluating the residuals (F = 0) for
the DAEs to generate the procedures for evaluating JPRIM EQ := %, JO = % and JDOTO0 :=
d (ZE) /dt, all evaluated at ¢ = t.

4.1.2 Step Two: Identification of Differential Equations and Variables

The next step in the algorithm is to obtain the mass matrix JPRIMFE1 from JPRIM EQ. This
is the sub-matrix of rows and columns of JPRIM EQ that are not null vectors. The corresponding
columns and rows in JPRIM EQ0 which contain at least one non-zero entry are marked as candidate
differential variables and differential equations (respectively).

If JPRIMEFE1 is square and non-singular, the differential equations and differential variables
have been identified and we can directly move on to consider the algebraic equations and variables
for appending index 1 and/or index 2 constraints to the pDAE sub-system. If JPRIMET1 is full
row rank with more columns than rows, then a search for the deficient number (i.e., the number
by which columns exceed rows in JPRIME1) of index 1 algebraic equations involving only the
candidate differential variables is done before considering other algebraic equations and variables
in the original system. This limited search for index 1 algebraic equations is similar to the general
search (described in the next step) for index 1 and 2 algebraic equations but involves only the
candidate differential variables and stability is checked only at the end of examining the candidate
index 1 algebraic equations. The classification of the variables corresponding to the index 1 algebraic
equations appended from the limited search is revised as index 1 algebraic variables.

It may be mentioned here that for a small number of equations one can use the LU-decomposition
with partial pivoting for identifying differential equations. The rows pivoted to the bottom and
corresponding to the zero-rows of the upper triangular matrix are constraint equations. But this
involves O(n2) computational cost as opposed to a search for non-zero entries which loops over all
the equations and variables requiring O(n2) operations.

Depending upon the dimensions of the mass matrix, three possible cases may arise. These are:
(a) Square: JPRIMFE1 is a square matrix.

(b) Fat rectangle: JPRIM E1 has number of columns less than number of rows.

(c) Thin rectangle: JPRIM E1 has number of columns greater than number of rows.

Depending upon the rank of the mass matrix, two possible cases may arise in each of the above
three cases.

(a) Full rank: The mass matrix has a rank = min(nrows, Peolumns ) -

(b) Rank deficient: The mass matrix has a rank less than min(nrows, Peolumns ) -

Only in the cases where JPRIM E1 is a square or a fat rectangle with full rank can the algorithm
perform partitioning directly on the original equations and variables. For all rank deficient cases and
the case where JPRIM E1 is a thin rectangular matrix, the original equations and variables undergo
transformation through a singular value decomposition of JPRIM EQ before being partitioned:
SVD(JPRIMEO) = USVT. In the original system of equations, substitutions z = Vy, y = VT=z



and y = VT2 (assuming that V7 is constant) are used to transform the original input into a new
system of the form Sy + UTJOVy + ... = 0.

The partitioning code i1s implemented in such a way that it can detect the rank deficiency or
the thin rectangular structure of JPRIM EQ and is stopped and restarted with application of the
partitioning algorithm to the transformed DAE system in y. The matrix S is a diagonal matrix
and the application of partitioning algorithm produces a full rank square JPRIM E1 for the trans-
formed system. The accepted pDAE obtained from the transformed system, if determined to be
solvable, and the information about its stability may be used, in combination with some physical
and/or mathematical intuition about the problem, to guide the selection of differential and algebraic
variables in the original system.

Hllustration A. Consider the input with

2 -2 0
JPRIMEO= [ -2 2 0
0 0 0
p
JPRIME1 = <_2 ) )
0 0 -1
Jo=110 01 0
-1 0 0

The rank deficient square matrix condition is met and this system undergoes an SVD. The new
system in

0.7071  —=0.7071 0
y=| —-0.7071 -0.7071 0 |z
0 0 1

is partitioned. In Step 3, the last two variables are returned as index 1 algebraic variables and the
last two equations as index 1 algebraic equations.
Hlustration B. Consider the system with

1 000 0
057 30
JPRIMEO=[0 0 0 0 0
00000
00000
000 0 2
000 0 3
Jo=|10 0 4 4],
095 0 5
05 3 3 3

from which the mass matrix is obtained as

10 0 0
JPRIME1_<0 5 7 3)

The fat rectangle with full row rank condition is satisfied. The first two equations are identified as
differential equations. The first four variables are possible differential or algebraic variables to be
identified in Step 3. The second and the third variables are reclassified as algebraic index 1 variables
and two more algebraic equations (fourth and fifth) are appended as index 1 algebraic equations
following limited search similar to Step 3.



4.1.3 Step Three: Identification of Index 1 Equations and Variables

In this step, we search for index one equations and variables, one constraint at a time. When the
constraint under consideration has the option of choosing from more than one algebraic variable to
which it can be linked, the search for the dominant algebraic variable corresponding to the constraint
must be done in an economical way. If more than one yet unidentified algebraic variable satisfies the
index-one condition in Lemma (2), then the problem arises of deciding on a variable that corresponds
to the algebraic equation under consideration. The direct way of associating the possible variables
is to mark all the possible variables and then go on to the next equation and so on. After the search
for index 1 or index 2 equations ends, all possible combinations of the variables are explored and the
one that gives the pDAE with the lowest logarithmic norm is associated with the index 1 subsystem.
But for large systems this method will be computationally very expensive. Hence a trade-off policy
is adopted. The following explains the policy for both index 1 and index 2 systems.

Policy 1. For small systems, all possible algebraic variables corresponding to the current algebraic
equation under consideration for entry into the index 1 subsystem are tried out. Thus, for all
algebraic variables that satisfy the condition in Lemma (2) the logarithmic norm for the index 1
subsystem (up to and including the current algebraic equation) is evaluated. The one that gives the
lowest logarithmic norm is associated with the index 1 equation under consideration. This is feasible
only for very small systems since a complete search involves exponential computational complexity.

Policy 2. For a very large system with many coupled terms across the algebraic variables,
the above policy may prove to be expensive. In those cases, the policy is to look for a variable
moderately connected with the differential variables in the current equation. This can be done by

directly starting the search for a non-zero scalar @ <0.5 (minv (@) + max, (@)) (for

index 2, substitute (~72T in place of ¢,) where the minimum and the maximum are taken over the
possible algebraic variables in the equation being considered. If this choice yields an unacceptable
logarithmic norm, the next higher ¢, (ézf) is considered and so on. Since the logarithmic norm is
inversely proportional to ¢, (é’zf for index 2), the larger ratios need not be explored. The scalars
¢y or CoT may be suitably scaled over the range of their values. This policy was implemented in
the test program that produced the results in the numerical examples.

Policy 3. Pwoting. If J, = gf” denotes the matrix formed from the rows corresponding to the

algebraic equations and columns corresponding to the algebraic variables in the Jacobian %, then
for detecting index 1 equations and corresponding index 1 variables the entry with the maximum
absolute value in J, is tested for invertibility as in Lemma (2). Obviously for the first index 1
algebraic equation and its corresponding index 1 variable the entry chosen must be non-zero. For
the subsequent equations and variables the entry with the maximum absolute value 1s tried first.
If the test for index 1 fails or the equation-variable combination fail to pass the logarithmic norm-
based stability criterion, the entry with the second largest absolute value is tried. After an equation
and its corresponding algebraic variable have been selected the corresponding row and column are
removed from J,. The search terminates when no suitable pivot is found. The search for index 1
system terminates when no suitable pivots are found. For index 2 systems the remaining equations
are used to form a matrix Jgs := %%, where the subscript a2 denotes the remaining algebraic
equations/variables after the selection of index 1 subsystems. A pivoting scheme similar to the
search of index 1 subsystem is applied to J,3 to find the index 2 subsystem.

It may be noted that the last two policies are heuristic. Since a complete search for a subsystem
takes exponential time, a suitable heuristic policy is needed to make the partitioning algorithm
practically applicable by making it polynomial time. The last two policies return an index 2 or
lower pDAE subsystem if there is one, but does not guarantee the selection of largest possible index
2 or lower pDAE subsystem.

The heuristics work best when C, (C’zf for index 2) has, for some permutation, a dominant lower
triangular structure. Hence, it is desirable to evaluate the logarithmic norm of the fully assembled

10



pDAE to verify that the system is stable. For very large systems, this check should be run every
time a fixed number of constraints has been appended.

Hlustration C. Say we are following policy 3 to choose variables and equations and have a
JPRIME1 = identity matrix of dimension 3 and

-1 Ot W

JO =

O = O O =
_ 0 O = O
OO = OO
— W O = N

o Ot

and the first three variables and equations are differential variables and equations. Then the fifth
variable and the fourth equation are selected as a possible index 1 equation and variable and the
matrix C, (a scalar at this stage) is 5. During the stability check, the logarithmic norm is evaluated
with ¢ = (3,5,7)7 and ¢l = (1,0,0)T. If this partitioning is deemed unstable, the procedure
selects C, = 3 as the next best pivot and remembers that the fourth equation-fifth variable pair
is structurally index 1 but was rejected as unstable. Then the fourth equation and fourth variable
combination is similarly tried out. If stable, the combination is accepted into the pDAE by marking
the third variable and equation as algebraic. In case this combination is deemed unstable too, the
procedure stops searching for a pair for the third equation and marks the third variable as a rejected
index 1 variable and the fourth equation as a rejected index 1 equation. Next, we examine the final

equation in the DAE in a similar way. For this C, grows to a two-by-two matrix: (i) 8) .

4.1.4 Step Four: Identification of Index 2 Equations and Variables

If constraints and variables remain following Steps 2 and 3, we search for index 2 equations and
variables. This procedure is exactly similar to the index 1 case except that instead of the matrix
Cy, the matrix C2*T is formed from JO and during stability check we need to form C2DOT = Cs
from JDOT for computing the logarithmic norm in (19). It may be noted here that for systems with
index 2 constraints coupled with index 1 variables the present algorithm revises the matrix Cy as

Cy — C5C71Cy,

where C is the non-invertible coupling matrix in the linearized constraint of the form Cyz + Csv +
r2(t) = 0. Consequently C2DOT is revised as

Oy — G307 101 + C3C 10,05 Cr — G301

for evaluation of logarithmic norms. The matrices 03, C’l and C’U are formed from JDOT by selecting
the appropriate rows and columns and hence does not need an extra pass through ADIFOR.

4.1.5 Rejecting Constraints During Check Back for Stability

The algorithm has the limitation that during stability analysis the effect of the terms (corresponding
to the new algebraic variable being included in the pDAE) coupling existing constraints and the
constraint under consideration are ignored. Hence after accepting a few constraints a check back
for the overall stability of the pDAE is needed. While performing the local stability check for each
algebraic equation, the new algebraic variable corresponding to this equation must be picked in such
a way that the local stability check 1s a fair estimate of the stability of the pDAE and that the global
check pointing will not change the built-up pDAE unless absolutely necessary.

If it is found during checking back that the global logarithmic norm of the pDAE is greater than
TOL, then some of the constraints must be rejected to keep the system stable. In keeping with
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Policy 2, for index 1 constraints we leave out the last appended constraint and the algebraic variable
having the maximum % (scaled over the range of values ¢, takes in the problem) and check for
overall stability in terms of the recomputed overall logarithmic norm. If the system is still unstable,
the procedure is repeated on the next constraint on the block of constraints being checked. This

is done until a stable index 1 pDAE is found. For an index 2 system, the same thing is done on

the constraint having the largest % in the block of constraints being checked and variables with
2

. é .
maximum UL<2ll2 are rejected.
|C2T|

4.1.6 Update of Inverted Matrices

For detecting index 1 or index 2 structure using Lemma (2) or (4) it is needed to update the inverted
¢y or CyT matrix. This is done using the formula for inverting a partitioned matrix. The inversion
of the updated matrix A = ( e 4 A(L:n,n+ 1)) (where A and A are n x n and
An+1,1:n) Antint1

n+ 1 x n 4 1 square matrices respectively) can be expressed in terms of A and the new row and
column. (The notation A; ; denotes the entry at the ith row and the jth column of matrix A and
A(7 : k,j : 1) denotes the block formed by rows i to k& and columns j to [ of matrix A.) Using the
standard formula for inverting a partitioned matrix, we obtain

1. A~ — A_lfi(l ‘n,n+ 1)[1_1(71 +1,1:n) —A_lfl(l ‘n,n+ 1)Agi1,n+1
B _A;-}-Lnﬂfi(” +1,1:n)A™! (Apginsr —An+1,1:0)A7TA(1 i n,n 4 1))7!

4.2 Correctness of the Algorithm

The algorithm PARTITION identifies index 1 and index 2 structures and gives an estimate of the
stability of the resultant pDAE.

Theorem 1 (Structure with Single Constraint) The algorithm PARTITION selects a single
1solated constraint so that the resulting pDAFE has index less than or equal to 2 and 1is stable locally
att = 1.

Proof. Since the algorithm uses the results in Lemma (2) for index 1 and structure and Lemma
(4) for index 2 structure, the constraints entering the pDAE are index 1 and index 2 respectively.
The check in equation (19) has been shown to be a sufficient condition for the stability of a single
isolated constraint being appended to the unconstrained ODE part of the pDAE. O

Theorem 2 (Overall Structure of the pDAE) The algorithm PARTITION appends a cluster
of constraints based on index 1 or index 2 structure such that the overall pDAFE has index less than
or equal to 2 and uses a stability estimate to output a pDAE which s stable at t =ty for clusters of
constraints appearing in disjoint blocks.

Proof. Since the results in Lemma (2) for index 1 structure and Lemma (4) for index 2 structure
update and check the global invertibility of the C, and C3T matrices respectively for all the con-
straints collected including the last appended constraint, the overall index 1 or index 2 structure is
maintained in the pDAE being constructed.

The check back using equation (18) gives a somewhat conservative estimate of the stability of
the cluster of constraints appended. If the check back is done on all the constraints appended so
far then the stability estimate i1s a global sufficient condition, though more conservative than the
single isolated constraint case. If the check back is limited to a small block of constraints, then the
estimate (18) is sufficient when the cluster blocks are disjoint, i. e., when algebraic variable vectors
do not have coupling terms between them (C,, @, and T all have block diagonal structures). In
case Cy, @ and T are dense matrices with significant off-block-diagonal terms, the check back for
stability over only the cluster block ensures stability locally limited only to the particular block. O.
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4.3 Properties and Limitations of the PARTITION Algorithm

1. For a DAE system with a very large number of constraints and tightly coupled algebraic
variables between them, policy 2 may end up excluding a few eligible constraints.

2. The results for index and stability are local, i.e., based on the frozen coefficient local system.

3. The algorithm may not be able to distinguish some algebraic variables and constraints from
differential equations and variables in the case in which SVD is performed in Step 2.

4. Physically meaningful constraints index 3 or higher are not directly included with the pDAE.
Such systems should be reduced to lower index (i.e., index 2 or lower) before input into the
partitioning algorithm.

5. Systems with a local singularity at the initial time may yield a misleading result unless they
are also analyzed at a later time.

6. If the local matrix pencil is singular, the algorithm will simply stop, i.e., it does not attempt
to analyze singular systems.

5 Examples of Partitioning

In this section we illustrate the working of the algorithm with several examples. All the examples
were run on a 180 MHZ TP32 Processor SGI O2 computer (FPU: MIPS R5000 and CPU: MIPS
R5000).

The first two examples were run just to test whether the algorithm can successfully identify index
1 or index 2 constraints. To keep the tests simple inclusion or rejection of the constraint based on
stability estimates was not considered.

5.1 A Simple Example
Consider the equation
Fr=¢z+y— fi(t) =0.
A path described by
Fy=sin(t)z +ty— f2(t) =0

is appended to the system and F; and Fy are input to the PARTITION algorithm with ¢ = 0.
This system has no clearly defined differential or algebraic variable. Further, the system Jacobian
does not have full rank at ¢ = 0. The algorithm returns an undecided or incomplete pDAE at ¢ = 0.
A perturbation of ¢ = 0.01 is chosen and PARTITION is called again to run at ¢ = 0.01. This time
F 1s listed as a differential equation with y as differential variable and Fs is returned as an index 1
algebraic constraint equation with z as the corresponding variable.

5.2 A Non-Solvable Example
The following input
1+ a2 — f2t) =0

causes the partition algorithm to stop without giving any output since the Jacobian of the system
is singular. Thus systems in non-solvable form are checked for and the output is safe-guarded from
having a singular Jacobian.
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Figure 1: Linear electrical circuit

5.3 A General Example
The DAE system

Fy :=sin(z9) @1 + cos(2'3)ds + €3 + zaz1 + 232522 = 0
Fy :=t?xy+tz; =0

Fy := 27 4 sin(t)x3z9 — cos(6t) = 0

Fy =234+ 25=0

Fs := 2224+ sin(0.5t) = 0

is used as an input to the PARTITION algorithm. At ¢ = 0.0 the pDAE is output as differential
equation list = [F}]; differential variable list = [z3]; index 1 equation list = [F3, Fy, F5]; index 1
variable list = [z1, 24, 25]. The output at ¢ = 0.001 is obtained as differential equation list =
[F,]; differential variable list = [z3]; index 1 equation list = [Fy, F3, F4, F5]; index 1 variable list =
[z1, 29, 24, z5]. Since the last output is the union of the two outputs, it is taken as the final partition.
The index 2 equation and variable lists are returned empty.

The structure of this example is such that there are multiple ways in which the index 1 algebraic
variables can be chosen. The algorithm PARTITION suggests only one of the many possible ways.
This example has been used to test whether the present algorithm can correctly identify an index 1
system even when the index 1 algebraic variables do not occur explicitly in the input equations.

5.4 Modified Nodal Analysis of a Linear Electrical Circuit

Existing structure-based partitioning algorithms fail to take into consideration the singularity of
C and confuse this index 1 system with an arbitrarily higher index system [18]. In contrast, the
partitioning algorithm described in this paper transforms the equations and the variables through
a singular value decomposition and identifies the index 1 structure. The following example taken
from [18] illustrates a typical situation.

Consider the circuit equations obtained from a Modified Nodal Analysis (MNA) of a linear
electric circuit (Figure (1))

C -C 0 1')1 0 0 -1 U1 0
-C C 0 1').3 + 0 % 0 vy | = 0 ,
0 0 0 i -1 0 0 ) v(t)
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with C' = 2 pF and R = 10 Ohm. The DAEs can be transformed into

4%10712 0 0\ [ 0.05  0.05 —0.7071\ [ 0
0 0 0)|®]+| —005 —005 —07071) (@3 |=1] 0
0 00/ \;: —0.7071 0.7071 0 i o(t)

and is identified as an index 1 system by the PARTITION algorithm. The logarithmic norm of
the index 1 DAE system is computed as —5 x 10'® which is small enough to make it acceptable.

5.5 Anisotropic Biphasic Theory Equations

The system consists of partial differential-algebraic equations (PDAE) described in detail in [3].
The spatial discretization is obtained using the Finite Element Method and the spatially discretized
system is used as input to the PARTITION algorithm for obtaining the desired information about
the DAE system. The model equations in one dimension are

Ou,, " I(o;:0)

Momentum Balance: — R Y P =0 (21a)
6 E Z2
Mass Balance: g—t + Haa;éz =0 (21b)
2
Constitutive Equation: 992 + Tz _ [)’a Y22 _ (21c)

ot L 0toz

where R is the resistivity constant, L the relaxation time constant and [ is the viscosity. The
test system uses a one-dimensional confined compression ramp problem spatially discretized into 2-
node finite elements. The dependent variables are longitudinal strain (u,), stress (¢,,) and volume
fraction(@). The physical space (z) is discretized into 20 elements. At every node the three equations
in (21) are considered in the following order : momentum balance, mass balance and the constitutive
equation. The longitudinal strain rate 615;‘ is considered lumped at each node. All other variables
are spatially discretized using linear shape functions. The variables occur in the order of strain in
gel, then volume fraction of collagen, and stress in gel. The boundary condition is imposed at the
first node by replacing the momentum balance equation with u,, — d = 0, d being related to the
displacement of the plunger applying pressure on the sample. The spatial discretization leads to a
DAE system of 63 equations. The spatially discretized DAE system is in the following form. The
boundary condition at the first node is obtained as

U,,1 —d=0.
For node 2 to the last-but-one node:
Mot + fo(oz2,0) = 0.
For node 1 to the last-but-one node:

Mlé + Mzﬂzz = 0
MSé-zz + M4Uzz + fl(azz) =0.

For the last node:

Fb(uzzLastNoda UzzLastNode) =0.

In the above equations M; (i = 1,2,3,4) are the coefficient matrices obtained from the Finite
Element discretization and Fj is the boundary condition at the end node not in contact with the
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Figure 2: Planar Crane Model

plunger. The matrix My is a diagonal matrix in which alternate entries are zero. Thus, at every
other node the momentum balance equation is an algebraic equation.

The initial conditions for £ = 0 are suitably input to the algorithm. The algorithm PARTITION
classifies equations 1, 7, 13, 19, 25, 31, 37, 43, 49, 55 as index 1 and the rest as differential equations.
The corresponding index 1 variables are 1, 6, 12, 18, 24, 30, 36, 42, 48 and 54. Physically this means
that the algorithm selects the stress in gel at every other node (i.e., second, fourth and so on) as
an index 1 algebraic variable and the stress balance equation in the next node (i.e., third, fifth and
so on) as the corresponding index 1 equation. The strain at first node and the related boundary
condition at that node are selected as index 1 algebraic variable and index 1 algebraic equation
respectively. The logarithmic norm of the linearized underlying ODE at { = 0 was estimated as

-45.547 in 0.1699 CPU seconds.

5.6 Planar Model of a Crane

This example is a planar rigid body model of a crane manipulating a payload, which must be lifted
along a specified trajectory [6]. The crane is a mechanical system in planar Cartesian co-ordinates,
z and z, denoting the horizontal and vertical positions of the payload. The other state variables
are d, the horizontal distance traveled by the crane trolley from the origin and r, the paid out cable
length. The equations are

My = —rsin(f) (22a)
Myi = —rcos(f) +mg (22b)
Mid = —Cid+uj+ Tsin(f) (22c)
Ji = —Cof — C3ug + Cir (22d)
= f0—tan"((z —d)/z) (22e)

= - (z—d)? - 2? (22f)

v o= i) (22¢)
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crane example: state variables
25 T T T T

E— desired z
— - desired x

x
o
20 I

15

positions and errors
=
o

-5 I I I I I I I
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time

Figure 3: Crane problem using equations (22a)-(22e) and (23) in the pDAE.

2 = 1) (22h)

where M7, M5, m are the masses of the trolley, cable and payload system and the payload alone,
respectively. Cy, Cs, C3 are constants, and J is the mass moment of inertia for the pulley paying
out the cable. The algebraic variables are 7, the tension in the cable and #, the cable angle with
vertical. The horizontal force driving the trolley (u1) and torque driving the pulley in the winch (uz)
are the two control variables. Equations (22g) and (22h) describe the specified path of the payload.

For the crane model, constraints (22e) and (22f) are both scleronomic constraints, i.e., they
describe some geometric structure of the physical problem. Constraint (22¢) introduces the mea-
surement of f, the angle by which the payload deviates from the vertical. Constraint (22f) connects
the payload to the pulley, by relating its horizontal and vertical positions to the length of the cable
paid out.

Applying the algorithm to this model, constraint (22e) is included in the pDAE since it satisfies
the index one structure and stability criterion. The resulting UODE in z does not have large
eigenvalues in Ct at t = to. For a practical physical application, the eigenvalues of the pDAE system
can be expected to be of moderate size and the system can be expected to be stable. The constraint
equation (22f) is an index 3 scleronomic constraint (known from the physics of the problem) and is
reduced to its index 2 form via one differentiation of constraint (22f) with respect to ¢

ri— (z—d)(& —d) — 22 =0 (23)

or to index 1 via two differentiations of constraint (22f) with respect to ¢. (if the available DAE
integration software can integrate index 1 or 0 systems only). The other constraints (pre-programmed
trajectory of the payload) (22g and 22h) are handled from the SQP method.

In the crane model the partition algorithm detects and accepts the index-1 constraint (22¢) at
t = 0. The value of TOL was set at 20.0. The interval of integration is from ¢; = 0 to ¢t = 8. The
value of TOLg in (20) was set at 0. The initial values are = 3.0,2 = 2.7,z = 21.0,2 = —2.0,d =
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crane example: controls
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Figure 4: Crane controls using equations (22a)-(22¢) and (23) in the pDAE.

1.0,d = 2.7,r = ((x — d)? + 22)°5,7 = —2.0,7 = 980.0,u; = 0,us = 0,6 = tan™" (M) The
logarithmic norm of the stability matrix H for the crane model at ¢ = 0 is 0.5 and with the addition
of the index-1 constraint (22e¢) it goes up to 0.82794. This is less than max(TOL/8,TOLy) (see
equation (20)) and the constraint (22e) is accepted. The angle of deflection from vertical 6 is chosen
as the index 1 variable.

The search for index 2 constraints returns the empty set. In order to search for index 3 scle-
ronomic constraints, the remaining algebraic equations are differentiated using automatic differen-
tiation once with respect to time. The index-2 search algorithm is re-applied and the algorithm
returns the differentiated form of constraint (22f), i. e., (23) as an index-2 constraint suitable for
inclusion in the pDAE system. Here |k| = 0.9999. The logarithmic norm of the index 2 pDAE
stability matrix (using equation(19)) is 1.61502 and the tension in the cable 7 is returned as the
corresponding index 2 variable. The matrix S from the stability analysis changes very slowly in the
neighborhood of t = 0 since 7' = (0,0, 0,0, —sin(d), — cos(8),sin(f), CZ)T remains almost unchanged
due to very small changes in § ~ 0 (i. e. an almost vertical cable undergoing only small swings).
Hence the logarithmic norm changes only slightly even after the constraint (23) has been appended
to the pDAE in its differentiated form. During check back, the overall logarithmic norm of the
accepted pDAE system is computed as 1.09717, which is smaller than max(TOL/8, TOLg) and is
acceptable. Building the whole system takes 9.82 x 102 CPU seconds on a 180 MHZ IP32 Processor
SGI O2 computer.

Even though the constraint (23) slightly raises the logarithmic norm estimate for the index 2
pDAE system thus constructed, this partition leads to a more physical and well conditioned problem.
The plots in Figures (3) and (4) are the results obtained from dynamic optimization using a multiple
shooting type scheme with DASPK3.0 [16] as the DAE integrator and SNOPT as the NLP method
[15]. In this case the path constraints are chosen as p; = x — (—0.0675¢% + 2.7t + 3.0) = 0 and
p2 = z — (—21.0 — 0.05¢2 4 2.0t) = 0. The optimizer SNOPT stops at an acceptable point which
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cannot be improved further after 4 major iterations (with 188, 182, 112 and 1 minor iterations). The
objective function is given by the error integral f:ﬂﬁr‘al (p? + p2)P5dt. The time interval is 0 < ¢ < 8.
The controls (u; and uz) have been modeled as quadratic polynomials over each of the 8 shooting
intervals used for the problem. The tolerances for DASPK3.0 were rtol = 107 and atol = 10~7
and all tolerances for SNOPT were 107°. The control and state continuity constraints across the
shooting intervals have been satisfied to less than or equal to 0.1 when the optimizer has stopped.

The time taken for solving this problem is 1421.91 seconds.
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