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Abstract. We report on our progress in developing algorithms and software
for sensitivity analysis and design optimization of differential-algebraic equation
systems.

1. Introduction

Differential-algebraic equations (DAEs) arise in a wide variety of engineering and
scientific problems, including the modeling of multibody and flexible systems. Much
work has been devoted to understanding these systems and developing numerical meth-
ods and software for the simulation problem[4], although some substantial technical
challenges remain.

In this paper we report on our progress in developing algorithms and software for
sensitivity analysis and optimization of DAE systems. These computations are an
order of magnitude more complex than simulation, require highly efficient and robust
methods for simulation, and are of critical importance throughout engineering design.
In section 2, we outline algorithms and software for sensitivity analysis of large-scale
DAE systems, via both the forward and reverse (adjoint) modes. The new software can
handle DAE systems of index up to two (in Hessenberg form), and solves for consistent
initial conditions for both the state and sensitivity systems. In section 3, we formulate
the general problem of design optimization and optimal control for DAE systems, and
describe our algorithm based on a modified multiple shooting method for solving these
problems. An important issue for this type of method is the handling of constraints. In
particular, given an equality constraint, it can be included in the dynamic optimization
problem either as part of the DAE, or be handled directly by the optimizer. This choice
can affect both the index and stability of the resulting DAE system. In section 4, we
describe our tool for analyzing the DAE structure and finding a stable partitioning of
the constraints.
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NSF/DARPA Virtual Integrated Processing program, DOE DE-FG03-98ER25354 and by LLNL ISCR
00-15.



2. Sensitivity Analysis

Sensitivity analysis for DAE systems is important in many engineering and scien-
tific applications. The information contained in the sensitivity trajectories is useful
for parameter estimation, design optimization, optimal control, model reduction and
experimental design. Here we present algorithms and software for sensitivity analysis
of large-scale DAE systems of index up to two. There are two basic types of sensitivity
approaches. The first, which we call the forward mode (sometimes referred to as the
Tangent Linear Model) is very efficient for computing sensitivities of a potentially large
number of output variables with respect to relatively few input variables. The second,
which we call the reverse mode or adjoint sensitivity analysis, is advantageous when it
is required to find the sensitivity of a single or low-dimensional output variable with
respect to a large number of input variables. Thus the approaches are complementary.
We have recently developed algorithms and software for both, and will outline them
here.

2.1. Forward Mode

To illustrate the basic approach for sensitivity analysis, consider the general DAE
system with parameters,

F(t,z,2',p) =0, x(0) = zo(p) (1)

where z € R"™.p € R". Here n, is the number of time-dependent variables = as
well as the dimension of the DAE system, and n, is the number of parameters in the
original DAE system. Sensitivity analysis entails finding the derivative of the solution
x with respect to each parameter. This produces an additional ns = n, - n, sensitivity
equations which, together with the original system, yield

F(t,z,z',p) = 0, (2a)
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the combined system can be rewritten as
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F(t,X,X',p)=0, X(0)=
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This system can be solved by the k-th order BDF formula with step size h,11 to yield
a nonlinear system

s

G(Xpp1) = F (tn+1,Xn+1,X'<0)

o <Xm4—Xﬁnm)=o, (3)
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where Xff_?l and X’g)_l are predicted values for X, 4, and X]_,, which are obtained

via polynomial extrapolation of past values [4]. Also, ay is the fixed leading coefficient
which is defined in [4]. Newton’s method for the nonlinear system produces the iteration
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There are three well-established methods to solve the nonlinear system (3):

e Staggered direct method, described in [8].
e Simultaneous corrector method, described in [24].

e Staggered corrector method, described in [10].

Analysis and comparison of the performance of these three methods have been given in
[10, 20], where it was found that the relative efficiencies of the methods depend on the
problem and on the number of parameters. Here we describe briefly the three methods.

The staggered direct method first solves equation (3) for the state variables. After
the Newton iteration for the state variables has converged, the sensitivity equations in
(3) are updated with the most recent values of the state variables. Because equation
(2b) is linear with a matrix .J for the sensitivity equations, it is solved directly without
Newton iteration. However, to solve the linear system in this way requires computation
and factorization of the Jacobian matrix at each step and also extra storage for the ma-
trix 0F/0x'. Since the Jacobian is updated and factorized only when necessary in DAE
solvers such as DASSL and DASPK [4], the additional matrix updates and factorizations
may make the staggered direct method unattractive compared to the other methods.
However, if the cost of a function evaluation is more than the cost of factorization of
the Jacobian matrix and the number of sensitivity parameters is very large (see [20]),
the staggered direct method is more efficient. We have modified the implementation of
[8] to make the staggered direct method more reliable for ill-conditioned problems.

The simultaneous corrector method solves (3) as one whole nonlinear system, where
Newton iteration is used. The Jacobian matrix J in (4) is approximated by its block di-
agonal in the Newton iteration. Thus, this method allows the factored corrector matrix
to be reused for multiple steps. It has been shown in [24] that the resulting iteration is
two-step quadratically convergent for full Newton, and convergent for modified Newton
iteration.

The staggered corrector method lies in between the staggered direct method and the
simultaneous corrector method. Instead of solving the linear sensitivity system directly
as in the staggered direct method, a Newton iteration is used

S(k+1) — S(.k) — J_leg(Sgk)>’ (5)
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where G, is the residual for the i-th sensitivity and .J is the factored Jacobian matrix
which is used in the Newton iteration for the state variables. Like the simultaneous
corrector method, this method does not require the factorization of the Jacobian matrix
at each step. One of the advantages of the staggered corrector method is that we do
not need to evaluate the sensitivity equations during the iteration of solving for the
state variables. This can reduce the computation time if the state variables require
more iterations than the sensitivity variables. After solving for the state variables in
the corrector iteration, only the diagonal part of J in (4) is left. We can expect that the
convergence of the Newton iteration will be improved over that of using an approximate
iteration matrix in the simultaneous corrector method. This has been observed in our
numerical experiments.

Several approaches have been developed to calculate the sensitivity residuals that
may be used with either the staggered corrector or the simultaneous corrector methods.
Maly and Petzold [24] used a directional derivative finite difference approximation. For
example, the ith sensitivity equation may be approximated as

F(t,x+ §si,a" + sk, p+ die;) — F(t,z, 2", p)
di
where d; is a small scalar quantity, and e; is the 7th unit vector. Proper selection of the

scalar d; is crucial to maintaining acceptable round-off and truncation error levels [24].
If F(t,z,2' p) is already available from the state equations, which is the case in the

=0, (6)

Newton iteration of DASPK, (6) needs only one function evaluation for each sensitivity.
The main drawback of this approach is that it may be inaccurate for badly scaled
problems.

The selection of the increment §; for equation (6) in our current software is an
improvement over the algorithms of [24] which was suggested by Hindmarsh [15]. The
increment is given by

6 = Amax(|pi], 1/]uill2) (7)
where A is a scale factor,
wi = (W™ [WT7 2 j=1,...n,) |

and WT is a vector of weights determined by the relative and absolute user error
tolerances and the solution x,

WT? = RTOL; - |z;| + ATOL,;.

Alternatively, the sensitivity residuals can be evaluated analytically by an automatic
differentiation tool such as ADIFOR [3] or other automatic differentiation (AD) methods.
We recommend using AD to evaluate the sensitivity equations. Even for some well-
scaled problems, the ADIFOR-generated routine has better performance in terms of
efficiency and accuracy than the finite difference approximation.

We have recently developed new software DASPK3.0 [17] for solution and forward-
mode sensitivity analysis of DAE systems based on the above methods. The software
makes use of the basic methods of DASSL [4] for time integration, and includes as
an option the preconditioned iterative methods of DASPK [5] which are needed for
solving large-scale DAE systems. DASPK3.0 provides for consistent initialization of
the solutions and the sensitivities, interfaces seamlessly with automatic differentiation
for the accurate evaluation of the sensitivity equations, and is capable via MPI[9] of
exploiting the natural parallelism of sensitivity analysis as well as providing an effi-
cient solution in sequential computations. The DASPK3.0 software can be found at
http://www.engineering.ucsb.edu/ "cse.



2.2, Reverse Mode

Some problems require the sensitivities of a single or small-dimensional output with
respect to a large number of parameters. For these problems, particularly if the number
of state variables is also large, the forward sensitivity approach is intractable. For a
general DAE (1) and a function given by

T
G@%=A g(p,x,1)di (8)
or alternatively by the scalar function g(p,z,T) at time T', these problems take the
form: find % or g—i, where p is a potentially large number of parameters.

The adjoint problem for (8) is derived as follows. Linearize the DAE (1) with respect
to p to obtain
Fo+ Foxy + Fri, =0, 2,(0) = zq, (9)

where subscripts on functions such as F' or g are used to denote partial derivatives.
Introducing the multiplier A, we get

T
/ N(F, + Fyay + Fsiry)dt = 0 (10)
0

where * denotes the conjugate transpose. Integrating by parts, the last term in the
above integral becomes

/T N Fiddl = (A Fsz,)|T — /T (AF + A*dFi’) z,dl, (11)
0 0 dt
where o ; .
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A bar over a variable indicates that the variable is held fixed for the purpose of the
current differentiation.

Without loss of generality, we can assume that F' depends linearly on z and therefore
the last term in (12) is zero. Indeed, any other case can be reduced to this one by
introducing the additional variables y = z. Note that, in the worst case, the problem

size is increased by rank(F};). So from now on, we calculate )\*dd% by
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we obtain the equation for ‘il—G
p

e

T

which can be written alternatively as

dG T . .
D= o= X E) i+ (X Floroy (17)
Equations (15) are the so called adjoint equations for %. Note that the boundary
condition
(A" Fi)|=r = 0

is applicable only for DAEs with index up to one. In [7], we develop boundary conditions
that are valid also in the index-two (Hessenberg) case.
For % we have

dp’
dg  d dG
dp  dT dp
1)
G = (0= XB)T) = [ XpFydt + 07 sooy (18)
where Ar denotes % The corresponding adjoint equations are
: dF;
Ao Fy + A% [ pTa FQU] = 0. (19)

For DAEs of index up to one, to find the boundary condition for this equation, we
write A as A(¢,7T') because it depends on both ¢ and T'. Then

N (T, T)Fi|s—r = 0.

Taking the total derivative, we obtain

dF;
dt

(e + Ar) (T, T) Filoer + N (T, T) 2 = 0.

Since A; is just /.\, and using the previously derived expression for dF;/dt, we have the
boundary condition

dF;

OiFiler = = [rr G2 4 i .
di 7
According to equation (15), the upper condition is
(AT F2)|i=1 = (g — A" F2)|i=T. (21)

In the case that F} is invertible, we have A(T,T) = 0, which leads to Ay = =Y

Boundary conditions for the index-two (Hessenberg) case are derived in [7].

We have been developing software called ADJOINTDASPK for the reverse mode sen-
sitivity problem. Our goal for the adjoint sensitivity calculation has been algorithms
and software that are as reliable, efficient, and easy to use as the current algorithms
and software for forward sensitivity analysis. An efficient formulation of the adjoint



equations can be generated by the current generation of automatic differentiation soft-
ware. For example, TAMC [11] and ADIFOR3.0 [16] implement the forward and reverse
modes that are needed for this task. ADJOINTDASPK makes use of the reliable and
efficient methods in DASPK 3.0 for solving the adjoint equations, and for determining a
consistent set of initial conditions.

Several research issues are under investigation. For large-scale problems whose solu-
tion and forward sensitivities are best computed in DASPK via preconditioned iterative
methods, we need to ensure that these same ‘matrix-free’ methods and corresponding
preconditioners are accessible for the solution of the adjoint equations. Predictable
and compact means of storing the forward solution information required by the adjoint
computation are needed. We have been investigating the use of reduced order models
both for storing the forward solution information and for highly efficient sensitivity so-
lution in applications where repeated forward and reverse sensitivity solves are required.
Determination of consistent initial conditions for the adjoint system for general DAE
systems is also an issue that is in progress.

3. Design Optimization

We consider the differential-algebraic equation (DAE) system

F(t,x,x",p,u(t)) = 0
x(t1,r) = xi(r) (22)

where the DAE is index one (see [4] or [1]) or Hessenberg index-two Hessenberg, and the
initial conditions have been chosen so that they are consistent (so that the constraints
of the DAE are satisfied). The control parameters p and the vector-valued control
function u(?) must be determined such that the objective functional

tma.x
/ U(t,x(t),p,u(t))dt  is minimized

t1

and some additional equality and/or inequality constraints
G(t, x(1), p,u(t)) > 0

are satisfied. The optimal control function u*(¢) is assumed to be continuous. In
several of our applications, the DAE system is large-scale. Thus, the dimension N, of x
is large. However, the dimension of the control parameters and of the representation of
the control function u(¢) is much smaller. To represent u(t) in a low-dimensional vector
space, we use piecewise polynomials on [t1, {max|, their coefficients being determined by
the optimization. For ease of presentation we can therefore assume that the vector p
contains both the parameters and these coefficients (we let M denote the combined
number of these values) and discard the control function u(t) in the remainder of this
section. Also, we consider that the initial states are fixed and therefore discard the
dependency of x; on r. Hence we consider

F(t,x,x',p) =0, x(11) = %, (23)
tmax

/ p(t,x(1),p)dt is minimized, (24)
31

g(t,x(t),p) > 0. (25)



There are a number of well-known methods for direct discretization of this optimal
control problem, for the case that the DAEs can be reduced to ordinary differential
equations (ODEs) in standard form. The single shooting method solves the ODEs
(23) over the interval [t1,{max], with the set of controls generated at each iteration
by the optimization algorithm. However, it is well-known that single shooting can
suffer from a lack of stability and robustness [2]. Moreover, for this method it is more
difficult to maintain additional constraints and to ensure that the iterates are physical
or computable. The finite-difference method or collocation method discretizes the ODEs
over the interval [{1,¢max] with the ODE solutions at each discrete time and the set
of controls generated at each iteration by the optimization algorithm. Although this
method is more robust and stable than the single shooting method, it requires the
solution of an optimization problem which for a large-scale ODE system is enormous,
and it does not allow for the use of adaptive ODE or (in the case that the ODE system
is the result of semi-discretization of PDEs) PDE software.

We thus consider the multiple-shooting method for the discretization of the optimal
control problem. In this method, the time interval [{1,{yay] is divided into subinter-
vals [titg, titzt1] (itz = 1,..., Nyz), and the differential equations (23) are solved over
each subinterval, where additional intermediate variables X;;, are introduced. On each
subinterval we denote the solution at time ¢ of (23) with initial value X, at ¢; by
X(t7 Litey Xtz P)-

Continuity between subintervals is achieved via the continuity constraints

C?I(Xith’Xitr, p) = Xitr+1 - X(titr+17titx7Xitx7 P) =0.

For the DAE solution to be defined on each multiple shooting subinterval, it must be
provided with a set of initial values which are consistent (that is, the initial values
must satisfy any algebraic constraints in the DAE). This is the case even for feasible
methods, since the optimizer does not see the DAE constraints. To begin each interval
with a consistent set of initial values, we first project the intermediate solution gener-
ated by SNOPT onto the DAE constraints, and then solve the DAE system over the
subinterval. In the case of index-1 problems with well-defined algebraic variables and
constraints such as the problem considered in this paper, this means that we perturb
the intermediate initial values of the algebraic variables so that they satisfy the DAE
constraints at the beginning of each multiple shooting subinterval.

The additional constraints (25) are required to be satisfied at the boundaries of the
shooting intervals

CZQtI(Xitl‘7p) = g(tm,Xm,p) > 0.

Following common practice, we write

o) = [ vlrx(r).p)dr, (26)

which satisfies ®'(t) = ¢ (¢,x(t),p), ®(t1) = 0. This introduces another equation and
variable into the differential system (23). The discretized optimal control problem

becomes
i D (tmax 27
o, ) )
subject to the constraints
CitI(Xitl‘—|—17 Xil‘l‘) p) = 07 (28)

Cy*(Xiw:p) = 0. (29)



This problem can be solved by an optimization code. We use the solver SNOPT
[13], which incorporates a sequential quadratic programming (SQP) method (see [14]).
The SQP methods require a gradient and Jacobian matrix that are the derivatives
of the objective function and constraints with respect to the optimization variables.
We compute these derivatives via our differential-algebraic equation (DAE) sensitivity
software DASPK3.0 described earlier. Our algorithms and software for the optimal
control of dynamical systems are described in detail in [29].

This basic multiple-shooting type of strategy can work very well for small-to-moderate
size ODE systems, and has an additional advantage that it is inherently parallel. How-
ever, for large-scale ODE and DAE systems there is a problem because the computa-
tional complexity grows rapidly with the dimension of the ODE system. The difficulty
lies in the computation of the derivatives of the continuity constraints with respect to
the variables X;;;. The work to compute the derivative matrix 9x(t)/0X;s, is of order
O(N?), and for the problems under consideration N, can be very large (for example,
for an ODE system obtained from the semi-discretization of a PDE system, NV, is the
product of the number of PDEs and the number of spatial grid points). In contrast,
the computational work for the single shooting method is of order O(N,N,) although
the method is not as stable, robust or parallelizable.

We reduce the computational complexity of the multiple shooting method for this
type of problem by modifying the method to make use of the structure of the continuity
constraints to reduce the number of sensitivity solutions which are needed to compute
the derivatives[12]. To do this, we recast the continuity constraints in a form where
only the matrix-vector products (0x(t)/0X;,)W; are needed, rather than the entire
matrix 0x(t)/0X;t. The matrix-vector products are directional derivatives; each can
be computed via a single sensitivity analysis. The number of vectors w; such that the
directional sensitivities are needed is small, of order O(N,). Thus the complexity of
the modified multiple shooting computation is reduced to O(N,N,), roughly the same
as that of single shooting. Unfortunately, the reduction in computational complexity
comes at a price: the stability of the modified multiple shooting algorithm suffers from
the same limitations as single shooting. However, for many DAFE and partial differential
algebraic equation (PDAE) systems, where simulation of the forward problem is stable,
this is not an issue, and the modified method is more robust for nonlinear problems.
The inherent parallelism of the multiple shooting algorithm is also lost by the modified
method.

In the context of the SQP method, the use of modified multiple shooting involves a
transformation of the constraint Jacobian. The affected rows are those associated with
the continuity constraints and any path constraints applied within the shooting inter-
vals. Path constraints enforced at the shooting points (and other constraints involving
only discretized states) are not transformed. The transformation is cast almost entirely
at the user level and requires minimal changes to the optimization software, which is
important because software in this area is constantly being modified and improved. Gill
et.al. ([12]) have shown that the modified quadratic subproblem yields a descent direc-
tion for the ¢; penalty function. DAOPT is a modification to the SNOPT optimization
code that uses a merit function based on an /; penalty function.

A limitation of the basic COOPT software arises for PDAE systems because the
method of lines is used to solve the PDAE. This does not allow for an adaptive grid
in space, which would be needed if there are steep spatial gradients moving in time.
We have developed methods and software based on adaptive mesh refinement (AMR)
for systems of partial differential equations[18]. The software has been designed to be



flexible, to allow the user to ‘plug and play’ existing non-adaptive simulation software,
and to exert direct control over the adaptivity when needed. Recently we have shown
how to compute sensitivity derivatives via AMR [19], and developed a capability for
doing dynamic optimization including AMR for time-dependent PDE systems|21].

4. Partitioning for Structure and Stability

An important issue for shooting or multiple shooting-type methods in design op-
timization is the handling of constraints[27]. Given an equality constraint, it can be
included in the dynamic optimization problem either as part of the DAE, or to be
handled directly by the optimizer. If it is included as part of the DAE, then there is a
possibility that it could alter the index (mathematical structure) of the DAE, making
it potentially more difficult to solve; on the other hand, if it is an important physical
constraint, then its inclusion into the DAE where it will always be enforced should help
the optimizer to avoid non-physical solutions.

In our work, this question has been studied from the point of view of mathematical
structure (index), and stability/conditioning of the DAE. It turns out that including
some constraints with the DAE can alter the DAE stability, in a way which may be
either favorable or unfavorable. Algorithms have been developed for partitioning the
constraints to lead to a stable DAE system of index two or lower (which can be solved
by the existing software). The logarithmic norm, which is closely related to the pseu-
doeigenvalues, is used to measure the stability for potential partitionings. We have
developed a partitioning tool for analyzing the DAE structure and determining a stable
partitioning of the constraints.

The dilemma of how best to treat the constraints arises often in the dynamic op-
timization of path-constrained dynamics systems. For example, a planar rigid body
model of a crane manipulating a payload which must be lifted along a specified trajec-
tory, is described below [6].

4.1.  Fzample: Planar Model of a Crane

The crane is a mechanical system in planar Cartesian co-ordinates, x and z, denoting
the horizontal and vertical positions of the payload. The other state variables are d,
the horizontal distance traveled by the crane trolley from the origin and r, the paid out
cable length. The equations are

Myi = —7sin() (30a)
Myz = —7cos(0) + mg (30b)
Mid = —Cid+u +7 sin(6) (30c¢)
Ji = —Cor — Csuy + C37 (30d)
0 = 0—tan"'((z —d)/2) (30e)

0 = r—(z—d)?-2* (30f)

v = &) (30g)

z = ¢ot) (30h)

where M7, M3, m are the masses of the trolley, cable and payload system and the
payload alone, respectively. Cy, Cy, (3 are constants, and .J is the mass moment of
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Figure 1: Planar Crane Model

inertia for the pulley paying out the cable. The algebraic variables are 7, the tension in
the cable and 6, the cable angle with vertical. The horizontal force driving the trolley
(u1) and torque driving the pulley in the winch (ug) are the two control variables.
Equations (30g) and (30h) describe the specified path of the payload. The initial
values were taken to be = 3.0,z = 2.7,z = 21.0,z = —2.0,d = 1.0,d = 2.7,r =
((x —d)* +2%)% 7 = —=2.0,7 = 980.0,u; = 0,uy = 0,6 = tan™! (wz;d)), on the interval
of integration from {5 = 0 to tgna = 8.

The path-constrained crane model 30 is an index-5 system. Thus it is not directly
solvable by any of the methods described earlier.

Figure (2) illustrates the error ([ ||[r? — (z — d)? — 2%)||,dt) in simulating the
planar crane problem with an index 1 partitioned DAE (pDAE) consisting of (30a -
30e) only and excluding equation (30f).

While the physical constraints inherently should be included with the pDAE, they
can raise the index of the pDAE to higher than 2. As an example, equation (30f) in the
crane example when included in the pDAE (30a - 30e) raises the index of the system
to 3. When these constraints raise the index of the pDAE to higher than 2, a suitable
index reduction method can be adopted.

For the crane model, constraints (30e) and (30f) are both scleronomic constraints,
i.e., they describe some geometric structure of the physical problem. Constraint (30e)
introduces the measurement of 6, the angle by which the payload deviates from the
vertical. Constraint (30f) connects the payload to the pulley, by relating its horizontal
and vertical positions to the length of the cable paid out. Violation of constraint (30f)
in the pDAE would produce an unphysical simulation since the payload is now modeled
as detached from the cable. This is evident from the plot of z, z, d and r in Figure (5).

Applying our partitioning algorithm to this model, constraint (30e) is included in
the pDAE since it satisfies the index one structure and stability criterion. The angle
of deflection from vertical 6 is chosen as the index 1 variable. The resulting underlying
ODE in z does not have large eigenvalues in C* at ¢ = t5. For a practical physical
application, the eigenvalues of the pDAE system can be expected to be of moderate
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Figure 2: Partial plot of errors neglecting scleronomic constraint

size and the system can be expected to be stable. The constraint equation (30f) is an
index 3 scleronomic constraint (known from the physics of the problem) and is reduced
to its index 2 form via one differentiation of constraint (30f) with respect to ¢

ri—(z—d)(& —d)—z2=0 (31)

or to index 1 via two differentiations of constraint (30f) with respect to ¢. (if the
available DAE integration software can integrate index 0 or 1 systems only). The other
constraints (pre-programmed trajectory of the payload) (30g and 30h) are handled by
the SQP method.

The search for index 2 constraints returns the empty set. To search for index
3 scleronomic constraints, the remaining algebraic equations are differentiated using
automatic differentiation once with respect to time. The index-2 search algorithm is
re-applied and the algorithm returns the differentiated form of constraint (30f), i. e.,
(31) as an index-2 constraint suitable for inclusion in the pDAE system. The tension
in the cable 7 is returned as the corresponding index 2 variable.

Even though the scleronomic constraint (31) slightly raises the logarithmic norm
estimate for the index 2 pDAE system thus constructed, this partition leads to a more
physical and well conditioned problem. The plots in Figures (3) and (4) are the results
obtained from a multiple shooting type scheme using DASPK3.0 [17] as the DAE inte-
grator and SNOPT as the NLP method [26]. In this case the path constraints are chosen
as p =z — (—0.0675¢* + 2.7t +3.0) = 0 and p, = z — (—21.0 — 0.05¢* 4+ 2.0¢) = 0. The
optimizer SNOPT stops at an acceptable point which cannot be improved further after
4 major iterations (with 188, 182, 112 and 1 minor iterations). The objective function
is given by the error integral ftgi”“l (p} + p3)°?dt. The time interval is 0 < ¢ < 8. The
controls (u; and uy) have been modeled as quadratic polynomials over each of the 8
shooting intervals used for the problem. The tolerances for DASPK3.0 were rtol = 10~7
and atol = 10~7 and all tolerances for SNOPT were 10=°. The control and state conti-
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Figure 3: Crane problem using equations (30a)-(30e) and (31) in the pDAE.

crane example: controls
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Figure 4: Crane controls using equations (30a)-(30e) and (31) in the pDAE.
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Figure 5: Crane problem using equations (30a)-(30e) in the pDAE.

nuity constraints across the shooting intervals have been satisfied to less than or equal
to 0.1 when the optimizer has stopped.

With the same parameter settings for the numerical methods, a pDAE formulation
leaving (30f) with the optimizer as a path constraint and treating 7 as an additional
control variable has been attempted. The plot in Figure (5) is obtained from the results.
The solution is incorrect. After 7 major iterations in SNOPT (162, 50, 72, 8, 1, 9 and 22
minor iterations), the optimizer fails to find a descent direction. Clearly the stopping
point is an unacceptable solution to the physical problem. Many of the continuity
constraints in the multiple shooting method are unacceptably violated.
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