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Abstract

We report on our progress in developing a problem-solving environment for simulation, sensitivity analysis and
dynamic optimization of partial differential-algebraic equation (PDAE) systems. The basic mathematical approach
is outlined, along with research issues ranging from the use of problem structure to obtain efficiency and the
need for tools to provide advice and diagnostic information on problem formulation, to user interface and revision
management. Results and experiences with several challenging engineering applications are described.
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1 Mathematical Approach and Computational Challenges
We consider the differential-algebraic equation (DAE) system

F(t7 X7xl7p7u(t)) = 0
(1) X(t1,r) = Xu(r)

where the DAE is index one (see [4] or [1]) and the initial conditions have been chosen so that they are consistent (so
that the constraints of the DAE are satisfied). The control parameters p and the vector-valued control function u(t)
must be determined such that the objective function

tmax
/ U(t,x(t),p,u(t))dt is minimized
t1

and some additional inequality constraints
G(t,x(t),p,u(t)) >0
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are satisfied. The optimal control function u*(t) is assumed to be continuous. In several of our applications, the
DAE system is large-scale. Thus, the dimension N, of x is large. However, the dimension of the control parameters
and of the representation of the control function u(t) is much smaller. To represent u(¢) in a low-dimensional vector
space, we use piecewise polynomials on [t1,tmax], their coefficients being determined by the optimization. For ease of
presentation we can therefore assume that the vector p contains both the parameters and these coefficients (we let M
denote the combined number of these values) and discard the control function u(t) in the remainder of this section.
Also, we consider that the initial states are fixed and therefore discard the dependency of x; on r. Hence we consider

(2) F(t7X7 xl7p) = 07 X(tl) = X1,
tmax
(3) Y(t,x(t), p) dt is minimized,
t1
(4) g(t,x(t),p) > 0.

There are a number of well-known methods for direct discretization of this optimal control problem, for the case
that the DAEs can be reduced to ordinary differential equations (ODEs) in standard form. The single shooting method
solves the ODEs (2) over the interval [t1, tmax], with the set of controls generated at each iteration by the optimization
algorithm. However, it is well-known that single shooting can suffer from a lack of stability and robustness [2].
Moreover, for this method it is more difficult to maintain additional constraints and to ensure that the iterates are
physical or computable. The finite-difference method or collocation method discretizes the ODEs over the interval
[t1, tmax] With the ODE solutions at each discrete time and the set of controls generated at each iteration by the
optimization algorithm. Although this method is more robust and stable than the single shooting method, it requires
the solution of an optimization problem which for a large-scale ODE system is enormous, and it does not allow for the
use of adaptive ODE or (in the case that the ODE system is the result of semi-discretization of PDEs) PDE software.

We thus consider the multiple-shooting method for the discretization of the optimal control problem. In this method,
the time interval [t1, tmax] is divided into subintervals [t;z, titz+1] (itx = 1,..., Ny, ), and the differential equations (2)
are solved over each subinterval, where additional intermediate variables X;;, are introduced. On each subinterval we
denote the solution at time ¢ of (2) with initial value X;¢, at iz, by x(¢, tite, Xitz, P)-

Continuity between subintervals is achieved via the continuity constraints

Ci* (Xitzt1, Xitz, P) = Xitw+1 — X(titat1, titz, Xitz, P) = 0.

For the DAE solution to be defined on each multiple shooting subinterval, it must be provided with a set of initial
values which are consistent (that is, the initial values must satisfy any algebraic constraints in the DAE). This is not
generally the case with initial values provided by methods like SQP because these methods are not feasible (in other
words, intermediate solutions generated by the optimizer do not necessarily satisfy constraints in the optimization
problem although the final solution does). To begin each interval with a consistent set of initial values, we first
project the intermediate solution generated by SNOPT onto the constraints, and then solve the DAE system over the
subinterval. In the case of index-1 problems with well-defined algebraic variables and constraints such as the problem
considered in this paper, this means that we perturb the intermediate initial values of the algebraic variables so that
they satisfy the constraints at the beginning of each multiple shooting subinterval.
The additional constraints (4) are required to be satisfied at the boundaries of the shooting intervals

C;tw (Xlt.’mp) = g(titwa Xit:wp) 2 0.
Following common practice, we write

(5) o(t) = ) (7, x(7), p) dr,

which satisfies ®'(t) = ¢¥(¢,x(¢t),p), ®(t1) = 0. This introduces another equation and variable into the differential
system (2). The discretized optimal control problem becomes

(6) x, mn  B(tmax)

subject to the constraints

(7) Citm (Xitw-i-l: Xita:: p)
(8) CY* (Xitz,p) > 0.

Il
k=)
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Figure 1: COOPT flow chart.

This problem can be solved by an optimization code. We use the solver SNOPT [6], which incorporates a sequential
quadratic programming (SQP) method (see [7]). The SQP methods require a gradient and Jacobian matrix that
are the derivatives of the objective function and constraints with respect to the optimization variables. We compute
these derivatives via differential-algebraic equation (DAE) sensitivity software DASPK3.0 [8]. Further details on the
sensitivity analysis will be given in the lecture. The sensitivity equations to be solved by DASPK3.0 are generated
via the automatic differentiation software ADIFOR [3]. Our basic algorithms and software for the optimal control of
dynamical systems are described in detail in [15].

This basic multiple-shooting type of strategy can work very well for small-to-moderate size ODE systems, and
has an additional advantage that it is inherently parallel. However, for large-scale ODE and DAE systems there is a
problem because the computational complexity grows rapidly with the dimension of the ODE system. The difficulty
lies in the computation of the derivatives of the continuity constraints with respect to the variables X;;,. The work to
compute the derivative matrix 0x(t)/0Xt, is of order O(N2), and for the problems under consideration N, can be
very large (for example, for an ODE system obtained from the semi-discretization of a PDE system, N, is the product
of the number of PDEs and the number of spatial grid points). In contrast, the computational work for the single
shooting method is of order O(N,N,) although the method is not as stable, robust or parallelizable.

We reduce the computational complexity of the multiple shooting method for this type of problem by modifying the
method to make use of the structure of the continuity constraints to reduce the number of sensitivity solutions which are
needed to compute the derivatives[5]. To do this, we recast the continuity constraints in a form where only the matrix-
vector products (0x(t)/0Xiy)W; are needed, rather than the entire matrix 0x(t)/0X;s,;. The matrix-vector products
are directional derivatives; each can be computed via a single sensitivity analysis. The number of vectors w; such that
the directional sensitivities are needed is small, of order O(N,). Thus the complexity of the modified multiple shooting
computation is reduced to O(N,N,), roughly the same as that of single shooting. Unfortunately, the reduction in
computational complexity comes at a price: the stability of the modified multiple shooting algorithm suffers from the
same limitations as single shooting. However, for many DAE and PDE systems including the application described
here, this is not an issue, and the modified method is more robust for nonlinear problems.

In the context of the SQP method, the use of modified multiple shooting involves a transformation of the constraint
Jacobian. The affected rows are those associated with the continuity constraints and any path constraints applied
within the shooting intervals. Path constraints enforced at the shooting points (and other constraints involving only
discretized states) are not transformed. The transformation is cast almost entirely at the user level and requires
minimal changes to the optimization software, which is important because software in this area is constantly being
modified and improved. Gill et.al. ([5]) have shown that the modified quadratic subproblem yields a descent direction
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Figure 2: JMPL flow chart.

for the /; penalty function. DAOPT is a modification to the SNOPT optimization code that uses a merit function based
on an {1 penalty function.

An important issue for this type of method is the handling of constraints[13]. In particular, given an equality
constraint, it can be included in the dynamic optimization problem either as part of the DAE, or to be handled
directly by the optimizer. If it is included as part of the DAE, then there is a possibility that it could alter the
index (mathematical structure) of the DAE, making it potentially more difficult to solve; on the other hand, if it
is an important physical constraint, then its inclusion into the DAE where it will always be enforced should help
the optimizer to avoid non-physical solutions. In our work, this question has been studied from the point of view of
mathematical structure (index), and stability /conditioning of the DAE. It turns out that including some constraints
with the DAE can alter the DAE stability, in a way which may be either favorable or unfavorable. Algorithms have
been developed for partitioning the constraints to lead to a stable DAE system of index two or lower (which can be
solved by the existing software). The logarithmic norm, which is closely related to the pseudoeigenvalues, is used to
measure the stability for potential partitionings.

A limitation of the basic COOPT software arises because the method of lines is used to solve the PDAE. This does
not allow for an adaptive grid in space, which would be needed if there are steep spatial gradients moving in time. We
have developed methods and software based on adaptive mesh refinement (AMR) for systems of partial differential
equations[9]. The software has been designed to be flexible, to allow the user to ‘plug and play’ existing non-adaptive
simulation software, and to exert direct control over the adaptivity when needed. Recently we have shown how to
compute sensitivity derivatives via AMR [10], and developed a capability for doing dynamic optimization including
AMR for the time-dependent PDE systems. The structure of COOPTam, the extended COOPT software with adaptive
mesh capabilities, is presented in Fig. 1.

2 User Interface and Revision Management

Software such as that described for dynamic optimization with adaptive solution of the DAE or PDAE has reached
a level of complexity such that it is not a simple matter for the engineer or scientist to input a complete description
of the problem. At the same time, we have come to expect that software in general should be natural and easy to
use, for example via a graphic user interface (GUI). It is possible to develop a GUI which for example is specific to
the COOPT software, but there are some problems. (1) The underlying software, including the problem specification,
is constantly changing as new algorithms and capabilities are developed. (2) The user community is quite diverse,
as evidenced from some of the scientific and engineering applications described later. Problems from widely different
areas have different requirements for the specification and even for the vocabulary that need to be addressed in the
interface.

We are addressing this problem by creating an environment which would allow developers of numeric and scientific
software to quickly, easily and in a semi-automatic fashion create matching Java front ends for their programs. The
project, which is called JMPL (Java math package launcher), is envisioned as a continuing publication environment
- as new versions of the numeric software become available, JMPL should assist both the publisher in creating new
front ends from old and the end user in importing old problem sets into the new software. Revision management
presents some of the most interesting and challenging research problems. The project has focussed so far on two main
areas of JMPL development. ’SIFT’ - structured interface format, will analyze and discover program structure, and
‘Composer’ will construct a Java Gui interface from the structural information (Fig. 2).
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Figure 3: Stagnation-flow reactor. Metalorganic precursors enter a heated plenum and mixing chamber at the top of
the reactor. A stagnation-flow region is established between a showerhead manifold and a heated wafer surface. The
exhaust gases are pumped out the bottom of the reactor chamber

Figure 4: Transfer trajectory from Earth to the Halo Orbit around the Lagrange point L; ot the Sun-Earth system.
Maneuvers take place at times T;,i = 1,2, ..., n.

3 Application Examples

3.1 Dynamic Optimization of Chemical Vapor Deposition Processes
in Stagnation Flow Reactors

In this application[14] we are performing dynamic optimization for the optimal control of transient phenomena in
chemical-vapor-deposition (CVD) processes. The algorithm is demonstrated for a stagnation-flow type reactor con-
figuration. The equations describing chemically reacting stagnation flows are written in a transient compressible
similarity form. After discretizing the spatial derivatives on a finite-volume mesh, the system becomes a set of
differential-algebraic equations (DAEs). The DAEs constitute the model system for the dynamic optimization algo-
rithm. The example demonstrates the use of dynamic optimization in the control of film stoichiometry during imposed
transients in the CVD of multicomponent films. Time-varying trajectories of precursor composition at the reactor
inlet are computed by the algorithm, so that correct flux ratios of yttrium, barium, and copper atoms to the surface
are maintained during deposition of Yttrium-Barium-Copper-Oxide (YBCO) superconducting thin films.

3.2 Trajectory Planning for Halo Orbit Insertion

In this second application, we are applying dynamic optimization techniques to the problem of trajectory planning
and orbit insertion in the circular restricted three-body problem (CR3BP). The algorithm is employed to design a
continous trajectory from the Earth-Moon system to the periodic halo orbit around the libration point £ of the
Sun-Earth system[11]. This results in an impulsive optimal control problem which is cast as a parameter optimization
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problem. The underlying dynamic model consists of an ODE system of dimension 6 - n s, where ny, is the number of
maneuvers (bursts) along the trajectory (Fig. 4). We minimize the fuel consumption, expressed as a function of the
sizes of the maneuvers (in m/s) by selecting optimal values for the maneuver times and magnitudes[12].

The goal of this work was to decide whether optimal fuel cost solutions exist for different optimal problem con-
straints, such as different delays in the first maneuver (M 1) and different perturbations in the launching velocity.
For all combinations explored (1 day < TM1 < 5 days and—7m/s < €,, < 7m/s) the dynamic optimization algorithm
found optimal trajectories that minimize fuel consumption with a minimal number of maneuvers. The dependency of
the optimal solutions on these parameters was also confirmed by evaluating its sensitivities with respect to changes in
the constraint levels. Current research focuses on moving the insertion point from the halo orbit to the stable manifold
originating on the halo orbit.
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