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Numerical solution of differential-algebraic equations 
in mechanical systems simulation 
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The numerical solution of the differential-algebraic equations of motion of mechanical systems offers many com- 
putational challenges. In this paper we describe progress which has been made in understanding the formulation of 
the equations of motion from the viewpoint of numerical stability, and outline some of the difficulties which must be 
resolved for efficient and reliable numerical methods in real-time simulation of mechanical systems. 

1. Introduction 

In recent years much activity has been de- 
voted to the development of numerical meth- 
ods and underlying theory for the solution of  
differential-algebraic equation (DAE) systems. 
These types of  systems occur frequently as ini- 
tial value problems in the computer-aided de- 
sign and modeling of  mechanical systems sub- 
ject to constraints, electrical networks, chemi- 
cally reacting systems such as distillation, flow 
of  incompressible fluids, and in many other ap- 
plications. Differential-algebraic systems, which 
in general can take the form F ( t , y , y ' )  = O, 
are different from standard-form ODE systems 
y' = f ( t , y )  in that, while they include ODE 
systems as a special case, they also include prob- 
lems which are quite different from ODEs. 

In a sense, the more singular a DAE system 
is, the more difficult it is to solve numerically. 
The index of  a system is a measure of  the de- 
gree of  singularity of  the system. Roughly speak- 
ing, ODE systems y '  = f ( t , y )  are index-zero, 
differential equations coupled with algebraic 
constraints, y '  = f ( y , z ) ,  0 = g ( y , z ) ,  where 
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Og/Oz  is nonsingular, are index-one, and dif- 
ferential equations coupled with algebraic con- 
straints where z cannot be solved for uniquely in 
g as a function o f y  are of  index higher than one. 
The index can be defined also for systems which 
are not expressed in the semi-explicit form of  
differential equations coupled with algebraic 
constraints. Additional difficulties can occur for 
these systems because the singularity may be 
moving from one part of  the system to another. 

Much progress has been made on understand- 
ing the underlying structure and numerical so- 
lution of  DAE systems. Fundamental concepts 
such as index and solvability have been ex- 
tended to classes of  DAEs describing a broad 
range of  scientific and engineering problems. 
Convergence results have been given for nu- 
merical methods such as multistep and Runge- 
Kutta applied to several important classes of  
DAEs. Production-level computer codes such as 
DASSL [7 ] have been employed extensively for 
the solution of  (index-one) engineering prob- 
lems. Much of this work is described in the 
recent monographs [ 7,21,22 ]. 

There is much still that needs to be done for 
the effective solution of  certain classes of  DAEs. 
In this paper we will focus on the algorithms and 
analysis which are needed for the effective real- 
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time simulation of mechanical systems. Real- 
time simulation of mechanical systems is needed 
in robotics, as well as in the design and simu- 
lation of vehicles, including automobiles, high- 
speed trains, tanks and construction equipment. 

The modeling of multibody systems gives rise 
to Euler-Lagrange equations. Any effective nu- 
merical method for these systems must be very 
fast and extremely robust because the systems 
must often be solved repetitively by design engi- 
neers who do not have time to develop a work- 
ing knowledge of complex computer software or 
numerical methods. For some important appli- 
cations such as vehicle simulation and design, 
the systems must be solved in real-time. 

Euler-Lagrange equations are usually posed 
initially in the form of a system of differen- 
tial equations (Newton's laws of motion) cou- 
pled with nonlinear constraints which are en- 
forced via a Lag, range multiplier. Direct dis- 
cretization of this index-three system yields 
numerical methods which are often not very 
robust because of well-known [7] difficulties 
with error estimation and stepsize control, as 
well as severe ill-conditioning of linear systems 
at each time step and other problems. A wide 
variety of reformulations of the problem and 
associated numerical methods have been sug- 
gested in an attempt to find a system of equa- 
tions describing the system which can be effec- 
tively solved numerically. However, each has 
some apparent disadvantage in terms of speed 
and/or robustness. Because the constraints are 
sometimes highly nonlinear and have a strong 
physical relevance, it is generally considered 
important that the constraints, and sometimes 
the time derivative of the constraints, be sat- 
isfied very accurately. In addition, there are 
other potential difficulties: the constraints can 
become rank-deficient or nearly rank-deficient, 
the solution may have components which are 
oscillating at a high frequency, and there is the 
possibility of frequent discontinuities which are 
especially troublesome because the solution of 
a high-index DAE can be less continuous than 

its input. Real-time simulation imposes severe 
requirements on the solution method. The solu- 
tion must be computed extremely rapidly, ne- 
cessitating the use of massively parallel com- 
puters. The challenge for multibody systems 
is to develop a problem formulation and asso- 
ciated class of numerical methods which pre- 
serves the stability of the system, ensures that 
the constraints are satisfied, adapts to possibly 
rapid or discontinuous changes in the solution 
and to nearly rank-deficient constraints, and 
accomplishes this task in an absolute minimum 
of computer time and extremely reliably. In sec- 
tion 2 we will outline some recent results on the 
stable formulation of the equations of motion 
for numerical solution, and in section 3 we will 
outline some of the computational challenges 
for efficient and reliable numerical methods. 

2. Stable formulations of the equations of motion 

In this section we will be concerned with for- 
mulations and numerical methods for the Euler- 
Lag, range equations of constrained mechanical 
motion. These are systems of the form 

M ( t , p ) ~  = f ( t , p , v )  - G(t,p)T2, (la) 

0 = g ( t , p ) ,  (lb) 

where the positions and velocities satisfy p, v 
Rn,, and M ( p )  is a np× np regular (symmetric 
positive definite) mass matrix, f is a vector of 
applied forces, and 2 represents the n~ Lag, range 
multipliers or constraint forces coupled to the 
system by the nt x n~ constraint matrix G := 
a g/ap.  These types of systems arise frequently 
in the modeling of multibody systems [23 ], for 
example in vehicle simulation, computer-aided 
design of mechanical systems, and modeling of 
robotic manipulators. 

Thc Euler-Lagrange system ( 1 ) poses difficul- 
ties for numerical methods in part because it is 
index-three. In particular, direct discretization 
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of (1) yields numerical methods which are of- 
ten not very robust because of the well-known 
[ 7 ] difficulties for higher-index systems with er- 
ror estimation and stepsize control, as well as se- 
vere ill-conditioning of the linear systems at each 
time step, and a variety of other problems. In ad- 
dition, for some problems the constraints can be 
poorly conditioned; in these cases methods ap- 
plied to ( 1 ) and to some of its reformulations 
can behave numerically as ff they were solving a 
problem for which the index is even higher. 

To overcome the problems inherent in the di- 
rect numerical solution of the index-three form 
of the Euler-Lagrange equations, quite a number 
of reformulations of (1) have been suggested; 
some are in use in multibody codes [37]. Many 
of these formulations of the equations are based 
on differentiation of the constraints. The con- 
straints 

much easier to solve numerically, but now the 
solution can drift away from both the position 
and velocity constraints; the drift away from the 
position constraint can be quite significant. 

Various formulations and solution proce- 
dures have been proposed to deal with or elimi- 
nate the problem of drift. Gear and others [ 18 ] 
have suggested that instead of replacing the po- 
sition constraint with the velocity constraint, 
both constraints could be explicitly enforced 
by means of an additional Lagrange multiplier. 
This leads to a system of the form 

i~ = v - GT (t,p) /z, (3a) 

M(t ,p) (J  = f ( t , p , v )  - G T ( t , p ) 2 ,  (3b) 

0 = g ( p ) ,  (3c) 

0 = G ( p ) v .  (3d) 

0 = g ( p ) ,  (2a) 

0 = G ( p )  v ,  

O= G(p)iJ + vTGj,(p)v 

=: G(p)i~ + z ( p , v )  

(2b) 

(2c) 

are called the position, velocity, and accelera- 
tion-level constraints, respectively. An index- 
two problem can be formed, for example, by 
replacing the position constraint in ( 1 ) with the 
velocity constraint. The resulting problem has, 
with appropriate initial conditions, the same 
solutions as ( 1 ) and is somewhat easier to solve 
numerically. However, the solutions can drift 
away from satisfying the position constraints be- 
cause of numerical errors at each time step. This 
drift is often considered unacceptable in engi- 
neering problems because of the strong physical 
relevance of the position constraints (these are 
often holding components together), and be- 
cause of their sometimes severe nonlinearity. An 
index-one problem can be formed by replacing 
the position constraint in ( 1 ) with the accelera- 
tion constraint. The resulting system is generally 

The resulting problem is index-two. There is a 
similar formulation which enforces additionally 
the acceleration constraint by means of yet an- 
other Lagrange multiplier. These types of sys- 
tems are generally called stabilized formulations 
of the Euler-Lagrange equations (as opposed 
to the unstabilized forms discussed earlier for 
which there may be drift). Although the stabi- 
lized formulations quite cleverly eliminate the 
drift problems, we have unfortunately found in 
recent numerical experiments that most ODE 
methods (including BDF and most implicit 
Runge-Kutta) applied to these equations may 
become very inefficient in certain situations, for 
example if the system is heterogeneous (includes 
components with widely disparate masses) or 
the constraints are poorly conditioned. 

Eq. (1) has m = n p - n ~  degrees of free- 
dom. Using the constraints, we can reduce (1) 
locally to a system of m ODEs called a state-space 
form. The choice of coordinates is not unique; 
Haug and Wehage [43] use Cartesian coordi- 
nates. The resulting method is called generalized 
coordinate partitioning, and is the basis of the 
code DADS [ 37 ]. Potra and Rheinboldt [ 33,34 ] 
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suggest a different local parameterization. For 
the purposes of analysis, we will propose to de- 
fine an essential underlying ODE, which is a cer- 
tain class of state-space forms. By its construc- 
tion, the original constraints are satisfied by a 
state-space form. The same set of  coordinates 
may not work over an entire problem; thus the 
coordinates must be chosen adaptively. 

Still another possible method for solving the 
Euler-Lagrange equations consists of  append- 
ing the velocity and acceleration constraints to 
( 1 ). The resulting system is called an overdeter- 
mined DAE (ODAE), and has been investigated 
by Fiihrer [ 13 ] and Leimkuhler [ 14 ], and oth- 
ers [31 ]. The ODAE is discretized by a numeri- 
cal method such as BDF, and the resulting non- 
linear system is solved by a Gauss-Newton iter- 
ation. In [ 14 ] it is shown that for a model prob- 
lem where the constraints are linear with con- 
stant coefficients and under certain other condi- 
tions, the solution to the ODAE which is deter- 
mined using a certain ssf-iteration to solve the 
nonlinear system is the same as that obtained 
by solving one of the stabilized forms, and that 
these solutions are equivalent to those obtained 
by numerically integrating the state-space form 
using the same discretization method. Unfortu- 
nately, these results do not appear to carry over 
to the more general case. 

Various other methods have been proposed 
for solving the Euler-Lagrange equations, in- 
eluding the regularizations of Baumgarte [6 ], 
L6tstedt [25], Kalachev and O'Malley [24], 
Zeid and Overholt [45] and others. Sometimes 
these regularizations can be quite effective; 
variations of the method of Baumgarte are in 
use in many engineering codes. Unfortunately, 
it is not always easy to pick the regularization 
parameters which work. 

As we have seen, a wide variety of formu- 
lations and associated numerical methods have 
been suggested for the solution of the Euler- 
Lagrange equations of  constrained mechanical 
motion. In recent work [2 ], we have system- 
atically evaluated the formulations and associ- 

ated numerical methods from the standpoint of  
stability, to determine whether some formula- 
tions and methods are inherently better at pre- 
serving the conditioning of  the original problem 
than others. The basic idea is to define a class of 
essential underlying ODEs (EUODE). The EU- 
ODE is defined for higher-index linear Hessen- 
berg DAEs of the form 

m 
X(m) = ~ A j z j  + By + q, 

1 

(4a) 
j=l  

O= Cx  + r, (4b) 

where z ( x )  = ( x , x '  . . . . .  x (mt) )  T, Aj, B and C 
are smooth functions o f t ,  0 < t < 1, Aj( t )  
R nx×nx, j = 1 , 2 , . . . , m , B ( t )  E R nxxn~, ny < 

nx and CB nonsingular for each t (this assures 
that the DAE has index m + 1 ). All matrices in- 
volved are assumed to be uniformly bounded in 
norm by a constant of  moderate size. The inho- 
mogeneities are q(t)  ~ R n~ and r(t) ~ R n,. 

The EUODE is derived as follows. As in [ 1 ], 
there exists a smooth, bounded matrix function 
R ( t ) E R (n~-ny)xnx whose linearly independent 
rows form a basis for the nullspace o fB  T (R can 
be taken to be orthonormal). Thus, for each t, 
0 < t < l ,  

RB = O. (5) 

We assume that there exists a constant K1 of 
moderate size such that 

[I(CB)-~II _< Kl (6) 

uniformly in t, and obtain (lemma 2.1 in [ 1 ] ) 
that there is a constant K2 of moderate size such 
that 

The constant K2 depends, in addition to K~, also 
on liB[I, IIC[[ and [[RI[. Let K3 be a moderate 
bound on R and its derivatives: 
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[[RCJ)I[ _< g3, j - 0, 1 . . . .  ,m .  (8) 

Define new variables 

u = R x ,  0 < t < l .  (9) 

Then, using (4b), the inverse transformation is 
given by 

( R ) - t  ( ~ r )  x = = S u - F r ,  (10) 

where S ( t ) ~ Rn~ x (nx-ny ) satisfies 

R S  = I, CS  =O (11) 

and 

F := B ( C B )  -1. (12) 

By our assumptions and (7) this mapping is 
well-conditioned. Both S and F are smooth and 
bounded. The first m derivatives of S and F 
are bounded by a constant involving K2 and K3. 
Taking m derivatives of (9) yields 

U (m) = ( R X )  (m) 

=~'~[RAj÷( jml)R( ' -J+I' ]z j  
j----I 

+ Rq .  (13) 

Using m - 1 derivatives of (10) w e  obtain the 
EUODE 

u (m) ' -~ -~ . [RA j+  ( j m l ) R ( m - j + l )  ] 
j=l  

x [(Su) tj-l) - (Fr) (j-l) ] + Rq.  (14) 

The EUODEs of a system are certain state- 
space forms which are uniquely defined up to 
a bounded, nonsingular change of variables. It 
is shown [2] that if the EUODE is stable, i.e., 
if its Green's function is bounded by a con- 
stant of moderate size, then a similar conclusion 
holds for the original DAE. Since the bounded- 
ness of the Green's function is invariant under 

bounded, nonsingular changes of variables, the 
question of stability for the EUODEs is well- 
defined. In [2], we used the EUODE to investi- 
gate the stability of some of the many equation 
formulations for Euler-Lagrange systems. We 
found that all of the formulations preserved the 
stability except unstabilized index reduction. 

While several different equation formula- 
tions might equally preserve the conditioning 
of the Euler-Lagrange equations, the proper- 
ties of numerical methods applied to these sys- 
tems are often quite different. For example, it 
is well-known [7] that higher-index systems are 
in a sense ill-posed, and can lead to difficul- 
ties for numerical methods with error control, 
ill-conditioning of linear systems at each time 
step, etc. For higher-index Hessenberg DAEs 
such as the Euler-Lagrange equations, there is 
a problem with numerical instability for many 
methods. Consider, for example, a linear homo- 
geneous Hessenberg index-two system: 

x' = A ( t ) x  + B ( t ) y ,  (15a) 

0 = C ( t ) x .  (15b) 

This system has the EUODE 

u' -- RASu  + R 'Su .  (16) 

Now discretize with implicit Euler: 

Xn+l = Xn + hAn+lXn+l + hBn+lYn+l, (17a) 

0 = Cn+lXn+ 1 . (17b) 

Transforming back to the variables of the EU- 
ODE yields the discretization 

Un+l = Un + hRASun+I + hR'Sun.  (18) 

Comparing (18) with the EUODE (16) shows 
that the implicit Euler method corresponds to 
a discretization of the EUODE which handles 
the term R'Su explicitly! Thus, although con- 
vergence results [7] predict that this method 
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will converge globally to O ( h ) ,  there is a prob- 
lem with respect to numerical stability which re- 
stricts the stepsize when R ' S  is large. This prob- 
lem is verified by experiment; there is very def- 
initely a nonstiff behavior of  methods ranging 
from BDF to most implicit Runge-Kutta for cer- 
tain stable linear Hessenberg index-two systems. 
On the other hand, it is possible to argue, with 
a finer analysis, that under 'reasonable' condi- 
tions, this type of numerical instability should 
not occur for certain projections (for example, 
in (17) if  B = C r ) .  The best cure for this nu- 
merical instability seems to be to reformulate the 
system in a form for which the instability can- 
not occur. This is done by reformulating the sys- 
tem in a form where the projection can be con- 
trolled, rather than dictated by the M matrix. In 
particular, we would like to formulate the system 
so that B = C T. We call these formulations the 
methods of 'projected invariants'. The methods 
are constructed as follows: 

(i) Starting with the original Euler-Lagrange 
equation, use the acceleration constraint to 
eliminate 2 and obtain an ODE in p, v which 
has as invariants the position and velocity con- 
straints: 

O = ( I -  H ) M - l f -  F z ( p , v ) ,  

(19a) 

(19b) 

where F = M - l  G T ( G M -  1 GT)- I ,  and H = 
FG.  

(ii) Project the solution onto the desired in- 
variants using G r or other stable projection. For 
example, project onto the position constraints: 

i~ = v - G T l z ,  

0 = ( I - H ) M - t f - F z ( p , v ) ,  

0 = g ( p ) .  

(20a) 

(20b) 

(20c) 

(iii) Note that the above system has the same 
numerical solution as the following implicit for- 

mulation which can be implemented more effi- 
ciently: 

/~ = v - GT / / ,  ( 2 1 a )  

M v  = f ( p , v )  - GT2, (21b) 

0 = GO + z ( p , v ) ,  (21c) 

0 = g ( p ) .  (21d) 

Depending on whether we do the projection 
onto the position constraints alone, or onto the 
position and velocity constraints, this leads us to 
two forms of projected invariants methods for 
constrained mechanical systems: 

(i) Project onto position constraint: 

/) ---- V -- GT#, (22a) 

M~) = f (p, v ) - GTA, (22b) 

0 = GO + z ( p , v )  (acceleration), (22c) 

0 = g (p) (position). (22d) 

(ii) Project onto position and velocity con- 
straints: 

/) -- v - GT/z - LT~ (23a) 

MO - f ( p , v )  - GT2 - M G T z ,  (23b) 

0 = GO + z ( p , v )  + GGTT (acceleration)~(23c) 

0 = Gv (velocity), (23d) 

0 = g ( p )  (position), (23e) 

where L - GpV. These equations are studied in 
more detail in [ 31 ] and [ 3 ]. There is some con- 
troversy over whether it is really necessary to in- 
clude the t e rm  LTz, however, numerical experi- 
ments in [ 3 ] seem to indicate that including this 
term is advantageous for numerical stability, in 
certain cases where the solution is oscillating at 
a high frequency. 
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There is also a nice geometrical interpretation 
for the  method of projected invariants - it cor- 
responds to the orthogonal projection onto the 
invariant constraints of the ODE. 

3. Computational challenges 

3. I. Efficient solution techniques 

Virtually all the proposed formulations for 
Euler-Lagrange equations have a similar struc- 
ture with regard to the linear systems which must 
be solved at each time step. Even the solution of 
a state-space form, which at first glance might 
seem to have quite a different structure, can be 
expressed using Lagrange multipliers in a form 
with this structure [33,34]. Thus it is important 
to be able to solve efficiently systems with this 
structure. There are several important cases: 

3.1.1. Nonstiff 
In the nonstiff case, half-explicit methods 

[22] and/or  iterations [14,18,32] can be de- 
vised which require much less work than in the 
stiff case. There is still a linear system, which 
arises because of the constraints, to be solved at 
each time step. However, the matrix, which has 
the form ( ~  G 0' ),  has some nice properties: it is 
symmetric positive definite, and it does not de- 
pend on the stepsize or order of the discretiza- 
tion. Further, linear systems of this form have 
been studied extensively, e.g., in constrained 
optimization, and some of these algorithms may 
be appropriate. For example, it may be feasible 
to update the matrix or its decomposition over 
a sequence of steps/iterations by quasi-Newton 
updates. This method seems to be promising 
for solution on massively parallel architectures. 
The mechanical systems have a special struc- 
ture which can be further exploited; for exam- 
ple, the O(n) methods [35] can also be used to 
solve the linear systems. However, this method 
leads to a recurrence which seems to be difficult 

to parallelize. A variety of formulations of the 
equations and methods are possible. 

For many systems, for example if the stiffness 
arises because of a controller, only a small, read- 
fly identifiable part of the system may be stiff 
[42 ]. Here we expect that the GMRES iterative 
method [36 ], with the appropriate half-explicit 
methods as a preconditioner, should be effective. 
For real-time simulation, it is essential to be able 
to make use of explicit methods wherever possi- 
ble; if the solution is not computed in the allot- 
ted time, it will be useless. 

3.1.2. Stiff 
Stiff problems can arise for example in the 

modeling of flexible bodies subject to con- 
straints. In the fully-stiff case, the linear systems 
to be solved at each time step still exhibit a spe- 
cial structure, but they are no longer symmetric 
and now depend on the stepsize. For example, 
the stabilized index-two form of the equations 
of motion (3) leads to the linear system 

I/hflo 

(,), 
r3 

r4 

M/hPo + D 0 
0 0 
G 0 

The matrix above is rather large, of dimension 
2np + 2n~, and its LU decomposition is gener- 
ally dense. If the number of constraints is of the 
same order of magnitude as the number of posi- 
tions, methods which are analogous to the null- 
space method of numerical optimization [20] 
can be considered. At present, we do not have 
sufficient experience to determine whether this 
is preferable to other alternatives. In addition, 
for flexible structures, the considerable structure 
inherent in the linear system arising from the 
discretization should be exploited. 
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3.1.3. Automatic stiffness detection 
It is our impression that, with the important 

exception of flexible multibody systems, most 
problems in the simulation of multibody sys- 
tems are nonstiff (or involve only a very few 
stiff components, as described above). How- 
ever, stiff problems certainly do occur. A ro- 
bust system for computer aided design should 
be able to treat both types of  systems, hope- 
fully with no intervention from the user. For 
example, it should be possible to construct a 
method similar to those which have been pro- 
posed and implemented for ODEs [30,38,39], 
which would monitor the convergence of the 
iteration and automatically switch to the appro- 
priate method. The stability investigations yield 
some clues for the problem of what constitutes 
a stiff differential-algebraic system. 

3.2. Rank-deficient systems 

It can sometimes happen that the constraint 
matrix G T becomes rank-deficient or nearly 
rank-deficient. In such a case, the problem be- 
comes poorly conditioned, and numerical meth- 
ods can experience serious difficulties. There 
are a number of possibilities for dealing this, 
including regularizing the system via a penalty 
term (see for example [28] or eliminating the 
redundant constraints, however, there are diffi- 
culties with either alternative. 

3.3. Discontinuities 

Frequent discontinuities are possible in a 
multibody system. Some of  these discontinuities 
will be located very efficiently by a root-finder 
such as in DASSLRT [ 7 ]. However, others may 
arise from user-defined funet~.ons or other unan- 
ticipated situations, and need to be located au- 
tomaticaUy and handled efficiently. In the case 
of a collision, conservation properties of the so- 
lution should be preserved across the interface. 
The situation for DAEs presents difficulties in 
addition to the ODE case because the solution 

of a high-index system can be less continuous 
than the input, and singularities in the system 
can lead to numerical behavior which is quite 
similar to that caused by discontinuities. Impul- 
sive solutions are possible. 

3.4. Highly oscillatory systems 

Often in multibody systems the solution may 
have components which are oscillating at a high 
frequency. This may arise, for example, from 
components which are rotating, or from the 
natural frequencies of the system. In a numeri- 
cal method such as multistep or Runge-Kutta, 
which are based on approximating the solution 
locally, the stepsize must be chosen very small 
to resolve the oscillation in the solution. In some 
cases this could ruin the possibility for obtaining 
a solution in real-time. Usually, the details of  
the oscillating solution are not so important as 
the long-term solution behavior. Methods need 
to be developed to handle this situation. 

3.5. Parallel methods 

Real-time simulation is required when it is 
necessary to simulate part of  the system and use 
people or hardware in other parts of  the sys- 
tem. An example is vehicle simulation. This in- 
troduces a number of additional requirements 
for numerical integration. For an introduction 
to some of the problems and challenges of real- 
time simulation, see [23 ]. In particular, it is es- 
sential that the solution be computed in an ab- 
solute minimum of computer time; if  the com- 
putation is not complete in the allotted time, it 
will be useless. 

Since an explicit method is generally much 
simpler than an implicit method to parallelize, it 
seems important to be able to identify the non- 
stiff parts of  the system and treat them with ex- 
plicit methods or functional iteration. For exam- 
ple, consider the Hessenberg index-two system 

x' = f ( x , y ) ,  0 = g ( x ) ,  (24a,b) 
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where the matrix gxfy is nonsingular. In the sys- 
tems of interest, fy = - M - I G T y ,  where G = 
gx and M is a symmetric positive definite mass 
matrix. 

Following discretization with an explicit 
method, one obtains a nonlinear system which 
must be solved at each time step: 

x = h f l f ( x , y )  + b ,  0 = g ( x ) .  (25a,b) 

For example, for implicit Euler discretization we 
would have fl = 1,b = xn, x = xn+l ,Y  ---- 
Yn +1. We will consider solving this with a half- 
explicit Newton method: 

X k+l -~ b + hflf(xk, yk+l), 

0 -- g ( x k + l ) .  

(26a) 

(26b) 

Alternatively, methods have been devised [22] 
which discretize explicitly in x and implicitly in 
y, but the nonlinear system for y looks pretty 
much the same. This leads to a nonlinear system 
in y to be solved at each time step, coupled to 
a functional iteration in x. Using Newton for y 
leads to 

yk + l = yk  _ ( h f l ) - I  (gxfy  ) - I  

x g ( b  + h f l f ( x k ,  y k ) ) ,  

xk+l  = b + h f l f  (xk,  y k + l ) .  

(27a) 

(27b) 

Now, noting that gxfy is symmetric positive def- 
inite, we will update the inverse of this matrix us- 
ing the parallel quasi-Newton methods (Broyden 
and BFGS) devised by Still [ 40,41 ] for updating 
the matrix decomposition. Quasi-Newton meth- 
ods have been tried previously in ODE solvers 
by Hindmarsh and others, but were not very suc- 
cessful because the matrix in ODEs, ( I  - h J ) ,  
changes by as much as rank n whenever the step- 
size h changes. However, in this DAE applica- 
tion the matrix does not depend on the stepsize 
and hence changes relatively slowly from step to 

step. Convergence of this iteration needs to be in- 
vestigated, and its performance evaluated on the 
appropriate parallel (MIMD) computers. Sev- 
eral approaches to parallelization for multibody 
systems have been considered recently in the lit- 
erature. Bae and Haug [4,5] express the elimi- 
nation as a recursion which is then distributed 
among processors. This method of using the re- 
cursion is the most efficient for serial computa- 
tion but is difficult to parallelize; Bae and Haug 
give some results on an Alliant. Zeid and Over- 
holt [45 ] regularize the system, turning it into a 
moderately stiff system which is then solved by 
explicit methods in parallel. It is difficult to eval- 
uate this method in comparison with the oth- 
ers because the regnlarization introduces a high 
frequency which influences the step size, hence 
they cannot be compared on the basis of work 
per step alone. 

For fully-stiff systems, the iteration matrix 
is no longer symmetric, and it depends on the 
stepsize. Hence the quasi-Newton updating ap- 
proach does not seem to be advantageous. The 
iteration matrix bears a strong resemblance to 
matrices encountered in constrained optimiza- 
tion, where null-space and range-space methods 
have proven to be useful in serial computation 
[20], depending on the relative dimensions of 
the number of positions np versus the number 
of constraints nx. For simulation of vehicles or 
rigid body mechanisms, where we usually expect 
nx to be of the same order of magnitude as rip, a 
variant of the null-space method seems to be ap- 
propriate. Parallelization of this algorithm has 
been considered in [44] for medium-scale par- 
allelism. Extension to massively parallel com- 
puters will require fast algorithms for Cholesky 
decomposition, QR factorization and backsolve 
[15]. 
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