
Update Wizardry: Automatically Generating
Update and Import Wizards for Evolving XML-encoded GUIs

Andrew Strelzoff
University of California Santa Barbara

Department of Computer Science
Santa Barbara, California 93106

strelz@engineering.ucsb.edu

Linda Petzold
University of California Santa Barbara

Department of Computer Science
Santa Barbara, California 93106
petzold@engineering.ucsb.edu

Abstract

Scientific computing applications are rarely equipped
with high quality graphic user interfaces (GUIs), in part
because the interfaces cannot be revised quickly enough
to keep pace with rapid changes in the underlying appli-
cation. Reverse engineering and XML-to-GUI technology
have been used to speed development of basic GUIs for sci-
entific computing [6, 11]. The problem remains, what to do
when the underlying application changes? Using reverse
engineering and the same XML-to-GUI translation, a new
GUI can be formulated but any additions and extensions to
the original GUI would be lost. Further, the community of
users would have to manually migrate their “problem sets”
to the new GUI. What is needed is update wizards to assist
in the process of migrating GUI enhancements, and to help
the community of users to import their problem sets into a
new updated GUI.

Keywords

Reengineering, Reverse Engineering, Software
Reuse, Revision Recognition, XML-technology, Scien-
tific Computing

1. Introduction

Maintaining user interfaces for scientific computing is
a long standing problem. Fundamentally, the user inter-
face programmer rarely has the mathematical background
to understand the complex changes that take place in nu-
meric software packages as they are revised. Developers of
numeric software are usually unwilling to invest the time
needed to become expert in interface programming, an area
of programming very far from their basic expertise. The
general assumption is that individuals who can bridge the
gap are very rare. Thus research has concentrated upon

communication between the developers of numeric soft-
ware on the one hand, and interface programmers on the
other. Research into this problem is divided between as-

An Enhancement

GUI

XML

Underlying
Code

User
Interface
Requirements

XML
Generated

Figure 1. The structure of an XML-backed GUI.

sistance for the interface programmer in the form of tool-
kits [3, 5] and visual environments [9, 5], and communica-
tion assistance (enforcement) in the form of tags developers
place in their code [3] or software wrappers [7] developers
build around their code. These tags or wrappers can then be
scanned to provide the information needed to reformulate a
user interface for a revised application. The problem with
this approach is that it places a considerable burden upon
the developer to wrap and re-wrap the underlying software
with each revision.

Another approach is the devlopment of XML-to-GUI



technology specific to the needs of scientific computing.
Researchers at Sandia National Laboratories have devel-
oped MAUI [6], an XML-to-GUI engine for scientific com-
puting, which takes as input XML-encoded user interface
requirements and produces a GUI skeleton which can then
be customized and extended. A diagram of an XML-backed
GUI is shown in Figure 1. In support of this and similar de-
veloping technologies, reverse egineering has been applied
to generate the user interface requirements for large com-
plex scientific computing applications [11].

Maintenance of such “XML-backed” GUIs remains
problematic. Considerable customization and extension is
desirable to make the basic skeleton into a working enviro-
ment. For example, an output variable like the value of the
“objective function” could be piped to a graphic display, or
an input subroutine could be run through “automatic differ-
entiation” before the main routine is run. All of this devel-
opment is lost or must be manually transferred from the old
GUI to the new. In addition, users must manually migrate
their problem sets to the new GUI.

In scientific computing a problem set is a mathematical
description of the problem to be solved and the methods
to be employed. Problem sets may be quite extensive, in-
cluding multiple calls to different numeric packages. Users
sometimes maroon themselves with older versions of nu-
meric codes rather than expend the energy needed to mi-
grate their problems to newer codes.

What is needed is a technology to recognize changes
made in the underlying code, associate these changes with
elements of the GUIs, old and new, and assist in transferring
enhancements from the old to the new GUI. In addition, a
technology is needed to assist users in importing their prob-
lem sets from the old application to the new. In commercial
software we would call these helpful widgets wizards: up-
date wizards to assist the publisher of the GUI and import
wizards to help users import their problem sets.

In this paper we will describe object oriented “update
agents” which will accomplish the following tasks.

1. Parse the old and new XML user interface require-
ments.

2. Use a revision recognition mapping to associate ele-
ments in the old interface with items in the new inter-
face, with varying levels of confidence.

3. For mappings with a high level of confidence, move
associated enhancements from the old to the new in-
terface.

4. For mappings with a low level of confidence gener-
ate an update wizard to inform the GUI developer of
the possible mappings and allow the developer to se-
lect the proper mapping. Associated enhancements can

then be moved to the new GUI. The developer’s map-
ping decisions are combined with those made automat-
ically to form a definitive revision mapping.

5. Use the definitive revision mapping and publisher in-
put to generate an import wizard which migrates user
problem sets and informs the user of changes made
to the underlying applicition and changes which will
need to be made to the problem set.

In the next section we examine the problem of generating
update agents more closely.

2. An Update Agent

As with many software engineerig technologies, our ob-
jective is to follow the path that a programmer would take
manually, in our attept to automate the process. The inter-
face programmer’s first goal when updating a user interface
is to identify which code segments in the underlying appli-
cation have remained largely unchanged. The supporting
interface code for these sections can then be reused with
only minor modification. The remainder of the code in the
new version must then either be new, or changed and re-
organized so radically that it would not be useful to try to
preserve the interface code relating to these sections. We
term this process revision recognition.

We assume that we are given a revision recognition map-
ping which shows which areas of the code have been pre-
served, added, deleted and modified. This mapping could
be generated manually, by a programming monitor which
observes the programmer’s keystrokes, or by the informa-
tion distance approximation method we have devloped in
[12].

We also assume that we have XML-encoded user inter-
face requirements for both versions of the underlying appli-
cation, generated either manually or by reverse engineering
as in [11]. In MAUI the basic skeleton is extended in a
two step process. The publisher codes a MAUI Action (an
extension of Java’s ActionEvent class using the XML Ob-
ject Class) to connect to interface elements. Thus, MAUI
Actions form the enhancements that the update agent will
have to recognize and move to the new GUI.

Our basic approach is:

1. Enforce a Java interface called XMLportable for all
MAUI Actions, which provides several levels of in-
trospection needed to determine which GUI elements
are associated with each enhancment, which XML Ob-
jects provide connectivity to the elements, and the path
to the class or Jar in which the action resides. The ac-
tivities of the XMLportable interface are summarized
in Figure 2.



An Enhancement

XML
User
Interface
Requirements

XMLPortable Interface

XML
Generated
GUI

GUI Element
"OBJFUN"

XML Tags to Associate
OBJFUN==ObjFunction

Location of JavaChart
MAUI Action

Figure 2. The tasks performed by the XML-
portable interface.

2. Create a Java class called UpdateWizardAgent which
will parse the XML descriptions of the two GUI ver-
sions and examine the revision recognition mapping,
determining which GUI elements are associated with
a very high degree of certainty. UpdateWizardAgent
will then use the XMLportable introspection meth-
ods to move those enhancements with high-probabiliy
mappings. The class will then generate a set of queries
for the publisher about GUI elements where the asso-
ciation is less clear. Responses will be gathered in a
definitive revision mapping. The activities of the Up-
dateWizardAgent are summarized in Figure 3.

Strong Association

Move Enhancement
An Enhancement

XML
Generated
GUI

Weak Association

Is X1==Q1
      ????

Query GUI Publisher

Figure 3. The tasks performed by the Up-
dateWizardAgent.

3. Create a Java class called ImportWizardAgent which
will parse the definitive revision mapping and produce
an import wizard to port data entered into an older ver-
sion of the GUI into a new version. This class should
step through the process, allowing the GUI publisher to

make adjustments and add instructions such as “in the
new version 2.01 sparse matrices are now supported..”.

XML
Generated
GUI

Definitive Revision Mapping
R1==Q1
X1==X1
null==W1

55 Move Data
R1==Q1

Sparse
Solver...

Import Wizard

Figure 4. The tasks performed by the Im-
portWizardAgent.

In the next section we outline the necesary steps for a
small illustrative example.

3. A Small Example

The agents outlined above will be quite complex, so it
may be helpful to fully demonstrate the necessary steps for
a small example. The following is an XML description of
the user interface requirements for a small computational
program:

<Maui RootClass="MyClass">
<Class type="MyClass">

<Action class="CheckSingular" label="Test For Singularity"/>
<Action class="MainRoutine" label="Calculate"/>
<Fields>

<String name="a" label="Matrix A"/>
<String name="b" label="Matrix B"/>
<Double name="c" label="Condition Number of A*B" default="0.0"/>

</Fields>
</Class>
</Maui>

The fields are the paths to matrices in dense row-column
format, and an output field for the result of the calculation.
The labels “Matrix A”, “Matrix B” and “Condition Number
of A*B” have been added by the publisher to add clarity
to the interface. The routine “checkSingular” was added
to allow users to easily check to see if either of their input
matrices were singular. These are the type of details which
we wish to preserve in new versions of the program. This
XML description produces the GUI shown in Figure 5 in
the MAUI environment.

The Java code to support the MAUI Action is as follows:

import Maui.Interface.*;
import XML.*;



Figure 5. The initial version of a small sample
program. The underlying program multiplies
two matrices together and then find the condi-
tion number of the result. An add-on program
checks to see if either of the input matrices is
singular.

import java.awt.event.*;
import javax.swing.JOptionPane;

public class CheckSingular extends MauiAction{

public void doAction(ActionEvent e, XMLObject body){

if(JavaNativeMethodHeaderClass(body.getAttribute("a")){
JOptionPane.showMessageDialog(null,

"Matrix A is Singular",
"Test Matrix",
JOptionPane.INFORMATION_MESSAGE);
}
if(JavaNativeMethodHeaderClass(body.getAttribute("b")){
JOptionPane.showMessageDialog(null,
"Matrix B is Singular",
"Test Matrix",
JOptionPane.INFORMATION_MESSAGE);
}}}

Basically, the above code pipes the location of the files
for matrices A and B through a Java Native Method to a rou-
tine which will check to see if they are singular. In the new
version of the GUI our agent will have to re-attach routine
to preserve this functionality.

When we enter paths to matrices A and B in their proper
fields and then press “Test For Singularity” a pop-up in-
fomrs us that A is singular. Now we are ready to examine
what happens when a new version of the underlying code is
presented.

Let us say we are given a new version of the program
with the following XML user interface requirements de-
scription:

<Maui RootClass="MyClass">
<Class type="MyClass">
<Action class="MainRoutine" label="Calculate"/>

<Fields>
<String name="x" label="x"/>
<String name="y" label="y"/>
<Double name="c" label="c" default="0.0"/>
<Boolean name=’’sparse’’ label=’’sparse’’ default=’’false’’>

</Fields>
</Class>
</Maui>

There have been a few changes. The “Check for Singu-
larity” routine is not in the description because it is not part
of the main program, it is an added enhancement. It also
appears that matrices a and b have been renamed as x and
y. The raw data from reverse engineering does not provide
descriptive labels. The labels for the fields x, y and c will
have to either be manually edited or our agent may be able
to preserve information added to the previous version if it
can associate elements in the original GUI with elements in
the new GUI.

Let us say that we have the following initial revision
mapping

a=?x
b=?y
c==c
null=sparse

This means that the automated revision recognition pro-
gram is certain that the variable c in the older version is
equivelent to c in the new version, but it is not completely
certain that a is equivelent to x and that b is equivelent to
y. This is often the case with variables which are inter-
changable. It is possible that ������� and � ����� instead.
We will need the publishers input to sort this out.

First our Update agent would look for enhancements
which were associated only with c, the only program ele-
ment for which we have a definitive mapping. There is no
enhancement which uses only c, so we move to the second
step which is querying the publisher for help in clearing up
an ambiguities that have been found.

Let us assume that the publisher looks over the code or
the release notes and decides that x in the new version is
indeed a in the original and also that y in the new version is
equivelent to b in the original. The definitive mapping then
is as follows:

a==x
b==y
c==c
null=sparse

The Update Agent can then move the enhancement “Test
For Singularity”, as well as the label text associated with a
and b. The result is the XML description:

<Maui RootClass="MyClass">
<Class type="MyClass">

<Action class="CheckSingular" label="Test For Singularity"/>
<Action class="MainRoutine" label="Calculate"/>
<Fields>

<String name="x" label="Matrix A"/>
<String name="y" label="Matrix B"/>
<Double name="c" label="Condition Number of A*B" default="0.0"/>
<Boolean name=’’sparse’’ label=’’sparse’’ default=’’false’’/>

</Fields>
</Class>
</Maui>



The agent also modifys the java class, which pipes data
through to the CheckSingular routine changing input fields
from a to x and from b to y using the defintive mapping as
in:
if(JavaNativeMethodHeaderClass(body.getAttribute("x")){

The Import Agent then uses the definitve mapping to
produce an import dialog which informs users of the new
option “sparse”, and import data previously entered and
saved into the new GUI as shown in figure 6.

Figure 6. The new version of the GUI showing
part of the import dialog.

4. Discussion

There are some issues which are difficult to automate.
For example, in this small example it is not clear that the
“Test for Singular” routine recognizes and can use the new
sparse input format. It may be that a new routine may be
needed or that this enhancement may not be available if the
sparse format is chosen. The GUI publisher will have to
deal with this and other similar issues. Nevertheless, most
of the work that took place in building the original GUI
could be automatically preserved.

For the small example shown, the migration of GUI en-
hancements and user data could be done easily by hand. For
larger, more complex codes these tasks become much more
problematic. The longstanding problem in user interfaces
for scientific computing is that the pace of devlopment of
the underlying application far outstrips that of GUI devel-
opment. GUI development is often abandoned or unproduc-
tively restarted from scratch. The research in this paper is
part of an effort to speed the maintenance of GUIs for sci-
entific computing.

5. Acknowledgments

This work was supported by grants: NSF/ITR ACI-
0086061, and DOE DE-FG03-00ER 25430.

References

[1] A.Aho. Compilers - Principles, Techniques and Tools.
Addison-Wesley, 1988.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. D. Croz, and A. Greenbaum. LAPACK Users’
Guide.

[3] S. Balay, K. Buschelman, W. Gropp, D. Kaushik,
L. McInnes, and B. Smith. PETSc: The Portable, Exten-
sible Toolkit for Scientific Computation. Argonne National
Lab.

[4] P. Barth. A Davis-Putnam Based Enumeration Algorithm for
Linear Pseudo-Boolean Optimization. Max-Plank Institute.

[5] D. Beazley. Software Wrapper and Interface Generator,
2002. SWIG Home Page http://www.swig.org.

[6] P. Boggs, L. Lehoucq, K. Long, A. Rothfuss,
E. Walsh, and R. Whiteside. A Maui user’s guide.
http://csmr.ca.sandia.gov/projects/maui/docs/MauiTutorial/.

[7] D. Gannon. The information power grid and the problem of
component systems for high performance distributed com-
puting. In Globus Retreat 2000.

[8] M. Garey and D. Johnson. Computers and Intractability.
A Guide to the Thory of NP-Completeness. W.H.Freeman,
1979.

[9] N. A. Group. IRIX Explorer, 2002. http://www.nag.com.
[10] M. Li and P.Viytanyi. An Introduction to Kolmogorov Com-

plexity and its Applications. Springer Verlag, 1997.
[11] A. Strelzoff and L. Petzold. Deriving user interface require-

ments from densely interleaved
scientific computing applications. IEEE, 15th Automated
Software Engineering Conference, 2003.

[12] A. Strelzoff and L. Petzold. Revision recognition for scien-
tific computing: Theory and application. In Proceeding of
the 15th Conference on Software Engineering and Knowl-
edge Engineering, 2003.


