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Abstract: Analysis of a detailed mathematical model of the insulin signaling pathway yields
a more quantitative understanding of the mechanisms underlying insulin resistance and its
subsequent progression to type 2 diabetes. A sensitivity analysis of the model allows optimization
of input perturbation as well as state measurement selection for experimental parameter
identification. Finally, a stochastic version of the model yields interesting results on the impact
of cellular noise on insulin signaling.
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1. INTRODUCTION

Overabundant food supply combined with an increasingly
sedentary lifestyle, particularly in developed nations, has
led to a dramatic increase in the incidence of type 2
diabetes mellitus (T2DM). T2DM has been linked with
insulin resistance – a reduced sensitivity of glucose con-
centration to changes in insulin concentration. Insulin re-
sistance has been hypothesized to be linked to a number
of defects in insulin signaling pathways.

One of the functions of insulin is control of cellular glu-
cose uptake in muscle and adipose tissue. This control
is carried out through the following signaling cascade
(Sesti [2006]). First, insulin binds insulin receptor, which
causes receptor autophosphorylation and activation. Ac-
tivated insulin receptor then phosphorylates insulin re-
ceptor substrate-1 (IRS1), which subsequently forms a
complex with phosphatidylinositol-3-kinase (PI3K). The
IRS1-PI3K complex catalyzes the production of phos-
phatidylinositol triphosphate (PIP3) which then interacts
allosterically with phosphosinositide-dependent kinase 1
(PDK1). The PIP3-PDK1 complex phosphorylates protein
kinases Akt and protein kinase C (PKCζ). Activated Akt
and PKCζ, through an unknown mechanism, trigger glu-
cose transporter (GLUT4) translocation from an internal
compartment to the cell membrane. With GLUT4 at the
cell membrane, a cell can then uptake glucose from its
environment.

This pathway is regulated by the action of a number of
other proteins. For example, protein tyrosine phosphatase
1B (PTP1B) dephosphorylates activated insulin receptors
and IRS1. In addition, SHIP2 and PTEN (lipid phos-
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phatases) deactivate PIP3 into PI(3,4)P2 and PI(4,5)P2,
respectively.

Notably, two feedback loops modulate the effects of the
insulin signaling pathway. Akt can phosphorylate PTP1B,
impairing the function of PTP1B as a negative signaling
element, resulting in net positive feedback. PKCζ can
serine phosphorylate IRS1, which impairs formation of
IRS1/PI3K complex, resulting in net negative feedback
(Sedaghat et al. [2002]).

With this information, we use the tools of systems biology,
specifically sensitivity analysis and stochastic simulation,
to model and analyze the insulin signaling pathway. We
can then use our analysis of the model to provide recom-
mendations for experimental work, which, in turn, guides
model improvement. With sufficient iteration of model
improvement and experiment, it may then be possible
to explain why certain network perturbations can cause
insulin resistance and to identify perturbations that may
be useful for treatment (Kitano et al. [2004]).

2. MODEL

Currently, the most mechanistically detailed published
model of the insulin signaling pathway was developed by
Sedaghat et al. [2002]. Two variations of the model were
proposed – one without the feedback mechanisms and one
with feedback. Differential equations, derived primarily us-
ing mass-action principles, were used to describe the time-
varying concentrations of 21 state variables, as illustrated
in Fig. 1.

One submodel adds an insulin receptor recycling model to
a previously published model of insulin-receptor binding
(Wanant and Quon [2000]). Another submodel describes
the postreceptor signaling cascade, from phosphorylation
of IRS1 to activation of Akt and PKCζ; this submodel
also contains the positive and negative feedback loops. The





It is very important in a model such as this one (with
21 states and 31 parameters) to be able to estimate
parameters as accurately as possible. Following Zak et al.
[2003], one can use the FIM to estimate lower bounds on
the variance of parameter estimates:

σ2

pj
≥ FIM−1

jj . (5)

A parameter is taken to be identifiable if the 95% confi-
dence interval, [pnominal − 1.96σp, pnominal + 1.96σp] does
not contain zero. For equivalent numbers of identifiable pa-
rameters, one possible optimization is minimizing the aver-
age normalized 95% confidence interval ( 1

Np

∑

j

1.96σpj
/pj)

over all identifiable parameters, a condition known as A-
optimality. Using these formulations of identifiability and
optimality, one can then design experiments to maximize
the accuracy of parameter estimation.

3.2 Results and analysis

Optimal insulin input selection One strategy to max-
imize parameter estimation accuracy is to vary insulin
input into the system. A number of simple insulin input
profiles were analyzed for maximum parameter identifi-
cation in the model with feedback: 15-minute pulse, 5-
minute pulse, step, upward ramp, downward ramp, 1-
minute pulse, 0.5-minute impulse, and two 1-minute im-
pulses, spaced 30 minutes apart. The peak values for each
insulin input was chosen to be 10−7M , (as by Sedaghat) to
compare similar insulin dosages. The inputs were ranked
first by number of identifiable parameters (out of 31),
then by A-optimality, with an FIM including all 21 state
measurements.

As shown in Table 1, the number of identifiable parameters
ranges from 19 to 21 for this variety of insulin inputs,
with the best result being the 1-minute pulse. Of the
inputs with 21 identifiable parameters, each identifies
the same parameters. Therefore, we conclude that input
dynamics should have a small but quantifiable effect on
the identifiability of model parameters.

An additional point to be made is that while the model
without feedback has fewer parameters than the one with
(29 to 31), the model with feedback is more readily
identifiable. For example, for the 15-minute insulin pulse
input, 65% of the parameters can be identified in the model
with feedback, compared to 62% for the model without
feedback. This also holds true for the insulin step input,
with 61% for the model with feedback compared to 52%
for the model without. The model with feedback is more
identifiable because measurements of early states in the
signaling pathway contain information about parameter
values for reactions involved in feedback that occur further
down the pathway.

Optimal measurement selection Because identifiability
was not strongly affected by insulin input dynamics, for
ease of calculation, measurement selection was carried out
on the 1-minute pulse, which had 21 identifiable param-
eters. Measurements of as many states as possible were
removed from the FIM while maintaining the same number
of identified parameters. Then, the FIM’s including all per-
mutations of the remaining states were calculated, with the

Input description Parameters 1

Np

∑

j

1.96σpj
/pj

1-minute pulse 21 9.84%

5-minute pulse 21 9.98%

0.5-minute pulse 21 11.2%

15-minute pulse 20 6.58%

Ramp up 20 7.61%

Ramp down 20 11.3%

Two 1-minute pulses 19 7.37%

Step 19 15.1%

Table 1. Parameter identification from differ-
ent input selections, ranked by number of iden-
tifiable parameters followed by average width
of normalized 95% confidence interval for iden-

tifiable parameters

State measurement Parameters 1

Np

∑

j

1.96σpj
/pj

x2, x3, ..., x21 21 9.84%

x15, x17, x19, x20, x21 21 11.7%

x15, x17, x19, x20 21 16.5%

x15, x17, x20 20 23.0%

x15, x17 14 25.1%

x17 9 46.3%

Table 2. Parameter identification from differ-
ent measurement selections

results ranked by number of identified parameters and then
by A-optimality. The optimal measurement selection for
each number of allowed measurements is given in Table 2.

A measurement of only x15, x17, x19, x20, and x21 gives
21 identifiable parameters; therefore, nearly all of the pa-
rameter information content available is included in these
five states, all of which are near the end of the signaling
pathway (See Appendix A.1 for more information). As
this model for signal transduction is, in general, a signal
cascade, the fact that a sparse measurement selection can
yield high parameter information content makes sense,
as measurements of later states can contain parameter
information from reactions involving previous states. Even
taking just one measurement (x17) allows one to possibly
identify 9 parameters. Although there is no guarantee that
the above measurement selections will, in fact, yield the
most parameter information for an arbitrary insulin input
profile, the conclusion above are likely to be nearly optimal
for any input selection.

3.3 Steady-state sensitivity analysis: potential drug targets

Assuming that one could determine the nominal parameter
set with any degree of certainty, one might then be able
to probe the model for insights concerning the long-
term development of insulin resistance. Whereas the case
examined by Sedaghat (2002) had a 15-minute square
wave input of insulin of amplitude 10−7 M , one might be
able to simulate a more biologically relevant situation by
having a uniform insulin concentration over the duration of
the experiment. Due to problems with the mass balances
on the components in the model, actual steady-state is
not obtained in a realistic time frame and has a non-
physical total GLUT4 percentage (x20 + x21) of greater
than 100%. However, by 60 minutes, the slope on surface
GLUT4 percentage is fairly small, so scaled sensitivities
were calculated at 60 minutes, using the insulin step input



Parameter Sensitivity

k13 0.673

k
−13 (−)0.672

k9 0.218

k
−9 (−)0.218

k8 0.187

k
−8 (−)0.187

k11 0.146

k
−11 (−)0.146

k
−7 (−)0.138

k7 0.138

Table 3. List of parameters to which the
steady-state surface GLUT4 concentration is

most sensitive

Parameter % change

k
−12 696%

k12 695%

k10 230%

k
−10 230%

k9 154%

k
−9 154%

k
−8 154%

k8 154%

k
−11 (−)27.3%

k11 (−)27.3%

Table 4. List of model parameter sensitivities
changed most by removal of feedback mecha-

nisms

case described above with an insulin concentration of 10−7

M . This was done for both the model with feedback and
without.

Table 3 shows the most sensitive parameters for the model
with feedback; all of these parameters represent potential
targets for type 2 diabetes therapy. Decreasing values of
parameters with negative sensitivities or increasing values
of parameters with positive sensitivities would result in
higher GLUT4 surface percentages, which, in turn, would
lead to higher steady-state rates of glucose transport and
lower blood glucose levels.

In addition, one can compare the steady-state performance
of the model with feedback mechanisms and the model
without (Table 4). The parameter sensitivity increased
the most by the removal of feedback, k−12, describes the
deactivation of PKCζ; this is indicative of the negative
feedback loop involving active PKCζ. As expected from
the positive feedback loop involving active Akt, the sensi-
tivity of GLUT4 translocation to k−11, which describes
deactivation of Akt, is the one decreased most by the
removal of feedback.

4. STOCHASTIC MODELING

Because a number of model species have small copy counts
per cell volume (fewer than 10), fluctuations in copy
counts may have a profound effect on model behavior (Giri
et al. [2004]). As a result, we developed and simulated a
stochastic version of Sedaghat’s insulin signaling pathway
model using Gillespie’s stochastic simulation algorithm
(SSA), implemented in the StochKit software package
(Gillespie [1976]).
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Fig. 2. Effect of changing system volume on x21 (surface
GLUT4) from 0.93 nL (red circles) to 0.093 nL (blue
squares) and to 9.3 nL (green triangles). The deter-
ministic result is in black.

4.1 Methods

A stochastic model was derived from the Sedaghat model
with feedback by assuming the differential equations could
be represented explicitly as elementary reactions. A nomi-
nal system volume of 0.93 nL, the size of a typical human
adipocyte, was chosen (Leonhardt et al. [1972]). Using
the system volume, initial concentrations were converted
to species populations. For variables in the determinis-
tic model that had units of percentage (e.g. x21 is the
percentage of total GLUT4 at the cell surface), estimates
of concentrations for these variables were taken from the
literature and used to calculate these chemical species’
initial populations (Giri et al. [2004]).

Deterministic kinetic parameters were converted to the
appropriate stochastic forms, and kinetic parameters that
were functions of state variables in the Sedaghat model
were included in StochKit by adding custom code to the
propensity functions. Additional custom code was written
to simulate the 15-minute pulse of insulin input and the
explicit time delay that appear in the Sedaghat model
(Sedaghat et al. [2002]).

Two sets of perturbation simulations were then done on
the stochastic model to study the sensitivity of fluctuation
magnitude. One set of simulations involved varying the
system volume up and down 10-fold to study the effect of
cell volume. In the other set of simulations, “sensitive” and
“insensitive” reaction rates from the deterministic model
(k−9 and k−1 respectively) were increased and decreased
by 50%, holding volume constant, to give us a qualitative
feel for the effect of these parameter perturbations on the
stochastic model.

4.2 Results and analysis

As seen in Fig. 2, the stochastic trajectories tend to
peak below the deterministic model, especially at small
volumes. This difference is primarily due to a variable in
the Sedaghat model that describes the combined effect
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(a) x21 with k
−9 perturbed down (green triangles) and up (red

circles)
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(b) x21 with k
−1 perturbed down (green triangles) and up (red

circles)

Fig. 3. Effect on x21 of perturbation of sensitive parameter
(k−9) versus that of insensitive parameter (k−1) for
the model without feedback

activated Akt and PKCζ have on the GLUT4 transloca-
tion rate to the cell surface – this “effect” has an upper
bound in the model. Therefore, stochastic fluctuations in
the amount of activated Akt and PKCζ near their peak
values that would ordinarily raise the “effect” variable
above the upper bound are capped while fluctuations be-
low the deterministic values lead to lower surface GLUT4
(x21) translocation propensities and lower surface GLUT4
values at peak stimulation.

Another observation to be made from Fig. 2 is that the
stochastic model trends slightly above the deterministic
model near the end of the numerical experiments (at ap-
proximately 50 minutes). This is primarily due to stochas-
tic fluctuations in x13 around the deterministic steady-
state value of 0.31% (See Appendix A.1). In the Sedaghat
model, kinetic parameters k11 and k12 depend on state x13

and values of x13 below 0.31% lead to negative values for

these parameters. This results in negative propensities in
the SSA for reactions involving those parameters; negative
propensities were capped at zero. Therefore, fluctuations
in x13 below 0.31% have minimal downstream effects while
fluctuations above 0.31% lead to increased x17, x19 and,
ultimately, larger values of x21 than the ODE model. This
difference becomes negligible when the system volume is
increased.

The magnitude of fluctuations in x21 (surface GLUT4)
increased from ≈10% to ≈25% when the volume was
decreased 10-fold and reduced to ≈5% when volume was
increased 10-fold. As seen in Fig. 3, a 50% change in
k−1, an insensitive parameter, resulted in negligible change
in peak value or relative fluctuation magnitude, while
a 50% change in k−9, a sensitive parameter, caused a
≈20% change in x21 peak value, with negligible effect
on relative fluctuation magnitude. By comparing the two
sets of stochastic experiments, we can argue that relative
fluctuation magnitude depends primarily on volume and
remains largely independent of parameter values, while
peak values depend both on volume and the values of
sensitive parameters.

5. CONCLUSION

In this paper, sensitivity analysis was used to minimize
error in parameter estimation by optimization of input
perturbation selection as well as state measurement selec-
tion. With model parameters gleaned from analysis of dy-
namic sensitivity, steady-state sensitivity analysis revealed
a number of sensitive parameters suitable for drug target-
ing; also, we found that the addition of feedback mecha-
nisms significantly changes the sensitivities with respect
to a number of parameters. Finally, we used stochastic
modeling to determine that system volume and parameter
perturbations may have effects on the response of GLUT4
to insulin that are not captured by a deterministic model.

A number of criticisms can be leveled at this work; one
possibility is that, although a number of parameters were
removed due to a priori unidentifiability, more model pa-
rameter reduction possibly could have been done, as only
68% of the parameters were identifiable. Other possible
criticisms include the fact that realistic state measurement
data does not tend to be as continuous or as accurate
as this analysis assumes (0.001 min per data point with
1% measurement error). More realistic numbers of time
points and larger state measurement errors would likely re-
sult in fewer identifiable parameters with larger estimated
variances. In addition, numerical inversion of a nearly
singular FIM was needed to calculate estimated parameter
variances which could have led to numerical errors.

Further work should include model validation, using the
input and measurement selection developed here to deter-
mine parameters more closely and/or invalidate the model.
A more comprehensive search on input perturbations and
measurement selection may yield better results for param-
eter estimation. Incorporating expected fluctuation mag-
nitude from our stochastic experiments into our input and
measurement selections may result in a more realistic set
of parameters identifiable from experiment.



In the course of developing this sensitivity analysis and
the stochastic realization of the Sedaghat model, we found
a number of shortcomings in the Sedaghat model. While
portions of the model follow standard mass-action kinetics,
we found a number of places in which the model was not
mechanistically detailed. This led to a number of difficul-
ties in our work – primarily in our stochastic simulations.
We believe that further development of a more detailed
model will be important to our understanding of insulin
signaling. Incorporating recently discovered signaling com-
ponents, such as those discussed by Schmelzle et al. [2006]
and by Saltiel and Pessin [2003] may be useful.

Lastly, because insulin affects a number of other cellular
processes, the integration of crosstalk (Sesti [2006]) or
models that incorporate organism-level detail (e.g. pancre-
atic β-cell secretion of insulin) (Bertuzzi et al. [2007], Topp
et al. [2000]) would yield a more complete understanding of
the role of the insulin signaling cascade on glucose disposal
and insulin resistance.
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Appendix A. ODE MODEL

A.1 State variables

The states mentioned in Fig. 1 and in the text are
summarized below.

State Description

x1 Insulin input (M)

x2 Unphosphorylated, unbound surface receptors (M)

x3 Unphosphorylated, once-bound surface receptor (M)

x4 Phosphorylated, 2×-bound surface receptors (M)

x5 Phosphorylated, 1×-bound surface receptors (M)

x6 Unphosphorylated, unbound intracellular receptors (M)

x7 Phosphorylated, 2×-bound intracellular receptors (M)

x8 Phosphorylated, 1×-bound intracellular receptors (M)

x9 Unphosphorylated IRS1 (M)

x10 Tyrosine-phosphorylated IRS1 (M)

x10a Serine-phosphorylated IRS1 [feedback only] (M)

x11 Unactivated PI3K (M)

x12 Activated IRS1-PI3K complex (M)

x13 PI(3,4,5)P3 (% of total)

x14 PI(4,5)P2 (% of total)

x15 PI(3,4)P2 (% of total)

x16 Unactivated Akt (% of total)

x17 Activated Akt (% of total)

x18 Unactivated PKCζ (% of total)

x19 Activated PKCζ (% of total)

x20 Intracellular GLUT4 (% of total)

x21 Surface GLUT4 (% of total)

A.2 Model parameters

The model equations were taken from Sedaghat et al.
[2002]. However, a number of parameters, listed below, had
to be changed for purposes of sensitivity analysis.

k−3 = 0.2 min−1PTP

k6 = 0.461 min−1PTP

k7 = 4.64 × 1012 min−1

k−7 = 1.396 min−1PTP

k7′ =







6.93 min−1 [x19 (t − τ)]
4

K4

d + [x19 (t − τ)]
4

, for feedback

0, for no feedback

k13 = 0.0115 (0.2x17 + 0.8x19) + 6.96 × 10−3 min−1


