
Parallel Simulation of Fluid Slip in a Microchannel
�

Jingyu Zhou, Luoding Zhu, Linda Petzold, and Tao Yang
Department of Computer Science

University of California, Santa Barbara�
jzhou, zhuld, petzold, tyang � @cs.ucsb.edu

Abstract
Fluid flow in channels has traditionally been as-
sumed to satisfy a no-slip condition along the chan-
nel walls. However, it has recently been found ex-
perimentally that the flow in microchannels can slip
along hydrophobic (repelling water) walls. The slip
can have important physical consequences for such
flows. The physical mechanism underlying this phe-
nomena is not well understood. An accurate, physi-
cally realistic model that can be simulated rapidly is
critical for obtaining a better understanding of these
results, and ultimately for modeling and for optimiz-
ing the flow in microdevices to achieve desired ob-
jectives.

This paper investigates the parallel simulation of
fluid slip along microchannel walls using the mul-
ticomponent lattice Boltzmann method (LBM) with
domain decomposition. Because of the high com-
plexity for microscale simulation, even a parallel
computation of fluid slip can take days or weeks.
Any slowness in the participating nodes in a cluster
can drag the entire computation substantially, due
to frequent node synchronization involved in each
computational phase of the algorithm. We augment
the parallel LBM algorithm with filtered dynamic
remapping for lattice points. This filtered scheme
uses lazy remapping and over-redistribution strate-
gies to balance the computational speed of partici-
pating nodes and to minimize the performance im-
pact of slow nodes on synchronized phases. Our ex-
perimental results indicate that the proposed tech-�

This work was supported by NSF/ITR ACI-0086061

nique can greatly speed up fluid slip simulation on
a non-dedicated cluster over a long period of execu-
tion time.

1 Introduction
In fluid mechanics, a no-slip boundary condition is
usually assumed for viscous flow over a solid sur-
face. This means that the fluid velocity at the sur-
face is the same as the velocity of the surface (zero
if the surface is at rest). However, it has recently
been found experimentally that the no-slip assump-
tion may be not valid for some micro scale flows,
for example flows in micro-electro-mechanical sys-
tems (MEMS). Many researchers [6, 20, 15, 40, 41,
26, 1, 7, 48, 24, 35, 38, 36, 37] have investigated
fluid slip phenomena for microscale flows. Appar-
ent fluid slip at the micro-device walls can have a
significant influence on the mass and heat transfer
in the system and has drawn much recent attention.
Among these results is a recent laboratory experi-
ment performed by Tretheway and Meinhart [36].
They found an approximate ����� fluid slip with re-
spect to the main stream flow velocity in a three-
dimensional microchannel with hydrophobic walls
(the walls are coated with a material which repels
water molecules). 1 The mechanism of fluid slip on
hydrophobic surfaces is not yet well understood. A

1For a comprehensive review of fluid slippage over hy-
drophobic surfaces, see Vinogradova [39] and the references
therein. The hydrophobicity of a solid surface is not well un-
derstood. We refer the following papers [22, 19, 17, 3, 4, 28,
38] to interested readers.

1

possible mechanism for generating the observed slip
has been proposed in [37] (see Section 2 for details).

We investigated the proposed mechanism by sim-
ulating the water-air two-phase system with the
multicomponent lattice Boltzmann method for flow
in a three-dimensional hydrophobic microchan-
nel [47]. Micro-scale simulation for fluid slip is
computation-intensive. It can take hundreds of days
on a fast single-processor machine, especially when
high resolution is required. Previous work has fo-
cused on the parallelization of the single compo-
nent LBM with static domain decomposition. Sato-
fuka [29] parallelized the single-component LBM
in two and three dimensions via domain decompo-
sition. Kandhai et al. [18] adopted the Orthogo-
nal Recursive Bisection method to parallelize the
single-component LBM. Suviola [34] parallelized
the single-component LBM for simulating suspen-
sion flow. Previous work (e.g. [33]) has focused
mainly on static-decomposition of the grid into
equal sub-volumes, based on slice, box, or cubic
partitioning. Here we report on our parallelization
of the multicomponent LBM via domain decompo-
sition with filtered dynamic lattice point remapping.

For the multi-component LBM, we use domain
decomposition, which divides the problem domain
into a number of sub-domains. Computation on sub-
domains is performed by separate processes that ex-
ecute the same functions on different data. Because
the sub-domains are connected at their boundaries,
processes belonging to neighboring sub-domains
must synchronize on their boundaries. Synchroniza-
tions divide the computation into phases. While full
linear speedup for parallel multi-component LBM
can be achieved in a dedicated cluster, the paral-
lelized code can still take weeks in a modest-sized
cluster for a high-resolution microscale simulation.
In a production environment for scientific simula-
tion, it is very possible that a cluster is shared with
other tasks. Phase-based synchronization with slow
nodes in LBM drags the entire computation signif-
icantly in a non-dedicated environment. For exam-
ple, a single heavily-loaded node can slow down the
program’s execution time by a factor of two to three
as we will show later.

It is clear that we need to improve self-
adaptiveness of the LBM algorithm in responding to
the slowness of some nodes. The challenge for dy-
namic load balancing is to tolerate transient spikes
and to avoid excessive communication needed for
data remapping. We have proposed a scheme called
filtered remapping which adopts lazy migration that
minimizes unnecessary re-balancing, and uses an
over-redistribution strategy during lattice point mi-
gration, to proactively minimize the impact of slow
nodes. Our experimental results show that the pro-
posed scheme can balance work load in the pres-
ence of slow nodes and effectively handle transient
spikes, with significant improvement compared to
other methods.

This paper is structured as follows. Section 2
presents the multicomponent LBM and its paral-
lelization with domain decomposition. Section 3
gives motivation and details on filtered dynamic lat-
tice point remapping. Section 4 provides the simu-
lation and evaluation results. Finally, Section 5 con-
cludes the paper.

2 Fluid Slip and Lattice Boltz-
mann Method

For fluid flows at micro or nano scale, the lattice
Boltzmann method provides a more physically real-
istic means of simulation approach than the Navier-
Stokes (N-S) equations. When the 	�
 number 2 is
much larger than � , (which is often true for problems
at micro or nano scale) the N-S equations are not
valid, but the lattice Boltzmann method is still valid.
In our work, the parallelized multi-component lat-
tice Boltzmann method with filtered dynamic load
rebalancing was applied to investigate a possible
generating mechanism for apparent fluid slip [37]
at hydrophobic microchannel walls. The key idea
of the mechanism is as follows. The water used in
the experiment [36] was not treated to remove dis-
solved or entrained gases. It is conjectured that the
gases and the water vapor may form a depleted thin

2Defined as the ratio of the mean free path of molecules
and the characteristic length of a problem.

2

layer between the hydrophobic surfaces and the wa-
ter. This depleted water region could generate the
observed apparent fluid slip because the overall den-
sity in the thin layer is much lower than that of wa-
ter.

We investigated the above mechanism by simu-
lating the water-air two-phase system with the par-
allelized multicomponent lattice Boltzmann method
for flow in a three-dimensional hydrophobic mi-
crochannel. The hydrophobic walls were modeled
by applying a force in a region very close to the
walls. This force is repulsive to the water molecules,
and neutral to the air molecules. Note that, unlike
the methods of Molecular Dynamics or Direct Sim-
ulation Monte Carlo, there are no “molecules” in
the lattice Boltzmann method. The introduced hy-
drophobic force acts on the single particle velocity
distribution functions, instead of on the molecules
themselves. These forces decay exponentially away
from the wall. The initial water-air mixture is as-
sumed to be uniform. The initial density of the air
in the water is calculated under standard conditions.
The multicomponent lattice Boltzmann model we
use is standard, see [30, 31, 32, 23], except that we
introduced the additional hydrophobic wall forces
into the formulation.

2.1 Lattice Boltzmann Method

The lattice Boltzmann method [25, 5, 2, 8, 27, 21,
43, 14, 16] is an alternative to traditional numeri-
cal methods for simulating fluid flows governed by
the Navier-Stokes equations. It solves for the single
particle velocity distribution functions that satisfy
a simplified Boltzmann equation, instead of solv-
ing for the macroscopic quantities like fluid velocity
and pressure. Compared to the direct discretization
of the incompressible Navier-Stokes equations, the
lattice Boltzmann method has several advantages
(See [27] for details). For example, the simplified
Boltzmann equation is a scalar linear differential
equation, while the Navier-Stokes equations are a
system of nonlinear differential equations. Among
these comparative advantages is the local behav-
ior of both the collision and streaming operators.

Therefore this method is very natural for paralleliza-
tion.

The multicomponent lattice Boltzmann method
used in our work is the S-C model [11, 30, 31, 32].
A brief account of this method is as follows. Let �
denote the fluid components. For each fluid compo-
nent � (�������� in our case), a single particle ve-
locity distribution function ����������������� is introduced,
which solves the LBGK model for that component: � � �!�"���#����� � $ �&% � � ������������� � ' �(� �)� � �������#����� ' � �+*-,/. ���������������10
Here (� and �2�+*-,/. are the relaxation time and the
equilibrium distribution function for component � ,
respectively.

After discretization in particle velocity space �
and in time � , the multicomponent LBE is obtained:� �3 �!� $ � 3 ��� $ �+��4� �3 ��������� ' �(� �)� �3 ��������� ' � ��*5,/.3 �!���������6�
where � �3 is the distribution function for the � com-
ponent along the direction � 3 . Note that the dis-
cretization in � is the same for each component.

An interparticle interaction potential, which is in-
tended to model the interaction between different
components, can be defined as7 �!�"��89��;: � : �1< = �6� < �!����89�/> � �!�?�/> � < �!89�60
Here the Greens function,

= �@� < ������89� , characterizes
the nature of the interaction between different com-
ponents (attractive or repulsive and its strength).
The choice of > determines the equation of state
of the system under study. By selecting different
functions

=
and > , various fluid mixtures and mul-

tiphase flows can be simulated.
The equilibrium distribution � �+*-,/.3 can be written

as � �+*-,/.3 ���������A�B � �!�"�����DC 3 �D� $FE � 3 %�G � ��������� $HI � E � 3 � 3KJ G � �!�������DG � �!�"����� ' G � �!�"�����9%+G � �!�"���������6�
where C 3 is the weight. The mass density of com-
ponent � is defined byB � ���������A;: 3ML � � �3 ���������6�

3

where L � is the molecular mass of component � .
The velocity, G?� , is computed viaB � �!�"������G � ���������A�B � �!�"�����ONGP�!�������$ (�2QSR �Q � ��������� $ (�OT?� �!�?�1�
where the average velocity NG is defined by

NGU�!�"�����V: � BW���!�"�����(� 4: �
XY L �(� : 3 � �3 �!�"�����/� 31Z[0

Here \^]`_\ba is the net rate of momentum change that
can be computed in terms of the interaction poten-
tial:

QSR �Q � �!�������A ' :/ced c ������89�A' > � ���?� : � < : 3 = 3 �6� < > � < ��� $ � 3 �/� 3 0
The forces T ���?� are the hydrophobic forces we

introduced to simulate the hydrophobic walls. Our
choice of T ���!�f� is as follows: (index � denotes the
fluid in the model to simulate the water and index �
the fluid to simulate the air/water vapor)T"g ���?�Ah� ,T , ���?�Ai�j�k��l I �^m��6��l H �^nW��� ,
where m is the distance away from the side walls
along the inward normal direction, and n has a simi-
lar meaning for the top and bottom walls. l I �!mo� andl H �jnW� are in the form of p gKqsr�t R � ' m�uvp I � . Here p g
and p I are constants to be determined.

The macroscopic quantities are connected to dis-
tribution functions by the following relations:Bw���������A : � B � ���������1�
�!BxG9�@�!�������A : � L � : 3 � �3 � 3 $ �y : � Q�R �Q � ���������60

The dimensionless viscosity of the system is defined
by z |{ �

I~} _6��_} ' �� 0

Figure 1: The three-dimensional lattice for D3Q19 model.
Each node has 19 different possible movement of directions.

2.2 Parallelization of LBM

We performed the parallelization of the multi-
component LBM in three-dimensions via domain
decomposition. Because of the special geometry
in our application (the t direction is much longer
than the m and n directions), one-dimensional de-
composition along the t direction was used. The
microchannel was partitioned into � cubics along
the t direction. Each cubic was assigned to a pro-
cessor. For each processor, the distribution func-
tions of the two components at both ends along di-
rections ���1���`���S�+���S�+� must be sent to its right neigh-
bor and the distribution functions along directionsy �`���S�S���S� � ����� must be sent to its left neighbor. In
the meantime, each processor must wait to receive
the distribution functions of the two components at
both ends along directions

y �`���S�S���S� � ����� from its
right neighbor, and the distribution functions along
directions ���`�k�`���S���k�S�+� from its left neighbor, see
Figure 1.

In each phase of the LBM computation, a lattice
point requires a constant number of floating opera-
tions. Our application’s problem domain is a cubic
by size ���#%j����%j��� . The time complexity of the pro-
gram is ���^����%D���f%D���6� . Figure 2 gives the pseudo-
code of the Lattice Boltzmann method. Different
processors are assigned different starting and ending
indices on the t axis. Lines 4 through 17 represent

4

1 s = starting index on X axis;
2 e = ending index on X axis;
3 for (phase = 1; phase <= TOTAL_PHASES; phase++) {
4 Compute collision from s to e;
5 Compute streaming from s to e;
6

7 /* communication */
8 Exchange distribution func. with neighbors;
9

10 Compute bounce back;
11 yz_direction(s, e);
12

13 /* communication */
14 Exchange number density with neighbors;
15

16 Compute force from s to e
17 Compute velocity from s to e;
18

19 /* lattice points remapping */
20 if (phase % REMAPPING_INTERVAL == 0) {
21 t_local = estimate_time();
22

23 /* communication */
24 Exchange t_local with neighbors;
25

26 Compute remapping amount;
27

28 /* communication */
29 Redistribute data;
30

31 Update s and e;
32 }
33 }

Figure 2: Pseudo code of parallelized Lattice Boltzmann
method.

the computation of a phase. The velocity computed
on line 17 is used in the collision computation of
line 4 in the next iteration. The distribution function
and the number density data on the boundaries must
be exchanged with neighboring nodes in each phase
(line 8 and line 14, respectively). The application
requires a large number of simulation steps. Every
few phases, the program performs a remapping of
the lattice points (from line 20 to 32) to improve
performance by adjusting the load on different pro-
cessors and reducing the synchronization overhead.

3 Filtered Dynamic Remapping
of Lattice Points

We have parallelized the fluid slip code using MPI.
In this section we will discuss the motivation for dy-
namic lattice point remapping and then present a fil-

tered remapping method to minimize the impact of
slow nodes.

3.1 Motivation

While the code can achieve an almost perfect
speedup in a dedicated cluster, the parallel code still
takes a long time (weeks) to complete the simulation
for even a small microchannel. Any machine slow-
ness due to resource sharing or operational error can
dramatically slow down the entire computation due
to the nature of synchronization among nodes con-
ducted at each phase of the computation. This is
because other nodes must wait for the slowest one,
in order to synchronize.

0 0.2 0.4 0.6 0.8 1
200

300

400

500

600

700

800

Disturbance (%)

E
xe

cu
tio

n
tim

e
(s

)

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

200

Disturbance (%)
O

ve
rh

ea
d

(%
)

Figure 3: Increased time caused by competing jobs.

To find out whether short load spikes or long load
spikes have the most impact, we performed a se-
ries of experiments. In these experiments, our MPI-
based fluid slip program used 20 nodes and 600
phases representing a small percentage of phases re-
quired in the simulation described in Section 4. One
of the nodes was slowed down by a CPU-intensive
competing job which ran throughout the execution
of our MPI program. Every 10 seconds, it spent a
certain percentage of time competing for CPU re-
sources; it slept the rest of the time. We varied that
percentage from 0 to 100% and plotted the results in
Figure 3. On the left, the execution time of our MPI
program is plotted with respect to different distur-
bance levels. The increased time per program phase
is plotted on the right. The curve shows that the

5

overhead is close to a linear increase when the dis-
turbance is less than 60% (which corresponds to 6
seconds in each 10 seconds period) and sharply in-
creases after that point. This suggests that short load
spikes have a relatively small impact on the over-
all performance. However, the sharp increase after
60% means that if the high load persists longer, the
MPI program’s performance suffers greatly. Con-
sidering that the time for running our MPI program
under perfect conditions is about 250 seconds for
this selected case, the overhead caused by persistent
competing jobs could be several times higher.

The reason for significant slowdown even by a
single slow node is due to a ripple effect of the LBM
code with domain decomposition. As all neighbor-
ing nodes must synchronize in each phase, at one
phase the neighbor nodes are slowed down by the
slowest node; in two phases, nodes with distance
two away are slowed down; the slowdown contin-
ues until all processes are affected in 10 to 20 phases
depending on the position of the slowest node.

These experiments suggest that the dominant per-
formance slowdown is caused by a persistent slow
node and that transient load spikes have less per-
formance impact. Thus, the remainder of this sec-
tion focuses on improving performance in the case
of persistent slow nodes.

3.2 Self-Adaptiveness with Dynamic
Data Remapping

The above experimental result shows that the im-
pact of a persistent slow node must be minimized to
reduce program execution time. Dynamic load bal-
ancing [42] is a common technique used to sched-
ule computation in an adaptive manner such that
fast nodes perform more work. We first describe
dynamic lattice mapping used to achieve load bal-
ancing in general and explain the dynamic mapping
challenge in our context, and then propose a solu-
tion called filtered dynamic remapping.

3.3 Issues for Dynamic Mapping of
Lattice Points

Since computational complexity of our application
at each processor is proportional to the number of
lattice points assigned to the processor, remapping
of lattice points is needed to achieve load balanc-
ing in the presence of slow and fast nodes. Each
node needs to monitor program execution and adap-
tively reduce the number of lattice points if this ma-
chine becomes slower compared to others in the
cluster. Figure 4 illustrates the dynamic data remap-
ping operation. Initially, lattice points are evenly
distributed among all nodes (Figure 4-a). When
node 2 becomes slower, some of its lattice points
will be shifted to neighboring nodes 1 and 3 (Fig-
ure 4-b).

���

� � � � ��� �

���

� � � ��� ��

�	
�����
���������

�	
����
���������

Figure 4: Example of data remapping.

There are three important issues that we need to
address for remapping. Our solutions for the first
and the third issues are different from what have
been proposed in the load balancing literature [42].� Performance prediction. Each machine needs

to predict how long it would take to process the
existing lattice points in the next phase based
on the performance in the previous phases.
Earlier results have found that CPU load can be
predicted using simple models [9], and future
load is closer to the most recent data [46, 13].
Our finding is that prediction that mainly de-
pends on performance data of the most recent
phase can result in excessive data migration

6

(we call it migration oscillation) when the clus-
ter sharing pattern changes rapidly. Our design
choice is to use the harmonic average of pro-
cessing time at the last
 phases that minimizes
the chance of excessive remapping.� Global vs local information exchange. We
consider two different approaches for dynamic
data remapping, i.e., global or local informa-
tion exchange. In the global approach, load in-
formation is exchanged among all nodes and
a global decision is made to distribute lattice
points evenly among all nodes such that all
nodes are expected to complete in the same
time before the next phase starts.

The major problem with the above global so-
lution is that synchronization overhead can be
significant. This is because group communica-
tion is required among all nodes for making a
global decision. Also a node may have to shift
data to multiple destinations or to receive new
lattice points from multiple sources. Since pre-
diction of load may not be accurate, the bene-
fits of global load balancing guided by predic-
tion may not pay off, considering the excessive
communication overhead involved.

We have followed the previous work in dis-
tributed load sharing [42] where balancing is
decided locally among neighbor nodes.� Conservative redistribution vs. over-
redistribution. When fast nodes and slow
nodes are identified among neighbor nodes and
lattice point migration is planned, a decision
must be made on the number of lattice points
to be transfered. The previous approach for
general load balancing using local information
exchange [42] has taken a conservative view:
when a node is considered light and a heavily-
loaded node needs to shift t amount of load,
typically a smaller amount such as t���� will
actually be transferred (e.g. � E �W�). The
reason is that a light node may be consid-
ered “light” by everybody and this node can
be overloaded by receiving loads from multi-

ple sources independently.

In our setting with a linear array of proces-
sors and with neighbor data dependence in
synchronization for LBM, we find that over-
redistribution, which aggressively shifts points,
performs much better than conservative redis-
tribution. We will discuss the reason below.

We call our overall approach filtered dynamic lat-
tice point mapping. Our design choice is based on
the following strategies.� Lazy remapping. Frequent re-balancing of

load can hurt overall performance in two as-
pects. First, it can cause excessive data migra-
tion when the load changes rapidly. Secondly,
remapping can introduce an unbalanced load
if estimation is not accurate, and can lead to
greater communication overhead.

Our strategy in designing the filtered approach
is to remap lazily, which reduces synchroniza-
tion cost and also allows the system to care-
fully respond to usage spikes in a cluster. We
use this strategy in two aspects of our filtered
remapping method. 1) use the average load in-
dex of the last
 phases to guide prediction in-
stead of using the load index of the most re-
cent phase. 2) We avoid moving data points
from a fast node to a slow node even if the slow
node has much fewer lattice points. The reason
is that slow nodes can result in sluggish com-
munication and the benefit of exploiting slow
nodes for their computing power is not signif-
icant considering that communication to these
nodes can be very slow.� Over-redistribution of lattice points from
confirmed slow nodes. When a node is de-
tected to be slow with high confidence, it is
better to minimize the use of such a node since
it not only processes data at a low speed but
also drags the entire computation due to slug-
gish communication. Once the system finds
that a node is really slow, our strategy is to ag-
gressively shift data from slow nodes to faster
nodes.

7

3.4 Filtered Dynamic Remapping
Performance prediction. Let the execution time
for the last
 phases at a node x be � g� , � I� � , ���� . The
predicted time (load index) for the next phase �#� is
defined:
g�w�� $ g���� $ %�%�% g�k�� 0
Thus if there is a load spike during the last phase, no
migration will be made unless this machine is really
slow for the last
 phases (in our experiment,
 =10).

Load index exchange and remapping condi-
tion checkup. Only neighboring nodes in the lin-
ear array of cluster nodes will communicate. We
describe the formula for making a migration deci-
sion among three neighboring nodes. The formula
is similar for the first node and the end node in the
linear array.

Given three neighboring nodes � ' � , � , and� $ � , we decide whether we should move some
data points from node � to � $ � as follows. Let�"�¡ g � �"� � ���£¢ g be the number of lattice points on
nodes � ' � , � , � $ � . Let � �¡ g ��� � ��� �¤¢ g be their pre-
dicted times respectively. Let

�A¥�¡ g � �"¥� � �"¥�¤¢ g be the
intended number of lattice points after remapping.
We define the processing speed of node � as¦ � �"�� � 0

The intention of remapping is to balance these
three nodes in the next phase through this local in-
formation change on the behalf of node � . The ob-
jective is:�"¥�¡ g¦ �§ g

�"¥�¦ � �"¥�¤¢ g¦ �¤¢ g
���§ g $ ��� $ ���£¢ g¦ �¡ g $ ¦ � $ ¦ �¤¢ g 0�"¥�¡ g � �"¥� � �"¥�¤¢ g can be computed from the above

equation. When
� ¥�¤¢ g©¨ �"�¤¢ g , the number of data

points that need to be remapped from node � to � $ �
is
� ¥�¤¢ g ' �"�¤¢ g . This condition

� ¥�¤¢ g ¨ �"�¤¢ g can be
rewritten as: �"�¡ g $ �"� $ �"�¤¢ g¦ �¡ g $ ¦ � $ ¦ �¤¢ g ¨ � �£¢ g 0
A similar condition can be derived for deriving the
tentative amount of points redistributed from node �
to � ' � .

Remapping decision and over-redistribution.
An additional consideration is whether we should
move ª ���¤¢ g points from node � to � $ � , whereª �"�¤¢ g �"¥�¤¢ g ' �"�¤¢ g . The following remapping
condition needs to be met: ª ���¤¢ g is greater than a
threshold and

¦ �¤¢ g ¨ ¦ �
. Namely, we don’t move a

small number of points and don’t move points from
a fast node to a slow node. In our experimental set-
ting discussed in Section 4, the minimal migration
is one 2D plane of size

y ��� q y � for a microchan-
nel with «W��� q y ��� q y � lattice points. Thus we use
4,000 as the threshold.

If node � is considered to be slow and redistri-
bution of lattice points from � is necessary, we will
shift data aggressively from this slow node to an-
other faster node. Given three consecutive nodes� ' � , � , and � $ � , let

¦ �¡ g , ¦ � , and
¦ �¤¢ g be their

processing speed respectively. Instead of ª �¬�¤¢ g , ª �"�¤¢ g lattice points will be redistributed from
node � to � $ � . The scaling factor we use is ¯®6°-± �®@° .

In some rare cases, when the local information
exchange among nodes � ' � , � , � $ � concludes node� needs to shift points to � $ � , if node � $ � concludes
that it needs to shift data from node � $ � to � based
on local information exchange among nodes � , � $ � ,
and � $ y

, a conflict resolution is deployed between
node � and � $ � to redistribute a proper amount of
lattice points.

4 Simulation of Fluid Slip and
Parallel Performance

We performed the simulation of fluid slip on a��0§� q � q y�² L H micro-channel. (Figure 5 shows
the diagram of the microchannel.) The grid spac-
ing is �³
 L . The nondimensional hydrophobic wall
force used in the simulation is 0.2, corresponding to
a physical force of « q ��� H Q m�
 r uvp L H with a de-
cay length of

� 0-��
 L . The appropriate magnitude
for this force is not well understood. For the current
simulation, the force function was chosen so that the
simulation results would be consistent with experi-
mental observations. The main simulation results
are as follows.

8

Width = 1 Micron

Flow Direction

Length

xy

z

Depth = 0.1 Micron

= 2 Micron

Figure 5: Diagram of the microchannel.

We will first discuss the simulation results, which
match well the experimental observations. Then we
will present the performance results on parallel sim-
ulation of this fluid slip instance.

4.1 Simulation Results

Figure 6 shows fluid densities close to the two side
walls as a function of distance away from the side
wall at the cross-section t i� ² L and n´µ�v��
 L .
The t -axis is the density, and the m -axis is the dis-
tance from the side wall. Figure 6 (A) shows the
density of the fluid used to simulate water in the
model along the m -direction (in the middle of then direction) on a cross-section in the middle of the
channel (t -direction). Figure 6 (B) shows the den-
sity of the fluid used to simulate water vapor/air.
We can see that the density of water is decreased
and that of water vapor/air is increased close to the
walls. Sakurai [28] et al. have also observed a dras-
tic decrease of the water molecule number density
at a monolayer-water interface from the simulation
results of water between hydrophobic surfaces, via
molecular dynamics. Our results are consistent with
theirs.

Figure 7 shows the normalized streamwise veloc-
ity profile and a local blowup along the m -direction
at cross-section t � ² L for nh �O�¶
 L . Thet -axis is the normalized velocity, and the m -axis is
the position from the side wall (unit: micron). The
solid line (in A and B) is the velocity profile when
no wall forces are present. The dotted line (in part
A), or the dashed line (in part B) is the case where
wall forces are introduced. In contrast to the former

0.5 0.6 0.7 0.8 0.9 1 1.1

0

20

40

Fluid densities near side wall along y−direction

Density of water (g/cm3)

0.8 1 1.2 1.4 1.6

0

20

40

Density of air/water vapor (× 10−4 g/cm3)

 D
is

ta
nc

e
fro

m
 s

id
e

w
al

l (
na

no
m

et
er

)

(A)

(B)

Figure 6: Fluid densities as a function of distance away from
the side wall at the cross-section ·¹¸»º�¼W½ and ¾K¸À¿6Á"ÂW½ .
The ¿1Á nm region close to the side wall is shown. The · -axis
is the density of water or air/water vapor, and the Ã -axis is
the distance from the side wall. The graph (A) is the density
profile for water and the graph (B) is the density profile for
air/water vapor.

case, the latter results in apparent slip at the walls.
(See Figure 7 (B) for the local blowup near the side
wall.) We can see from Figs. 7 and 8 that in the
region very close to the walls, the water density de-
creases and the water vapor/air density rises. This
enables the fluid slip on the walls (approximately�W� of free stream velocity), compared to the solid
lines in Figure 7, which illustrate the case where no
hydrophobic wall forces were applied.

4.2 Parallel Simulation with Filtered
Dynamic Lattice Mapping

We have conducted parallel simulation of the above
fluid flow instance on a Linux cluster of 32 PC
nodes with 3GB RAM and dual-processor 2.6 GHz
Xeon, connected by a Gigabit Ethernet switch. For
the simulation setting we have used 400 q 200 q 20
lattice points with slice decomposition on 20 clus-
ter nodes, i.e., a 20 q 200 q 20 lattice for each node.
The total running time for this problem with 20,000
LBM steps (phases) on a single machine is 43.56
hours. We choose this problem size because it
allows us to repeat various experiments quickly.

9

0 0.5 1
0

0.2

0.4

0.6

0.8

1
ll Streamwise velocity profiles as a function of y position

u/u
0

P
os

iti
on

 fr
om

 s
id

e
w

al
l (

m
ic

ro
ns

)

... with wall forces

__no wall forces

0 0.5
0

0.01

0.02

0.03

0.04

0.05

u/u
0

−−− with wall forces
__ no wall forces

(A) (B)

Figure 7: Normalized streamwise velocity profiles along
the Ã -direction at cross-section ·Ä¸Åº�¼W½ for ¾�¸4¿6Á"ÂW½ .
The solid lines are the velocity profiles when no wall forces
are used. The dotted or dashed line is the case where wall
forces are introduced. The graph (A) is normalized velocity
at ¾Æ¸Å¿1Á9ÂW½ as a function of distance from the side wall
(Ã -direction). The graph (B) shows the normalized velocity
profile near the side channel wall.

Simulation for higher resolution would take much
longer time 3

With a dedicated cluster, our parallel code
achieves almost full linear speedup when varying
the number of nodes. The speedup is 18.97 with 20
nodes. Our focus in the experiments is to study the
performance of the filtered dynamic lattice mapping
and compare it with other approaches under two
types of workload: 1) Fixed slow nodes: There is a
fixed set of nodes which are shared by other jobs. In
this setting, a background job runs on each selected
node taking 70% CPU resource. 2) Transient spikes:
A node is randomly chosen and a background job is
executed which takes 70% of CPU resource for a
length varying from 1 to 4 seconds. After 10 sec-
onds, another node is randomly chosen to execute a
background job. This random process repeats every
10 seconds.

3A real application can require about 500,000 LBM phases
to reach the steady-state. Our current application setting rep-
resents the simplest possible geometry, the smallest physical
dimensions, and the coarsest resolution necessary to study the
slip phenomenon. To study the effects of slip in a typical
MEMS device would require substantially more computation.

0 1 2 3 4 5
5

10

15

20

of slow nodes

S
pe

ed
up

No Remapping
Remapping

0 1 2 3 4 5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of slow nodes

E
ffi

ci
en

cy

No Remapping
Remapping

Figure 8: Speedup and normalized efficiency with 20,000
phases.

4.2.1 Overall Performance with Fixed Slow
Nodes

The left part of Figure 8 shows the speedup of the
parallel code with filtered dynamic remapping when
the number of slow nodes varies from 0 to 5. The
speedup is defined as the execution time of the se-
quential program divided by the execution time of
parallel program. When the cluster is dedicated, the
speedup is close to 19. When there is one slow node,
the speedup is about 16, whereas the parallel code
without dynamic remapping performs poorly with
more slow nodes and its speedup drops dramatically.
With five slow nodes, the parallel code with filtered
dynamic remapping can still achieve a speedup of
13.

We use the following normalized efficiency®]6ÇjÇ)\bÈD]I , ,�É H~Ê to examine the utilization under this non-
dedicated cluster with L slow nodes in which a
background job takes 70% CPU resource at each
node. The right part of Figure 8 shows the normal-
ized efficiency metric, indicating that our code can
achieve very good resource utilization which is 90%
when the number of slow nodes is less than four and
80% for five slow nodes. In comparison, the utiliza-
tion is low without remapping.

4.2.2 Execution profiling of different ap-
proaches with one fixed slow node

We provide execution profile and cost distribution
of different approaches with one slow node, which
allows us to understand behavior and effectiveness
of proposed optimization strategies. The following

10

0 10 20
0

100

200

300

400

500

600

700

Dedicated

Ti
m

e
(s

)

0 10 20
0

100

200

300

400

500

600

700

No-remap
0 10 20

0

100

200

300

400

500

600

700

Conservative
0 10 20

0

100

200

300

400

500

600

700

Filtered

Remapping
Communication
Computation

Figure 9: Execution profile and cost distribution for different schemes for 600 phases.

three approaches are compared with filtered remap-
ping: 1) Dedicated scheme, where there is no slow
node and dynamic data remapping is disabled; 2)
No-remapping scheme, where one node is slow
without dynamic data remapping; 3) Conservative
scheme, which is the same as the filtered scheme
except that over-redistribution is not used.

The results are shown in Figure 9 for 20 cluster
nodes. This experiment takes 600 phases. With 20
dedicated nodes, the computation takes about 251
seconds. When no remapping is used and node 9
is a shared node, the total time increases from 251
seconds to 717 seconds and the increasing ratio is
185.6%. The “ripple” effect of a slow node drags
the entire computation significantly.

The remapping method with conservative re-
distribution balances the computation nicely, but
it does not effectively reduce the synchronization
overhead caused by sluggish communication in
node 9. The filtered approach aggressively redis-
tributes the lattice points of node 9 to others and
uses only 313.0 seconds. The overall parallel time
increasing ratio is only 24.7% compared to the ded-
icated case. This method reduces the time of non-
remapping by 56.3% and that of conservative redis-
tribution by 39%. From this figure, one can see
that filtered remapping moves most of the lattice
points from node 9 to its neighbors using the over-
redistribution strategy, and then it shifts these points
further to other nodes. The slow node (node 9) ac-
counts for most of the time spent in communication
in this LBM-based simulation.

Finally, it should be noted that cost of remapping
in both the filtered and conservative schemes is low,
as the profile shows. That is because both of them
use lazy remapping.

4.2.3 Comparison of different approaches with
multiple slow nodes

We further compare filtered remapping with conser-
vative redistribution and non-remapping when the
number of slow nodes varies from 0 to five. In
this comparison, we also include the performance
of remapping using global information exchange,
which tries to re-assign lattice points to nodes pro-
portionally to their speeds. This global method em-
ploys lazy remapping but does not use the over-
redistribution strategy.

Results are shown in Figure 10. The filtered ap-
proach performs best. It outperforms the conserva-
tive approach by up to 39%, and the no-remapping
method by up to 57.8%. Global remapping performs
well with one slow node; however after the num-
ber of slow nodes becomes more than 2, the global
method is worse than the others. The reason is that
the global approach incurs too much communica-
tion overhead, and slow nodes still take on too many
lattice points.

4.2.4 Tolerance of transient spikes

In this experiment, we compare how different algo-
rithms tolerate transient load spikes caused by back-

11

0 1 2 3 4 5
200

300

400

500

600

700

800

900

of slow nodes

E
xe

cu
tio

n
tim

e
(s

)

No Remapping
Filtered Remapping
Conservative Remapping
Global Remapping

Figure 10: Execution time of 600 phases for different remap-
ping techniques.

ground jobs executed on randomly-selected nodes
every 10 seconds as we have discussed previously.
The number of LBM phases for this experiment is
100.

Table 1 lists the execution slowdown ratio of
four approaches compared to the dedicated case.
The result shows that the filtered, conservative, and
no-remapping methods have similar performance
and are much better than global remapping. No-
remapping performs well because every node has an
equal chance to become slow, and there is no bene-
fit to do re-balancing. The filtered method uses the
lazy remapping strategy which can effectively toler-
ate the transient spikes. The conservative redistribu-
tion algorithm uses the same lazy remapping strat-
egy and thus performs similarly. The performance
of the global approach is worse than others because
it involves too much global synchronization, which
is sensitive to the existence of slow nodes.

Spike No-Remap Global Filtered Cons.
Length

1 s 7.4% 5.8% 6.7% 10.9%
2 s 11.9% 37.2% 15.6% 16.0%
3 s 23.7% 40.9% 23.3% 24.9%
4 s 35.6% 49.5% 38.1% 39.8%

Table 1: Slowdown ratio of different algorithms compared to
the dedicated case with various length of disturbance for 100
phases. Spike length is in seconds.

5 Concluding Remarks

We have parallelized the multicomponent lattice
Boltzmann method for simulation of fluid slip in
a microchannel. While domain decomposition can
parallelize the code with a fairly good speedup in a
dedicated environment, the long computation time
and synchronization overhead at each phase of this
computation require us to improve load balancing
through dynamic data remapping. Our experiments
have shown that the proposed filtered remapping
technique can effectively re-distribute the workload
among computing nodes and significantly reduce
the overhead resulting from slow nodes in a par-
tially heavily loaded cluster. For the tested cases,
filtered remapping outperforms no-remapping by
up to 57.8% and more compared to a global strat-
egy. The over-redistribution strategy used in fil-
tered remapping improves performance by up to
39% compared to a conservative approach.

Previous work in load balancing has studied pro-
cess migration and scheduling independent of ap-
plication characteristics, e.g. [10, 42, 45]. An-
other category of research in load balancing has fo-
cused on application-specific strategies. For exam-
ple, Hamdi and Lee [12] have studied load redistri-
bution for parallel image processing with a central-
ized approach. The main contribution of our load
balancing work is a filtered approach which uses
lazy remapping and over-redistribution of data from
slow nodes by taking the application characteristic
of LBM-based simulation.

Prediction of CPU usage has been studied in
[44, 9, 46]. In a study of Unix load from a large set
of computational settings, Dinda and O’Halloran [9]
concluded that load is consistently predictable with
simple linear models. In [46], it was shown that
giving more weight to the most recent data can im-
prove the accuracy of the load predictions. For fluid
slip, instead of relying on the most recent perfor-
mance data, we have used the harmonic average of
the last several sampled times for usage prediction.
This helps to minimize the impact of transient load
spikes.

12

References
[1] J. Barrat and L. Bocquet. Large slip effect at a nonwet-

ting fluid-solid interface. Phys. Rev. Lett., 82:4671, 1999.

[2] P. L. Bhatnagar, E. P. Gross, and M. Krook. A model for
collision processes in gases, I: small amplitude process
in charged and neutral one-component system. Phys.
Rev., 94:511, 1954.

[3] N. F. Bunkin, O. A. Kiseleva, A. V. Lobeyev, and T. G.
Movchan. Effect of salts and dissolved gas on optical
cavitation near hydrophobic and hydrophilic surfaces.
Langmuir, 13:3024–3028, 1997.

[4] D. Chandler. Two faces of water. Nature, 417:491, May
2002.

[5] S. Y. Chen, H. D. Chen, and W. M. D. Martinez. Phys.
rev. lett. Phys. Rev. Lett., 67:3776, 1991.

[6] C. H. Choi, K. J. A. Westin, and K. S. Breuer. Apparent
slip flows in hydrophilic and hydrophobic microchan-
nels. submitted, 2003.

[7] N. Churaev, V. Sobolev, and A. Somov. Slippage of liq-
uids over lyophobic solid surface. J. Colloid Interface
Sci., 97:574, 1984.

[8] S. Z. D. H. Rothman. Lattice gas models of phase sep-
aration: interface, phase transitions and multiphase flow.
Rev. Mod. Phys., 66:1417, 1994.

[9] P. Dinda and D. O’Hallaron. An Evaluation of Linear
Models for Host Load Prediction. In Proc. of HPDC-8,
1999.

[10] E. Frachtenberg, D. Feitelson, F. Petrini, and J. Fernan-
dez. Flexible CoScheduling: Mitigating Load Imbalance
and Improving Utilization of Heterogeneous Resources.
In IPDPS03, April 2003.

[11] D. Grunau, S. Y. Chen, and K. Eggert. A lattice Boltz-
mann model for multiphase fluid flows. Phys. of Fluids
A, 5:2557, 1993.

[12] M. Hamdi and C.-K. Lee. Dynamic Load Balancing of
Data Parallel Applications on a Distributed Network. In
Proc. of 9th Sumpercomputing, pages 170–179, 1995.

[13] M. Harchol-Balter and A. B. Downey. Exploiting Pro-
cess Lifetime Distributions for Dynamic Load Balanc-
ing. In Proceedings of the 1996 ACM SIGMETRICS,
pages 13–24, May 1996.

[14] X. He and L. S. Luo. Theory of lattice Boltzmann
method: from the Boltzmann equation to the lattice
Boltzmann equation. Phys. Rev. E, 56:6811, 1997.

[15] R. G. Horn, O. I. Vinogradova, M. E. Mackay, and
N. Phan-Thien. Hydrodynamic slippage inferred from
thin film drainage measurements in a solution of nonad-
sorbing polymer. J. Chem. Phys., 112(14), April 2000.

[16] S. Hou. Lattice Boltzmann Method for incompressible
viscous flow. PhD thesis, Kansas State University, 1995.

[17] D. M. Huang and D. Chandler. The hydrophobic effect
and the influence of solute-solvent attractions. J. Phys.
Chem., 106:2047–2053, 2002.

[18] D. Kandhai, A. Koponen, A. Hoekstra, M. Kataja, J. Ti-
monen, and P. Sloot. Lattice-Boltzmann Hydrodynam-
ics on Parallel Systems. Computer Physics Communica-
tions, 111(1-3):14–26, 1998.

[19] K. Lum, D. Chandler, and J. D. Weeks. Hydrophobic-
ity at small and large length scales. J. Phys. Chem.,
103:4570–4577, 1999.

[20] D. Lumma, A. Best, A. Gansen, F. Feuillebois, J. O.
Radler, and O. Vinogradova. Flow profile near a
wall measured by double-focus fluorescence cross-
correlation. Phys. Rev. E, 112(14), 2000.

[21] L. S. Luo. Unified theory of the lattice Boltzmann mod-
els for nonideal gases. Phys. Rev. Lett., 81:1618, 1998.

[22] L. Mainbaum and D. Chandler. A coarse-grained model
of water confined in a hydrophobic tube. J. Phys. Chem.,
107:1189–1193, 2003.

[23] N. S. Martys and H. Chen. Simulation of multicom-
ponent fluids in complex three-dimensional geometries
by the lattice Boltzmann method. Physical Review E,
53(1):743, 1996.

[24] R. Pit, H. Hervet, and L. Leger. Direct experimental evi-
dence of slip in hexadecane: Solid interfaces. Phys. Rev.
Lett., 85:980, 2000.

[25] Y. H. Qian. Lattice gas and lattice kinetic theory applied
to the Navier-Stokes equations. PhD thesis, University
Pierre et Marie Curie, Paris, 1990.

[26] E. Ruckenstein and P. Rajora. On the no-slip boundary
condition of hydrodynamics. J. Colloid Interface Sci.,
96:488, 1983.

[27] G. D. D. S. Y. Chen. Lattice Boltzmann method for fluid
flows. Annu Rev. Fluid Mech., 30:329, 1998.

[28] M. Sakurai, H. Tamagawa, K. Ariga, T. Kunitake, and
Y. Inoue. Molecular dynamics simulation of water be-
tween hydrophobic surfaces. Implication for the long-
range hydrophobic force. Chem. Phys. Lett., 289:567,
1998.

[29] N. Satofuka and T. Nishioka. Parallelization of lattice
Boltzmann method for incompressible flow computa-
tions. Comput. Mech., 23:164, 1999.

[30] X. Shan and H. Chen. Lattice Boltzmann model for
simulating flows with multiple phases and components.
Physical Review E, 47(3):1815, 1993.

[31] X. Shan and H. Chen. Simulation of nonideal gases
and liquid-gas phase transitions by the lattice Boltzmann
equation. Phys. Rev. E, 49:2941, 1994.

[32] X. Shan and G. D. Doolen. Multicomponent lattice
Boltzmann model with interparticle interaction. J. Stat.
Phys., 81:379, 1995.

13

[33] P. A. Skordos. Parallel Simulation of Subsonic Fluid Dy-
namics on a Cluster of Workstations. In Proc. of HPDC-
4, 1995.

[34] T. Suviola. Parallelization of a lattice Boltzmann sus-
pension flow solver. Applied parallel computing lecture
notes in computer science, 2367:603, 2002.

[35] P. A. Thompson and S. M. Troian. A general bound-
ary condition for liquid flow at solid surfaces. Nature,
389(6649):360–362, 1997.

[36] D. C. Tretheway and C. D. Meinhart. Apparent fluid slip
at hydrophobic microchannel walls. Physics of Fluids,
14(3), 2002.

[37] D. C. Tretheway and C. D. Meinhart. A generating mech-
anism for apparent fluid slip in hydrophobic microchan-
nels. submitted to Physics of Fluids, August 2003.

[38] O. I. Vinogradona. Possible implications of hydrophobic
slippage on the dynamic measurements of hydrophobic
forces. J. Phys: Condens. matter, 8, 9491 1996.

[39] O. I. Vinogradova. Slippage of water over hydrophobic
surfaces. Int. J. Miner. Process., 56:31–60, 1999.

[40] K. Watanabe, Yanuar, and H. Mizunuma. Slip of Newto-
nian fluids at solid boundary. JSME Int. J., 41:525, 1998.

[41] K. Watanabe, Yanuar, and H. Mizunuma. Drag reduction
of Newtonian fluid in a circular pipe with a highly water-
repellant wall. J. Fluid Mech., 381:225, 1999.

[42] M. H. Willebeek and A. P. Reeves. Strategies for Dy-
namic Load Balancing on Highly Parallel Computers.
IEEE Trans. on Parallel and Distributed Systems, 4(9),
1993.

[43] D. A. Wolf-Gladrow. Lattice-gas cellular automata and
lattice Boltzmann Models – an introduction. Springer,
Berlin, 2000.

[44] R. Wolski, N. Spring, and J. Hayes. Predicting the CPU
Availability of Time-shared Unix System on the Compu-
tational Grid. In Proc. of HPDC-8, 1999.

[45] C. Xu, F. Lau, and R. Diekmann. Decentralized Remap-
ping of Data Parallel Applications in Distributed Mem-
ory Multiprocessors. Concurrency: Practice and Expe-
rience, 9(12):1351–1376, Dec. 1997.

[46] L. Yang, I. Foster, and J. M. Schopf. Homeostatic and
Tendency-based CPU Load Predictions. In Proceedings
of IPDPS 2003, April 2003.

[47] L. Zhu, D. Tretheway, L. Petzold, and C. Meinhart. Sim-
ulation of fluid slip at hydrophobic microchannel walls
by the lattice Boltzmann method. submitted to J. Com-
put. Phys., 2003.

[48] Y. Zhu and S. Granick. Rate-dependent slip of Newto-
nian liquid at smooth surfaces. Phys. Rev. Lett., 87, 2001.

14

