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ABSTRACT
This work examines the slip boundary condition by Lattice

Boltzmann simulations, addresses the validity of the Navier’s
hypothesis that the slip velocity is proportional to the shear rate
and compares the Lattice Boltzmann simulations to the
experimental results of Tretheway and Meinhart (Phys. of
Fluids, 14, L9-L12).  The numerical simulation models the
boundary condition as the probability, P, of a particle to
bounce-back relative to the probability of specular reflection, 1-
P.  For channel flow, the numerically calculated velocity
profiles are consistent with the experimental profiles for both
the no-slip and slip cases.  No-slip is obtained for a probability
of 100% bounce-back, while a probability of 0.03 is required to
generate a slip length and slip velocity consistent with the
experimental results of Tretheway and Meinhart for a
hydrophobic surface.  The simulations indicate that for
microchannel flow the slip length is nearly constant along the
channel walls, while the slip velocity varies with wall position
as a results of variations in shear rate.  Thus, the resulting
velocity profile in a channel flow is more complex than a
simple combination of the no-slip solution and slip velocity as
is the case for flow between two infinite parallel plates.

NOMENCLATURE
P probability for particle bounce-back
h half height of plate separation
t time
v velocity
wj weighting factor
x streamwise direction
x space coordinate

y spanwise direction
f(x,ξ,t) particle distribution function 
β slip length
ρ density
τ relaxation time
ξ particle velocity space
't time step

INTRODUCTION
For nearly a hundred years scientists and engineers have

applied the no-slip boundary condition to fluid flow over a
solid surface. While the generally-accepted no-slip boundary
condition has been validated experimentally for a number of
macroscopic flows, it remains an assumption not based on
physical principles.  In fact, nearly two hundred years ago,
Navier [1] proposed a more general boundary condition, which
includes the possibility of fluid slip. Navier’s proposed
boundary condition assumes that the velocity, vx, at a solid
surface is proportional to the shear rate at the surface,

where β is the slip length or slip coefficient.  If β=0 then the
generally assumed no-slip boundary condition is obtained.  If β
is finite, fluid slip occurs at the wall, but its effect depends
upon the length scale of the flow.  For example, the solution for
Stokes flow between two infinite parallel plates with the
boundary conditions of no shear stress at the centerline and
Navier’s hypothesis (1) at the wall, yields

vx=β(dvx/dy) (1)
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where 2h is the distance between the two plates, µ is the
viscosity, and (-dp/dx) is the pressure drop.  The first term in
the brackets, 1-(y/h)2, is the standard solution for pressure-
driven Stokes flow between two infinite parallel plates with no-
slip, while the second term, 2β/h, represents an additional
velocity associated with the general boundary condition (1).
The first term is of order one while the second term depends on
the plate separation, h.  If β is finite, the importance of the
second term increases as h decreases, and for a given β, there is
a sufficiently small length scale at which this term not only
becomes comparable to the first, but dominates equation (2).
Since the no-slip assumption appears to be valid at the
macroscale, β must be relatively small for Navier’s hypothesis
to hold.  However, it’s not readily apparent that the second term
in equation (2) will remain negligible for flows in microdevices
where the characteristic length scale is on the order of microns.

Recently, several researchers have suggested that the no-
slip boundary condition may not be suitable at both the micro-
and nano-scale. Ruckenstein and Rajora [2] investigated fluid
slip in glass capillaries with surfaces made repellent to the
flowing liquid.  Their experimental results of pressure drop
indicate larger slip than that predicted by chemical potential
theory, where slip is proportional to the gradient in the
chemical potential. The results suggest that slip occurs over a
gap near the surface rather than directly on the solid surface,
and the gap forms when a hydrophobic liquid flows over a
hydrophilic surface and vice versa.  They suggest the gap may
be increased in thickness by the release of gases entrained in
the flowing liquid and/or the desorption of soluble gases.  Their
results, however, are inferred from pressure drop-flow
measurements and not direct measurement of the fluid
velocities.  Computationally, Barrat and Bocquet [3] expect
significant slip in nanoporous medium when the liquid is
sufficiently non-wetting, which increases the effective
permeability of the nanoporous medium.  Their predictions are
experimentally justified by Churaev et. al. [4] who postulated
slip at the wall to recover the viscosity of water for water flow
in thin (<1µm) hydrophobic capillaries.  Pit et. al. [5] observe
fluid slip for hexadecane between two rotating parallel disks
with a gap of 190 microns.  By following the movement of a
photo-bleached test section, they measure no slip when the
surfaces are coated with perfluorodecanetrichlorosilane, a slip
length of approximately 170nm for bare sapphire, and a slip
length of 400nm for an octadecyltrichlorosilane (OTS) coating.
They conclude that slip depends on both the interfacial energy
and surface roughness.  At a much smaller length scale, Craig
et. al. [6] calculate the drainage force for a sphere approaching
a solid, flat wall.  They measure slip lengths up to 20nm for
aqueous sucrose solutions that have advancing and receding
contact angles of 70 and 40 degrees respectively.  They
conclude that the slip length depends non-linearly on the
approach rate of the sphere.  Zhu and Granick [7]
experimentally observe fluid slip in an oscillating surface force
apparatus.  For cylinder separations from approximately 10-
200nm, they measure slip lengths of up to 2.5µm for water
between octadecyltriethoxysilane (OTE) surfaces, 1.5µm for

tetradecane between OTE surfaces, and 0.9µm for tetradecane
between mica surfaces.  Their results suggest a strong
dependence between the velocity gradient and magnitude of the
slip, a critical shear rate for onset of fluid slip, and an increase
in the slip length as the separation between the cylinders
decreases.  Their conclusions, however, are inferred from
discrepancies between the measured normal force and expected
normal force assuming no-slip, and are not measured directly.
More recently, Zhu and Granick [8] examine the relative
importance of surface roughness and fluid-surface interactions
in determining the appropriate boundary condition.  For similar,
poorly wetting surfaces the critical shear rate to observe
deviations from force predictions assuming no-slip increased
nearly exponentially with increasing surface roughness.  They
conclude that local intermolecular interactions are dominate
when surfaces are very smooth, but are otherwise negligible at
sufficient surface roughness.  Tretheway and Meinhart [9]
measured fluid velocities in hydrophilic and hydrophobic
microchannels by micron resolution particle image velocimetry
(µ-PIV).  Their results showed a significant fluid velocity near
a hydrophobic microchannel wall and no-slip for a hydrophilic
surface.  A slip length of 0.92 microns was estimated.

In this work, we examine the slip boundary condition,
address the validity of Navier’s hypothesis with Lattice
Boltzmann simulations, and compare the simulations to the
results of Tretheway and Meinhart [9].

EXPERIMENTS
In this section, we review the results for fluid flow through

hydrophilic and hydrophobic microchannels.  Details of the
techniques and experimental apparatus can be found in
Tretheway and Meinhart [9].

Velocities were measured by micron-resolution particle
image velocimetry (µ-PIV) in 30µm deep by 300µm wide
extruded glass microchannels trimmed to a length of 8.25cm.
Measurements were made 4 to 4.5cm from the edge to
eliminate possible entrance effects and to ensure a fully
developed flow profile.  Deionized water seeded with 300nm
fluorescent particles was injected into the channel at a constant
flow rate of 200µl/hr.  Two channel types were examined,
hydrophilic and hydrophobic.  An untreated glass channel is
naturally hydrophilic.  Hydrophobic microchannels are created
by coating the walls with octadecyltrichlorosilane (OTS).  The
smooth and robust monolayer is approximately 2.3nm thick
with a roughness of 2-3 angstroms.  The OTS layer thickness is
less than 1/10000th the depth of the microchannel.  Two images
separated by 150µs were captured on a cooled, interline CCD
camera and analyzed with PIV software developed by Steve
Wereley (currently at the Dept. of Mechanical Eng., Purdue
University).  The interrogation region is 128 x 8 pixels
(streamwise to spanwise), which yields a spatial resolution of
14.7x0.9x1.8µm with velocity measurements obtained to within
450nm of the wall.  The out of plane measurement depth is
approximately 1.8µm.  To increase signal-to-noise, 49 image
pairs are cross correlated.  The resulting correlation functions
are then averaged before peak detection, following the
algorithm given by Meinhart et. al. [10].

Figure 1 shows the average velocity profile for flow near
the wall for hydrophilic (squares) and hydrophobic (triangles)
microchannel surfaces.  The velocity profiles are normalized by
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the free-stream velocity.  Measurements are taken in the mid-
plane of the channel (15µm from the bottom) near the side wall.
The field of view is aligned such that a section of the wall is
included in each image.  Since there are no particles in the wall,
the resulting correlations for that region produce erroneous
velocity vectors with magnitudes and directions that are
inconsistent with the known direction of flow.  The wall
location is then set at the point at which the velocity vectors are
erroneous. The uncertainty of the wall location is
approximately 450nm.

For a hydrophilic surface (squares), Figure 1 shows the
velocity approaching its free-stream value at 25µm from the
wall and smoothly decreasing to zero at the wall.  This profile
is consistent with the analytical solution for flow through a
rectangular duct with a finite aspect ratio, assuming the no-slip
boundary condition.  For flow through a hydrophobic
microchannel, the velocity profile is significantly different.
While Figure 1 shows the hydrophobic velocity profile
(triangles) near its free-stream value at 25µm and decreasing
towards the wall, a finite and significant velocity is measured
within 450nm above the wall.  This slip velocity is
approximately 8.5% of the free-stream velocity, and effectively
shifts the entire velocity profile when compared with the no-
slip profile (squares).  As a result, the velocity 25µm from the
wall in a hydrophobic microchannel is approximately 95% of
the free-stream velocity, compared with 90% for a
microchannel that is hydrophilic.  Thus, a monolayer of
hydrophobic molecules with a thickness of less than 23
angstroms significantly affects the velocity profile even out to a
distance of 25 microns from the wall.

The results of Figure 1 provide a direct measurement of
fluid slip for water flowing over a hydrophobic surface, and
confirm the no-slip boundary condition for water flowing over
a hydrophilic surface.  From these measurements we calculate a
slip length, β, of approximately 0.92µm.  This is consistent
with the work by Zhu and Granick [7] and Pit et. al. [5] who

report slip lengths up to 2µm.  Since the current experiments
are limited to a narrow range of flow rates, we are unable to
determine if the slip velocity is proportional to the shear stress,
with β being a constant.

LATTICE BOLTZMANN SIMULATIONS

Methodology
The Lattice Boltzmann Method (LBM) is an alternative to

the traditional numerical methods for solving incompressible
Navier-Stokes equations.  Instead of solving for the velocity
and pressure directly, LBM involves the particle distribution
functions f(x,ξ,t) (where x is the space coordinate and ξ is the
particle velocity) based on a simplified Boltzmann equation
(the LBGK model [11,12]), which can be written as follows

where τ is the relaxation time and f0 is the equilibrium
distribution function.  The term, -(f-f0)/τ is the well known BGK
approximation [13] to the complex collision operator in the
Boltzmann equation.  The particle velocity space, ξ, can be
discretized by a finite set of velocities, {ξj, j=0,1,2,…n}.   With
fj(x,t) the distribution function for ξj , we have

After discretization in time, the lattice Boltzmann equation
(LBE) is obtained

where the term –(fj-fj

0)/τ represents the collision (note that the
collision is implicitly defined in LBM).  Beginning with the
initial distribution and the distribution at time t=0, which can be
taken as the initial equilibrium distribution, the entire one-step
computation (from time t to t+'t) can be divided into two steps:
first, compute the collision and update the distribution at time t
by summing the collision terms; and second, compute the
distribution at time t+'t by streaming the post-collision
distribution function, i.e. the computed right hand side of the
LBE.  With the new distribution function obtained, the
macroscopic quantities of density, ρ(x,t), and momentum
ρu(x,t) can be calculated simply at all lattice points by

We use a standard three-dimensional lattice D3Q19 which
has 19 discrete particle velocities and can be written as follows:

For athermal fluids, the equilibrium distribution function
fj

0(ρ,u) in the D3Q19 lattice can be computed by
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Figure 1. Experimental velocity profiles for flow over a
hydrophilic (blue squares) and hydrophobic (black
triangles) microchannel surface.  The velocity profiles
are normalized with the free-stream velocity.
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where the wj is the weight, which takes the values:

The LBM used in our simulation is standard.  Readers
interested in these methods can see Rothman and Zaleski [14],
Chen and Doolan [15}, Luo [16], He and Luo [17], or Hou [18]
and the references therein.  Due to the large amount of
literature on LBM, the references here are far from complete.

Our simulations focus on the modeling of the no-slip and
partial slip boundary conditions.  In LBM, the bounce-back
scheme is widely used to treat the no-slip boundary condition
(with the exception Nie et. al [19], who studied velocity slip in
MEMS flows), while specular reflection can be used to model
the slip boundary condition.  In this work, we apply the
standard bounce-back scheme to simulate a no-slip boundary
and a combination of standard bounce-back and specular
reflection to model the partial slip boundary by assigning the
probability, P, of bounce-back and the probability, 1-P, of
specular reflection when a distribution hits a wall.  To the best
of our knowledge this is the first time this combination has
been applied in the lattice Boltzmann context.  However, the
idea was mentioned by Luo [20] and can be dated back to 1867
when Maxwell [21] studied the microscopic modeling of the
solid boundary.  It has been used previously by Lavallee et. al.
[22] to treat the no-slip boundary condition in the lattice gas
method, and has been used in the context of Direct Simulation
Monte Carlo [23].  The combination of bounce-back and
specular reflection is hard to implement in complex geometries.
For a newly developed method to treat slip and partial-slip
boundary conditions for arbitrary complex boundaries in lattice
Boltzmann simulations, see Zhou [24].

In the LBM simulations we closely match the parameters
in the experiment, with the exception of the channel length.  In
the experiments the length is 8.25cm, while the simulations set
the length to twice the channel width (600mm) and employ a
periodic boundary condition along the channel direction at the
entrance and end of the channel.  The simulations are done on a
20x200x400 grid with computations continued until the flow
reaches a steady state.

Results
Figure 2 shows the velocity profile of the exact solution of

the Navier-Stokes equations assuming no-slip at the walls
(intermittent, black line), the velocity profile measured
experimentally with µ-PIV (blue squares), and the LBM
simulations assuming 100% bounce-back at the wall elements
(solid, red line).  The LBM simulations are quantitatively
consistent with both the analytical solution and the
experimental results.  Thus, a probability of bounce-back equal
to 1 produces the no-slip boundary condition.  The excellent
quantitative agreement confirms the validity of the LBM
technique as well as validates the experimentally measured
velocity profile.

With the LBM technique validated, we examine the
probability required to generate slip lengths in the range of

experimentally measured values.  Figure 3 shows the slip
length, β, as a function of the probability of bounce-back.  As
expected, the slip length increases as the probability of bounce-
back decreases (and thus the specular reflection increases).
Tretheway and Meinhart [9] calculate a slip length equal to
0.92µm.  From Fig. 3, this would correspond to a very low
bounce-back probability, between 0.03 and 0.04 (or a specular
reflection probability between 0.96 and 0.97).

Figure 4 compares the velocity profile measured by µ-PIV
for flow over a hydrophobic surface [9] to the numerically
calculated LBM profile assuming a probability of bounce-back
equal to 0.03.  The assumed probability, P=0.03, produces a
similar slip length and slip velocity at the wall.  The profiles
show good agreement.  Thus, the LBM simulations may be
used to explore the slip condition.
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Figure 2.  Velocity profiles for a hydrophilic surface
measured with µ-PIV (blue squares), LBM simulations
assuming a probability of bounce-back of 1.0 (solid, red
line), and the exact solution (intermittent, black line)
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DISCUSSION
For the lattice Boltzmann simulations we use a

20x200x400 (z,y,x) mesh in calculating the velocity profiles.  If
we compare this results with coarser meshes we observe that
the calculated slip length and resulting slip velocity depend on
the mesh spacing with the calculated slip length and slip
velocity for a given probability of bounce-back decreasing with
mesh refinement.  For the 20x200x400 mesh, the slip length
and slip velocity for P=0.03 were calculated to be 1.15µm and
8.74% respectively.  This compares to a calculated slip length
and slip velocity of 1.72µm and 27.93% for a 5x50x100 mesh
and 1.33µm and 16.02% for a 10x100x200 mesh.  The results
presented in this paper with a 20x200x400 mesh is at our
current computational limit.  Future work with mesh refinement
will continue until the slip length and slip velocity no longer
varies with mesh size.

Tretheway and Meinhart [9] measured velocity profiles at
the mid-plane of the side-wall of the channel (in the y direction,
width of 300µm).  While we are currently unable to
experimentally measure the velocity in the z (or depth, 30µm)
direction, the LBM simulations show, for a given probability of
bounce-back, that the slip velocity varies along the channel
wall.   Figure 5 shows the velocity profiles at the mid-plane for
both the z and y directions.  While the calculated slip lengths
are nearly identical for both the z and y walls (1.12 for the z
direction and 1.15 for the y direction), the calculated slip
velocities are substantially different, 8.74% of the free stream
velocity for the y direction and 11.95% for the z direction.
Even though the slip length is smaller for the z direction, the
slip velocity is larger.  This difference results from variations in
the shear rate along the walls of the channel and produces a
more complex velocity than expected from previous results for
flow between two infinite parallel plates.  For the previous
case, the velocity profile that develops as a result of slip at the

surface is a simple combination of the velocity profile assuming
no-slip and a given slip velocity.  This simple combination is
not necessarily valid for channel flow or arbitrarily enclosed
geometries.

Navier’s hypothesis proposes that the velocity is
proportional to the shear rate at the wall with the slip length, β,
a constant.  Pit et. al. [5] estimate a slip length equal to 0.4µm
and conclude that it remains constant up to a shear rate of
2000s-1.  Zhu and Granick [7] and Craig et. al [6] conclude that
the slip length varies with shear rate with Zhu and Granick [7]
identifying a critical shear rate for slip to develop.  The
experimental range of shear rates examined by Tretheway and
Meinhart [9] are too narrow to conclude the slip length
dependence on shear rate.  We’ve examined by LBM the slip
length as a function of shear rate for flow between two infinite
parallel plates.  The simulations indicate that for a given
probability of bounce-back, the slip length remains constant
from a shear near 20s-1 to nearly 2000s-1.  This agrees with the
results of Pit et. al [5], however the results are for flow between
two infinite parallel plates.  Currently, we are examining by
LBM variations in shear rate for flow through a channel.

CONCLUSIONS
In this work we examine the slip boundary condition by

lattice Boltzmann simulations and compare the results to the µ-
PIV results of Tretheway and Meinhart [9].  The simulations
are consistent with the measured velocity profiles for the
hydrophilic (no-slip) channels when the probability of bounce-
back is equal to 1 and for the hydrophobic (slip) channels when
the probability of bounce-back equals 0.03 to 0.04.  In addition,
the no-slip results are consistent with the analytical solution of
the Navier Stokes equations assuming no-slip.  The simulations
indicate that, while the slip length remains nearly constant
(slightly lower in the depth direction), the slip velocity varies
with the wall position in the channel as a results of variations in
shear rate with higher slip velocities in the depth direction.
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Figure 4.  Velocity profiles for a hydrophobic surface
measured with µ-PIV (black triangles) and LBM
simulations assuming a probability of bounce-back of
0.03 (solid, red line).
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Thus, the resulting velocity profile in a channel flow is more
complex than a simple combination of the no-slip solution and
slip velocity as is the case for flow between two infinite parallel
plates.
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