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Abstract 

In this paper we prove that for Hessenberg delay DAEs of retarded type, the direct linearization along the 
stationary solution is valid. This validity is obtained by showing the equivalence between the direct linearization 
and the linearization of the state space form of the original problem, which is assured to be legitimate. Thus the 
study of the asymptotic stability of the stationary solution can be transformed to the study of the null solution 
of the linearization of the original problem. We point out here that a similar method can be used to prove 
the validity of the direct linearization of delay differential-algebraic equations of neutral type. © 1998 Elsevier 
Science B.V. and IMACS. All rights reserved. 

1. Introduction 

Recently, the study of stability of delay ODEs (DODEs) and numerical methods for them has 
been an active field of research. Different kinds of stability have been defined for delay ODE sys- 
tems and numerical methods as well. Stability of Runge-Kutta (RK) methods has been studied 
in [3,8,10,12,13,18], where scalar or systems of delay ODEs with constant or variable delays are 
considered. In [2,9,11,14,15], stability of 0-methods is studied for delay ODEs with different struc- 
tures. Most of these results are for linear constant coefficient systems with constant delay. 

Not much work has been done regarding the stability of delay differential algebraic equa- 
tions (DDAEs), which have both delay and algebraic constraints. In [1,4,5,7], the structure of DDAEs 
and order and convergence of numerical methods have been studied but the asymptotic stability of 
these systems and numerical methods still remains to be investigated. In [20], we give some results 
on the asymptotic stability of linear DDAEs and numerical methods. 
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In [17], asymptotic stability of Euler-Lagrange equations for constrained mechanical systems is 
studied by showing the equivalence of the direct linearization of the original system to that of its 
corresponding state space form. In fact their method can be extended to DAEs of Hessenberg form 
for index from one to three. In this paper, we will show the validity of the linearization of a nonlinear 
DDAE system of Hessenberg form, using the approach of [17]. Thus the asymptotic stability of a 
nonlinear DDAE system can be studied locally via its linearization. 

It should be pointed out here that our results are valid only when the stationary solution exists and 
only in a neighborhood of the stationary solution. It is obvious that stationary solutions exist only 
when there are solutions to the nonlinear systems of the fight hand sides of the DDAEs. Our study 
is useful in that it transforms a nonlinear problem into a linear problem which can be studied much 
more easily [20] and the stability of the null solution of the linear problem is closely related to the 
linear stability of numerical methods. 

In [1], nonlinear delay differential-algebraic equations of retarded type which are extensions of 
Hessenberg form are given with index up to three. The index-one problem is 

x ' :  f ( x , x ( t -  1) ,y ,y( t  - 1)), 

o-- 1),y), 

where Og/Oy is nonsingular. The index-two problem is of the form 

x ' :  f ( x , x ( t -  1),y),  

o = g ( x ) ,  

where (09/Ox)(Of/Oy) is nonsingular. The index-three problem is given by 

y'= f ( x , x ( t -  1 ) , y , y ( t -  1),z),  

x' = g(x, y), 
o = h ( x ) ,  

where (Oh/Ox)(Og/Oy)(Of/Oz) is nonsingular. Here the delays are normalized to 1 and for concise- 
ness we denote x(t) simply as x. It is pointed out in [1] that delays are only allowed in certain variables 
as described above because allowing delays in other variables/equations will give rise to equations of 
neutral or advanced type. So for simplicity, in Section 2 we first consider DDAEs of retarded type. 

Essentially, the approaches to the proofs in the following sections are the same. Since the lineariza- 
tion of the state space form of a DDAE is assured to be legitimate, we first obtain the formal state space 
form of the original DDAE by using the implicit function theorem and then we obtain the linearization 
of it, which is a linear delay ODE. In the second step, the direct linearization of the original DDAE 
is obtained and the state space form of it is obtained, which is also a linear delay ODE. Equivalence 
between these two linear delay ODEs is proved using the property of the stationary solutions and the 
implicit function theorem. 

For DDAEs of neutral type, we give the result for index-one problems in Section 3. Higher index 
problems can be studied similarly but the approach used in this paper will be too complex for them 
and alternative approaches are desired. 
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2. Hessenberg DDAEs of retarded type 

2.1. Index-one problems 

Consider the index-one problem 

x ' =  f ( x , x ( t -  1 ) , y , y ( t -  1)), 

0 = g(x ,x( t  - l ) ,y) ,  (1) 

where f :  U1 ~ WI, g: U2 ~ V2, U1 ~ ~nx × ~nz  × Rny X R ny, U2 C R nz × R n~ x R ny, V 1 C R n=, 

V2 c_ ]Rn~ and gu ¢ 0. Let (xo, Yo) be the stationary solution of (1). Then 

f(xo, xo, Yo, Yo) = O, g(xo, xo, Yo) = O. 

Consider the nonlinear constraint g(x, x(t - 1), y) = 0. By the implicit function theorem, there exists 
a neighborhood O of (x0, x0) and a differentiable function p(x, x(t - 1)) such that in (9, we have 
y = p ( x , x ( t -  1)) and 

g ( x , x ( t -  1 ) , p ( x , x ( t -  1 ) ) ) = 0  

holds for any pair (x, x(t - 1)) in (9. 
Thus in (9 the constraint can be satisfied naturally and the reduced state space form of (1) is given 

by 

x ' =  f ( x , x ( t -  1 ) , p ( x , x ( t -  1 ) ) , p ( x ( t -  l ) ,x ( t  - 2))). (2) 

Linearizing (2) along the stationary solution yields, with the abuse of notation x instead of Ox, 

( Of Op) ( Of Of Op Of Op) 
x' Of - -  Oxx Ox(t-- 1) O y Ox(t 1) OVa-- 1) ~xx = -~x + x +  + + x ( t - 1 )  Oy 

Of 0p ) 
+ 0y( t - -  1) 0x(t -~ 1) x ( t - 2 ) ,  (3) 

where the partial derivatives all take values at the stationary solution. In the rest of the paper, if not 
specified otherwise, all partial derivatives will be considered as taking values at the stationary solution 
for conciseness. 

The linearization (3) is assured to give the correct local information about the stationary solution 
according to the theory of [6]. We now consider the direct linearization of the original problem (1) to 
show that in fact the two linearizations are equivalent at the stationary solution. Direct linearization 
of (1) at the stationary solution yields 

Of a f  x' Of Of x(t - 1) + + y(t - 1), (4a) 
= -~x x + a x ( t -  1) OyY a y ( t -  1) 

Og 
Og Og 1) + (4b) 0 = -~x x + O x ( t -  1) x ( t -  ~yV- 

Since Og/Oy 7~ 0, solve for y using (4b) and insert it back into (4a) to obtain 
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Of -1 

( 0f (0q) -1 0g Of (0g) -1) 
+ Ox(~ f 1) Oy ~y O x ( t - 1 )  0 y ~ - -  1) ~yy x ( t -  1) 

Oy( t - -1)  ~y O x ( t -  1) 

However, since 0 = g(x, x(t  - 1), p(x, x(t  - 1))) in O, we have 

d9 0g 0 9 0p 
- + - 0, 

dx 0x 0y ax 

dg ag 0g ap 
- + - 0 ,  

d x ( t -  1) O x ( t -  1) Oy O x ( t -  l) 

in @. Thus 
O p _  ( 0 g ) - I  0g 

ox oU' 

a x ( t - 1 )  k,~y ] a x ( t - 1 ) '  

from which we can see that linearizations (3) and (4) are the same, which means linearizing the DDAE 
directly along the stationary solution is valid and will give the same asymptotic stability information as 
that of the state space form DDE problem. However, (3) is just a formal linearization since p usually 
can not be explicitly written out, while (4) can be obtained directly from the original system. 

2.2. Hessenberg index-two problems 

W e  now turn to the Hessenberg index-two problem 

x ' =  f ( x , x ( t -  1),y),  (6a) 

0 = 9(x), (6b) 

where f 'U1 ~ V1, g'U2 ~ V2, UI C R nx x ~nx × ]~ny, U2 C lI~. nx, V1 ~ ]~nx, V2 ~ ~ny and 
gxfy ¢ O. Let (xo, Y0) be the stationary solution of (6). Then 

f(xo, xo, Yo) = O, g(xo) = O. 

Since gxfv ~ O, gx has full row rank. Introducing a local coordinate chart for the constraint manifold 
S = {x: 0 = g(x)} with proper ordering of the variables x = (xl ,x2),  where xl E ]R ny, x2 E 
IR nx-7*u, Og/axl ¢ 0, there exists a neighborhood 0 c ]l~ n=~-ny of X20 and a differentiable function 
p" R nx-ny ~ IR ny such that for all x2 E O, we have g(p(x2), x2) = O. 

Note that the first derivative of (6b) yields 

ag i ~x x = f ( x , x ( t -  1 ) , y ) = 0 ,  
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where 

09 Of 
- - - - ¢ 0 .  
~x ~y 

Again by the implicit function theorem, y can be represented as a differentiable function of (x, x ( t -  1)) 
by 

y = h ( x , x ( t -  1)) 

in some neighborhood of (xo, xo) and we have 

~x f (X ,X ( t -  1) ,h(x ,x ( t -  1))) = 0  

for every pair (x, x(t - 1)) in this neighborhood. In fact, y is a function of (x2, x2(t - 1)) only, since 

h(x , x ( t -1 ) )  = h((p(x2),x2), (p(x2( t -1)) ,x2( t -1)) ) .  

So the constraints can be dropped to get the state space form DDE for free variable x2. 
To decouple the original system and rewrite it in independent coordinate variables, we let z = 

(Zl,  Z2), Zl E R ny, Z2 E R n~-ny and  

We then have 

x = X ( z )  = [ zl + P(Z2) 1 
z2 

. . . .  0Z 2 
Oz 0z 0 [n--m 

which is nonsingular. The same relations exist between x(t  - 1) a n d  z ( t  - 1) .  
Thus the DAE problem (6) can be transformed into the following form, which contains a D D E  

subproblem for variable z2 = x2, 

T(z)z '= f ( X ( z ) , X ( z ( t -  1 ) ) ,h (X(z ) ,X(z ( t -  1)))),  (7a) 

0 = Zl, (7b) 

with stationary solution z0 = Z(xo) = (0, z20) = (0, x20). 
In fact, since z~ = 0 ,  (7 )  can be written as 

dp(z2) Op(z2) , dt -- ~ z2= f ' ( X ( z ) ' X ( z ( t -  1 ) ) ,h (X(z ) ,X(z ( t -  l)))), (8a) 

z; = f 2 ( X ( z ) , X ( z ( t -  1 ) ) ,h(X(z) ,X(z ( t -1) ) ) ) ,  (8b) 

0 = Zl, (8c) 

and 
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and we can show that (8a) will hold if (8b), (8c) hold. Since when zl = 0, we have Xl = p ( x 2 )  : p ( z 2 )  

and hence g(p(z2), z2) : 0 for any z2, this in turn gives 

Og dp(z2) + ~__~gx z~ = 0 .  
g(p(z2) ' z2 )  - 0Xl dt 

However, we also have 
ag Og 

d g ( x l ,  x2) ~ -  f -- ~-x-Txl fl  + ~x2 f2 = O. 

So, when (8b) is satisfied, we have 

dp(z2) ( O g )  -1 0g 
- f ' = -  ~ ~x2 f2, 

because Og/OXl # O. This means (8a) is automatically satisfied when (8b), (8c) are satisfied. 
Note that now the variables Zl and z2 are independent and linearization makes sense. To linearize (7), 

we first show that linearization of a system of the form 

g(Y)Y'= f(Y) 
is just 

g(Yo)Y' = Df(yo)y, 
where Y0 is the fixed point satisfying f(Yo) = 0 and Df the Jacobian of f and g(y) ~ O, g E R n×n. 
This is obvious since the original system is equivalent to 

y, = g-1 (y)f(y). 
For the linearization of the above equation, we find that the terms containing the derivatives of g-1 (y) 
disappear since they are multiplied by f(y), which is 0 at the fixed points. Multiplying both sides 
of the linearization of yt = g-l (y)f(y) by the term g(Yo), we obtain the desired linearization. Even 
though there are delay variables on the right hand side of (7), the above discussion is still valid. 

Linearizing (7) gives 

Tz'= (OFT+ + Ox(t: l) \ O x  ~yy~xx T z T +  

0 = Z  1 . 

The direct linearization of (6) is given by 

OfOy Ox(tOh- ) 1)T z ( t -  1), (9a) 

(9b) 

x' Of Of 1) + ~ y ,  (10a) 
= + a x ( t -  1) x ( t -  

Og 
O =  ~xx z. 

Note here that the derivatives are constant. Since 

0g Of 
- - - - # 0 ,  
0x 0y 

by solving for y and inserting it back into (10a), we can rewrite (10) as 

(lOb) 
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X ! z of 

( 0,(0. )0. )x(,_ Of -1 
+ 

Ox(~-- 1) Oy Ox O--yy Ox Ox(-~-- l) 

Og 
O= ~xxX, 

l), 

which in fact contains a DDE subproblem for x 2. To decouple, we use the coordinate change 

x = T(zo)z, x( t-  1) = T(zo)z(t- 1), 

then (11) becomes 

Tz' (OFT- -  Of (Og Of '~- log ~-xZ)Z 

Of(OgOf)-'O9 Of ) 
T -  ~ o~ ~ Ox Ox(t - 1)T ~(t - 1), 

Of 
+ OxO -2- l) 

Og 0 = -~zTz. 
We see that (12b) is equivalent to (9b) since in (9, 

Og dg Og 0 9 0p(z2) + - -  _ - -0 ,  • 0  
0Xl 0Z~T-- 0X2 dz2 0x; 

and (12b) can be expanded as 

0g 0g 0/9(Z2) -- Z2. 
0 = 0x-SZl + 0x, 0 z ~  

(11) 

(12a) 

(12b) 

Comparing (9a) and (12a), we see that to prove that the two linearizations are the same, it is enough 
to prove 

Of(OgOf)-lOg Of_Of  Oh 
Oy Ox ~ Ox Ox Oy Ox' 

(13) 
of(OgOf~-~o9 of _ o f  Oh 
Oy ~ -~y Ox Ox(t- 1) Oy Ox(t- 1)" 

Note that here all the partial derivatives, including the elements of T, take values at the stationary 
solution. Since 

~xf(X,x(t- 1),h(x,x(t- 1))) ~ O 

in some neighborhood of (xo, x0), we have, in this neighborhood, 

d--x f(x,x(t-  1), h(x,x(t- 1) = O, 

dx([- 1) f (x,x(t-  1),h(x,x(t- 1))) = 0 ,  
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which at the stationary solution x0 = X(zo)  gives 

Og Of Og Of Oh Og Of - - 1 +  - -0 ,  + 
Ox Oy Ox Ox Ox( t - -1 )  Ox Ox 

and ~us  

Oh 

Ox 

0g of oh 
Ox Oy O x ( t -  1) 

- 0 ,  

(Og O f )  - 1 0 g  Of 
- - - -  Oxx Ox Ox' 

(14) 
Oh _ (Og D f , ~ - l O g  Of 

0x( t -  1) 0y] 0x 0x ( t -  1)' 
from which we see that (13) holds. 

So for Hessenberg index-two problems, the two linearizations are equivalent and thus yield the same 
asymptotic stability information at the fixed points, while only the direct lineafization is practical. 

2.3. Hessenberg index-three problems 

Let us now consider the more complicated index-three problem 

y ' =  f ( x , x ( t -  1 ) , y , y ( t -  1),z),  (15a) 

x' = 9(x, y), (155) 

0 = h(x), (15c) 

where f :  U1 ~ V1, g:  U2 ~ V2, h:  U3 ~ V3, Ul C_ R nx x R ~ x Rn~ x IRn~ × R nz, U2 _C R ~x × R ' ~  
U3 C_ R '~x, 1/1 _c Rn~, V2 C_ R n~, l~ C_ R nz and hxgvfz ¢ 0. Let (x0, 9o, z0) be the stationary solution 
of (15). Then 

f (xo,  xo, Yo, Yo, zo) = O, g(xo, Yo) = O, h(xo) = O. 

Since Oh/Ox has full row rank, using the same argument as before, we have, in a neighborhood of x20, a 
differentiable function xl = p(x2) such that 0 = h(p(x2), xa) holds for every xa in this neighborhood, 
where x = (Xl,X2), xl E R nz, x2 E R ~ - n z .  The condition Oh/Oxl ¢ 0 defines a partition o f x .  

The first derivative of the constraint (15c) gives 

Oh f Oh 
= y )  = o .  

Now since (Dh/Ox)(Og/Oy) has full row rank, we can use the implicit function theorem again. 
Partitioning y as y = (Yl, Y2), Yl E R nz, Y2 C R n y - ~ ,  Y2 can be represented by a differentiable 
function of (x2, Y2): Yl = ¢(x2, Y2) in a neighborhood of (x20, Y20) such that 

= o 

holds for every pair (x2, y:) in this neighborhood. By the same reasoning, since 

Dh Og Of 
¢ 0 ,  

0x 0y 0z 

z can be represented as a differentiable function k of (x, x( t  - 1), y, y(t  - 1)) in some neighborhood 
of (x0, xo, Y0, Yo) and the three aforementioned neighborhoods intersect. 
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We now perform the coordinate change as before. This coordinate change makes the new variables 
independent of  each other and thus the linearization can be done. 

Define the coordinate change by 

u = = g ( x , y )  = (16) 
U3 Yl -- ¢(X2, Y2) ' 

u4 Y2 

so we will have ul = 0, u3 = 0 as new constraints. Under the coordinate transformation (16), the 
stationary solution (23o, Yo) is given by uo = U(23o, Yo). From (16) we obtain 

l [ l X2 = Q ( u )  = ~2 
Yl U3 -F (fi(U2, U4) ' 

Y2 J ~4 

and 

-r  d op(u2) o o 
~U2 

T -  OQ _ 0 In-d  0 0 

O~ i~(~(U2, U4) O~(U2, U4) 
o xd 

~U2 OU4 
0 0 0 [m-d 

Note that T is still nonsingular here and u(t  - 1), (x( t  - 1), y( t  - 1)) have the same relationship as 
defined above. In the new variables, (15) becomes  

' 

0 = ul ,  (17) 

0 = U3, 

which contains the reduced DDE problem for (u2, u4). 
By using the fact that ul = u3 = 0 when 231 = p(z2), Yl = q~(X2, Y2), (17) can be written as 

dp(u2)  Op(u2) t 
dt - OU2 //'2 = o 01 ( Q ( U ) ) ,  (18a) 

I 
u2 = 92 (O(u) ) ,  (18b) 

d~(~z2, u4) 0@(~z2, u4) t 0O(u2,  u4) , 
--  ~2 -F 7z 4 

dt  0~  2 0U 4 

= f , ( Q ( u ) , O ( u ( t -  l ) ) , k ( O ( u ) , Q ( u ( t -  1)) ) ) ,  

u~4 = f 2 ( Q ( u ) , Q ( u ( t -  1 ) ) , k ( Q ( u ) , Q ( u ( t -  1))) ) ,  

O = u l ,  

(18c) 

(18d) 

(18e) 
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0 = u3, (18f) 

when (18b) and (18d)-(18f) are satisfied, (18a), (18c) are satisfied automatically. By the same reasoning 
as in Section 2.2, (18a) can be obtained from (18b), (18e). For (18c), when ul = 0 and u3 = 0, we 
can write the implicit constraint as 

9(Q(u)) = 

Taking the derivative in time of the above equation, we get 

0 h (  Og Og O g .  Of ~'~ 
a~ k ~Xl 91 + ~X2 g2 + ~ - - J l  X---J2] oyl oy2 / 

_ Oh Og dp(u2) + u~ + + 
OX OX l dt Oyl dt 

which gives (18c) when (18b), (18d) are satisfied. 
Linearizing (17) yields 

T u  ! ~_ 

O(x,y) 

Og T 0(x,v) ] 
Of Y '  Of Ok ~ /  

- -  • 

St 

0 = ul, (19b) 

0 = u3. (19c) 

The direct linearization of (15) is given by 

x' 0g 0g 
= ~x x + --oyy, (20a) 

Of Of Of Of Of 
Y'-- ~xx x + Ox(~- 1) x ( t -  l ) +  ~-yy+ Oy(t-- l) y ( t -  1)OzZ' (20b) 

Oh 
0 = ~xx x. (20c) 

Differentiating the constraint (20c) twice and noting that 

Oh 0g o f  
- - - - ¢ 0 ,  

0x 0y Oz 

we can solve for z. Inserting z back into (20a), we note that the equations involve only x and y, 

x' 0g Og = -~x x + ~yy, (21a) 

[ 0 ] 
+ Of Of Dk u ( t -  1), (19a) 

O(x ( t -  1 ) , y ( t -  1)) T +  0z  O(x ( t -  1 ) , y ( t -  1)) T 
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( ( Of)--I ( ) )  y ,=  0f  0f  0h 0g 0h 0g 09 0h 09 0f  
Uxx ~ Uxx~ Uzz ~ U x x + ~ U y U ~  x 

of 
+ Ox(t--- 1) 

Of (Oh Og Of)-Io])~ Og Of )X(~-- l) 
Oz Ox Oy Ozz Ox Oy Ox(7-- 1) 

(Of Of (Oh Off Of)- l (o]l  Off Ooo Oh Og Of ) )  
+ Oy Oz Ox Oy OzJ Ox Ox Oy + Ox Oy Oy Y 

Of 
+ oy(~: 1) 
Oh O= Uzx, 
Oh(Oq Og) 

0=U~ ~ x + ~ y  , 

Oz Ox Oy ~zz Ox Oy Oy( t -  1) y ( t -  1), (21b) 

(21c) 

where (21d) is added as an implicit constraint which will be shown to be equivalent to (19c). (21) in 
fact contains a DDE subproblem for x2, Y2. Now let 

so that (21) can be written as 

[ Og 09 I 0 0 ] 
Tu'  = Ox Oy Tu  + Tu( t  - 1), (22a) 

F1 F2 F3 F4 

0 ~- ~X z OU2 , (22b) 
In v-nz U2 o , 2,1 

0 -  Ox Ox In-d U2 

[ 1 Oh 0g 0~(~Z2, U4) t~2 + /Z3 + ~Z4 
+ O-'~ O-y 0U: 0U4 , (22c) 

u4 
where F1, F2, F3, F4 are the matrices multiplying x, y, x( t  - 1), y(t - 1) in (21), respectively. By 
the same reasoning as in Section 2.2, (22b) and (19b) are equivalent. The equivalence between (22c) 
and (19c) can be shown by the following. Since we have that in 69 

~g(p(~), ~2, O(U2 ~4), U4) ~--- 0 

holds for every pair (u2, u4), thus 

duld (Oh ox - ) )  ~u2d (Oh ox - ) )  sujg(p(u2), u2, ~b(u2,/t4), U4 = x--g(p(u2), u2, (fi(/z2, u4) , u 4 = 0, 

(21d) 
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which at the fixed point gives 

oh(og o~(~) + og og oe(~,~4)" / 
Ox o~ ou~  g77~ + oy~ ou2 ) = o, 

Oh 0g 0¢(u2,•4) + = 0. 
037 0U4 

Using these equations, we can simplify (22c) to 

~XX Ul "+- U 3 = 0. 

Since we already proved that (22b) is equivalent to (19b), it follows that U 1 = 0. Noting that 

Oh 3g 
- - - - ¢ 0 ,  
0x 0yl 

we obtain that u3 = 0 is equivalent to (22c). 
Now comparing (22a) with (19b), we see that to show that the linearizations (19) and (22) are the 

same, it is enough to prove 

Of Of 0k 
Ill f 2 ] -  0(x,v) + 0z 0(3:,V)' 

Of 
IF3 F4] = O(x(t- 1), y ( t -  1)) 

at the fixed points. Since 

+ Of Ok 
Oz O(x(t- 1) ,y ( t -  1))' 

Of _ [ O f  0f J 
O(x( t -1) ,y( t -1))  Ox(t--1) Oy(t ~1 )  ' 

Of Ok [Of Ok Of Oky] 
Oz O(x,y) -- -~z Ox Oz ' 

Of Ok 
Oz O(x( t -  1 ) , y ( t -  1)) 

_ [ O f  Ok Of O k ]  
Ox(t- 1) Oz Oy(t--- 1) ' 

we just need to prove that at the fixed points 

Q ~f)--I  ( ) Of Ok Of Oh Og ah ~g 09 Oh Og ~f =0 ,  (23a) 
o-7 o-~ + ~ ~ av ~ ~ o~ o~ + Ox ay ~x 

az Ox(t-1) + ~ z  Ox Oy ~zz) Ox Oy Ox(7--1) - 0 '  (23b) 

0s0k 0 (0h0  ) (0h0 0  0h0g0 ) ~f -1 
0-~ O y + O z  Ox Oy Ozz ~z Ox Oy + Ox OyOyy = 0 '  (23c) 
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Of Ok O f ( O h  O9 0 f ) - l o h  09 Of 
Oz O y ( t - 1 )  +~-z  Ox Oy Ozz Ox Oy Oy(t--m) --0" (23d) 

We give the proof for (23a) and (23b), noting that (23c) and (23d) can be proved similarly. 
Since differentiating the constraint h(x) -- 0 twice gives 

Oh 0g Oh 0g 
Ox Ox g(x'y) + ~x ~ y f ( X , x ( t -  1 ) , y , y ( t -  1),z) = 0 ,  

and as mentioned before 
Oh Og Of 
0x Oy Oz ¢ O, 

in a neighborhood 0 of (x0, x0, Yo, Yo), z can be represented as a differentiable function k of (x, 
x(t - 1), y, y(t - 1)) and the following equation holds for every pencil (x, x(t - 1), y, y(t - 1)) in O: 

Oh~9 OhOg 
F ( x , y ) -  O x - - 9 ( x , y )  + ~x ~ y f ( X , x ( t -  m) , y , y ( t -  1 ) , k ( x , x ( t -  m) , y , y ( t -  1 ) ) ) = 0 .  

So we have 
dF dF dF dF 
dx dy d x ( t -  1) d y ( t -  1) 

in  0 and at the fixed points 

dF Oh 0g 09 Oh 0g Of Oh 0g Of Ok 
- -  - -  + + - -  O, 
dx Ox Ox Ox Ox Oy Ox Ox Oy Oz Ox 

dF ~h 0g Of Oh Og Of Ok - -  + 
d x ( t -  1) Ox OM Ox( t -  1) Ox Oy Oz O x ( t -  l) 

--0, 

from which Ok/Ox and Ok/Ox(t - 1) can be obtained: 

Ox - Ox Oy -~z ~xx Ox Ox + Ox Oy ~xx ' 

Ok ( Oh Og ) Oh Og O f _ O f  - 1  

0 x ( t -  1) Oxx Oy ~ Ox Oy Ox( t -  1)" 

Thus we see that (23) holds, and the equivalence between the two linearizations (19) and (22) is 
established. 

3.  H e s s e n b e r g  D D A E s  o f  n e u t r a l  t y p e  

We consider the index-one problem given in [1] which is of neutral type 

x ' =  f (x ,x ( t  - 1),y, (t - 1)), 

0 = 9(x ,x ( t  - 1),y,y(t  - 1)), (24) 

where f : U1 ---+ V1, g'U2 ~ V2, U1 c_ R ~ x IR *~x x Rny x IRny, U2 C_ IR nx x R nx x IR n~ x IR'u, 
V1 C_ R n~, V2 C_ 1R~y and gv nonsingular. 
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Let (xo, Yo) be a fixed point of (24). We have 

0 = f(xo, xo, Yo, Yo), (25) 

0 = 9(xo, xo, Yo, Yo). 
By the implicit function theorem, there exists a neighborhood @ of (x0, xo, Yo, Yo) and a differentiable 
function p(x, x(t - 1), y(t  - 1)) such that in O, we have 

y = p ( x , x ( t -  1 ) , y ( t -  1)), (26) 

and 

g ( x , x ( t -  1) ,p(x ,x( t -  l ) , y ( t -  1 ) ) , y ( t -  1)) = 0  

holds for any (x,x(t - 1),y(t  - 1)) in O. 
Thus in 0 the constraint can be satisfied automatically and we obtain the reduced state space form 

DDE of free variable x as 

x '= f ( x , x ( t -  1) ,p(x ,x( t -  1),y(t  - 1 ) ) , y ( t -  1)), (27) 

where 

y ( t -  1 ) =  p(x ( t -  1 ) , / ( t -  2 ) , y ( t -  2)) 

and (27) can be understood recursively. It is obvious from (27) that (24) is of neutral type since 
x/(t), t ~> 0, depends directly on x(t), - 1  ~< t ~< 0, and hence the discontinuity of x(t) in - 1  ~< t ~< 0 
will not be smoothed out. 

Let p = p(wl, w2, w3). The direct linearization of (27) along the stationary solution, ignoring the 
dependence of y(t - 1) on x(t - 1), gives 

x' (Of  Of Op ) ( Of Of :pw2)X(t_ l ) 

(Of Op Of) 
+ ~ ~ + oy(7-- l) y(~- 1), (28) 

y ( t -  1)-- x ( t -  1 ) +  ~ 0w2 
i=2 

( Op "~y(t - v). (29) 
+ \ow3) 

( OP ) i-I OP )x ( t  _ i) 
- -  q- ~ OWl 

Inserting (29) into (28), we get the final form of the linearization of (27) as 

where 

11-- l / +  - 21 + 21, 

and y(t  - 2) is considered as having a similar representation as y(t  - 1) and so on. If v - 1 ~< t ~< v, 
where v is some integer, then we obtain 
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x ' =  (Df  

+ O y - -  

o f  O p ) (  o f  aS Op o f  Op Op 
+ O--y Ow---]- x +  ax( t -=l )  + a~Ow~ ÷ Oy aw3 awl 

OW 3 -~- ay(t 1) i=2 

o f  ap \ 
}/ ( t -  1) 

- -  + a y ( t -  1) Owl / 

- - +  \Ow3il OWl) x ( t - i )  

Ow2 + O y ( t -  1) ~w3 y ( t -  v). (30) 

Eq. (30) is equivalent to the direct linearization of the equation obtained by expanding out (27) 
thoroughly in the variables x(t - 1), x(t - 2), . . .  ,x( t  - v), y(t - v) for v - 1 ~< t ~< v using the 
recursive representation of y(t - i). This can be shown by direct computation. We omit the proof here. 

The direct linearization of (24) is given by 

o f  o f  x' Of Of x ( t -  1) + + y(t - 1), (31a) 
= ~ x  + Ox( t -  1) ~ 9  Oy( t -  1) 

Og Og 
Og Og 1) + + 1)Y(t - 1) O= ~x x + a x ( t -  1) x ( t -  ~yyY Oy(t-- (31b) 

From (31b), we obtain 

) Og --1 Og X(t -- 1) + y ( t -  1) (32) 
y = - -~y x + a m ( t -  1) a y ( t -  1) ' 

which can be inserted back into (31a) to obtain 

= ~ ~yy\O-yy] Oxx) x +  a x ( t - 1 )  ~yy ~yy 

+ Oy(7- 1) 0 y \~ , ,7  Oy(t -7-- 1) y ( t -  1). 

og  x(t - 1) o x ( t -  1) 

(33) 

Since we have 0 = 9(x ,x( t  - 1),y,y(t  - 1)) for every ( x , x ( t -  1),y(t - 1)) in O, where x, 
x(t  - 1), y(t - 1) are considered as independent variables, we obtain 

dg Og Og Op 
- -  J r _  - -  - -  

dx Ox ~y Owl' 

dg ag ag ap 
d x ( t -  1) Ox( t -  1) ay Ow2' 

dg Og Og Op 
d y ( t -  1) O y ( t -  1) Oy Ow3" 

(34) 

Thus (33) is equivalent to 
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x' ( O f  Of Op ) ( Of Of :Pw2)X( t_  l ) 
= ~XX ~- ~YY ~--W-1 X-I- 0X~- -  1) +Oyy 

+ ov(t - 1) + --or v ( t -  1). (35) 

Linearization (35) is just (28), which is equivalent to (30). Eq. (30) is equivalent to the linearization 
of (27) obtained by expanding out thoroughly in the variables x(t  - i), 1 ~< i ~< v, and y(t - v) for 
v - 1 ~< t ~< v. Thus we have shown the equivalence between the direct linearization of the original 
neutral delay problem and the linearization of its reduced form. 

Proofs of validity of the direct linearizations of the index-two and index-three neutral problems are 
much more complicated using this method. We expect a differential geometric approach like [16] will 
handle such problems more easily. 
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