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Abstract

A hybrid multiscale kinetic Monte Carlo (HMKMC) method for speeding up the simulation of copper electrodeposit-
ion is presented. The fast diffusion events are simulated deterministically with a heterogeneous diffusion model which con-
siders site-blocking effects of additives. Chemical reactions are simulated by an accelerated (tau-leaping) method for
discrete stochastic simulation which adaptively selects exact discrete stochastic simulation for the appropriate reaction
whenever that is necessary. The HMKMC method is seen to be accurate and highly efficient.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Electrodeposition processes are used in the fabrication of microelectronic devices and in nanotechnology
applications [1–3]. Copper electrodeposition with complex additive systems is used to form interconnections
in microelectronic devices [4]. The electrodeposition process involves the diffusion, migration, and convection
of solution species in the bulk electrolyte, as well as the reaction and diffusion of surface species at the interface
of the solid and the liquid. The surface morphology evolution is controlled via electrolyte additives, some of
which are present in very small concentrations, that react with the copper species in solution and on the
surface.

In addition to experimental studies [5–8] of the electrodeposition process, computer simulation provides a
powerful tool for studying and understanding complex multiscale phenomena. Continuum computational
methods [9–12], typically in the form of differential equations, can be used provided that the characteristic
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length is significantly greater than the molecular scale, and that the reactant concentrations are large. A sto-
chastic algorithm, the kinetic Monte Carlo (KMC) [13,14] method, has been used to study the molecular fea-
tures of copper electrodeposition and has been coupled with continuum methods to form a multiscale
approach [15–17]. In the KMC approach, the surface reactions and the surface diffusion are modeled as dis-
crete events. However, the time scales of these events may be widely different, resulting in high computational
cost.

A number of different approaches have been explored for developing a faster KMC algorithm and a more
efficient multiscale approach, including coarse-grained KMC methods [17] and spatially adaptive coarse-
grained KMC methods [18,19] which can solve the problem at the mesoscopic scale. Chatterjee et al. [20] pro-
posed a continuum mesoscopic model, which is based on a deterministic partial differential equation (PDE)
approximation of the reaction–diffusion system. Multiscale KMC simulations are also available for epitaxial
growth applications [21–24].

In the present paper we develop a hybrid multiscale kinetic Monte Carlo (HMKMC) method for efficient
simulation of copper electrodeposition in the presence of additives. The challenge of computational efficiency
is addressed by partitioning the different reaction channels according to the speed of the reaction and concen-
tration of the reactants. The slower reactions with reactants present in very low concentrations are treated by a
detailed stochasatic simulation algorithm (SSA). Reactions with larger reactant concentrations are treated by
a non-negativity-preserving tau-leaping SSA method [25–28]. Since diffusion rates on metal surfaces can be
very fast with respect to other reaction dynamics, the surface distribution of copper atoms is approximated
deterministically by a continuum partial differential equation. The simulation method efficiently solves the sur-
face kinetics of the copper additive chemistry, accurately resolving the surface concentrations of additive com-
plexes, even for species with very small populations.

This paper is organized as follows. We begin in Section 2 with a brief review of the KMC and tau-leaping
methods. The detailed HMKMC algorithm is presented in Section 3. In Section 4 we describe our heteroge-
neous diffusion model for monolayer diffusion of copper. Numerical results are provided in Section 5, and
Conclusions are given in Section 6.

2. Background

2.1. The kinetic Monte Carlo method

In this subsection we briefly describe the KMC method and introduce some notation. We use N to denote
the number of chemical species in the reaction–diffusion system and M to denote the number of reaction chan-
nels. An Nx � Ny grid is used for the discretization of the interacting surface, where the size of each grid cell is
DL� DL.

A pseudo-particle in the simulation is modeled as a cube of size q, which is usually much smaller than DL. A
pseudo-particle corresponds to a site in a grid cell. Different pseudo-particles can be present in the same grid
cell, as shown in Fig. 1. A local mean field (local homogeneity) assumption is used inside each grid cell,
meaning that the positions of the pseudo-particles in a cell are not tracked; only the number of pseudo-par-
ticles in the cell. Let X ijk be the number of pseudo-particles (or population) of species k at grid cell ði; jÞ. In a
grid cell, the sum of the numbers of all surface species pseudo-particles is equal to the total number of sites,
written as

XN

k¼1

X ijk ¼
DL2

q2
: ð1Þ

Defining a characteristic size q0 and a characteristic population X 0 which satisfy DL2 ¼ q2
0X 0, Eq. (1) can be

rewritten as

XN

k¼1

q2

q2
0

Cijk ¼ 1; ð2Þ

where Cijk ¼ X ijk=X 0 is the fraction of species k in cell ði; jÞ.
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The state vector of the system is denoted by

X ðtÞ ¼ fX ði; j; kÞ : 1 6 i 6 N x; 1 6 j 6 N y ; 1 6 k 6 Ng;
written as

X ðtÞ ¼ ðX 1ðtÞ; . . . ;X NsðtÞÞ;

where N s ¼ NxN yN . Defined as a reaction in a grid cell, each event is associated with a rate. These event rates

frateijk : 1 6 i 6 Nx; 1 6 j 6 Ny ; 1 6 k 6 Mg
are also known as the propensity functions faj; j ¼ 1; . . . ;Nrg, with aj dt giving the probability that event j will
occur in the next infinitesimal time interval ½t; t þ dtÞ and Nr ¼ N xNyM being the total number of rates. Each
event j also has a state change vector mj ¼ ðm1j; . . . ; mNsjÞ, where mij is the population change in X iðtÞ induced by
event j. The matrix m is known as the stoichiometric matrix.

Fig. 1. Grid structure of the HMKMC method. Different pseudo-particles can be present in the same grid cell.
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The stochastic simulation algorithm (SSA) [29,30] is a KMC-type method which is directed at well-stirred
chemically reacting systems. The SSA procedure is defined as follows. Consider a well-stirred, chemically
reacting system. Let

a0ðxÞ ¼
XNr

j¼1

ajðxÞ: ð3Þ

The time s to the next occurring reaction is an exponentially distributed random variable with mean
1=a0ðxÞ. The index j of that reaction is an integer random variable with probability ajðxÞ=a0ðxÞ. In each step,
SSA generates two independent random numbers r1 and r2 in Uð0; 1Þ with a uniform distribution on the inter-
val (0, 1). The time for the next reaction to occur is given by t þ s, where s is given by

s ¼ 1

a0ðtÞ
log

1

r1

� �
: ð4Þ

The index j for the next reaction is given by the smallest integer satisfying

Xj

l¼1

alðtÞ > r2a0ðtÞ: ð5Þ

The system states are updated by X ðt þ sÞ ¼ X ðtÞ þ mj. Then the simulation proceeds to the next occurring
time, until it reaches the final time.

2.2. Tau-leaping method

The SSA can become very slow if there are fast reactions and/or some chemical species which are present in
large populations in the system. The tau-leaping method [25] attempts to accelerate the simulation by asking
the question: How many times does each reaction channel fire in the next time interval of length s? In each
step, the tau-leaping method can potentially proceed with many reactions. This is achieved at the cost of some
accuracy. Define

Kjðs; x; tÞ ¼ the number of times; given X ðtÞ
¼ x; that reaction j will fire in the time interval ½t; t þ sÞ ðj ¼ 1; . . . ;N rÞ: ð6Þ

The tau-leaping method assumes the Leap Condition: Require s to be small enough that the change in the

state during ½t; t þ sÞ will be so small that no propensity function will suffer an appreciable change in its value.

The value of Kjðs; x; tÞ is approximated by the Poisson random variable P ðajðxÞ; sÞ with mean ajðxÞs and var-
iance ajðxÞs. The basic tau-leaping method is: choose the largest s that satisfies the Leap Condition. Given
X ðtÞ ¼ x, generate for each j ¼ 1; . . . ;N r a sample value of the Poisson random variable P ðajðxÞ; sÞ, and
update the state:

X ðetÞðt þ sÞ ¼ xþ
XNr

j¼1

mjP ðajðxÞ; sÞ; ð7Þ

where P ðajðxÞ; sÞ denotes an independent sample of the Poisson random variable with mean ajðxÞs. The tau-
leaping method tends to the explicit Euler method for the reaction-rate equation as the populations of all
chemical species in the system tend to infinity, for fixed s [25].

To select the s that satisfies the Leap Condition, Gillespie [25] first proposed a formula based on the Leap
Condition. Gillespie and Petzold [26] improved the formula by taking into account the variance, but that for-
mula required the calculation of the Jacobian of the propensity functions aðxÞ, which is expensive and incon-
venient. In addition, the above tau-leaping methods can generate negative solutions when the population of
some species is very small, since the leaping is based on the Poisson distribution. To resolve this negativity
problem, a more rigorous formulation of the tau-leaping method [27] and the corresponding s-selection strat-
egy [28] were recently proposed by Cao, Gillespie and Petzold. Our work makes use of this strategy in the
hybrid multiscale method introduced in Section 3. The s selection formula is given by (see details in [28])
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s ¼ min
i2IR

maxf�X i; 1g
jlij

;
maxf�X i; 1g2

r2
i

( )
; ð8Þ

where

liðxÞ ¼
XNr

k¼1

mikakðxÞ;

r2
i ðxÞ ¼

XNr

k¼1

m2
ikakðxÞ;

IR represents the set of species that are reactants or catalysts of at least one reaction and � is an error control
parameter, which is typically around 0.05–0.1, meaning that the population change of each species during a
tau-leaping step will not exceed 5–10%.

3. Hybrid multiscale kinetic Monte Carlo method

The proposed simulation algorithm is a hybrid method which draws on ideas from Haseltine and Rawlings
[31], Rao and Arkin [32], Cao et al. [33,34] and achieves its efficiency by combining the adaptive non-negativ-
ity-preserving tau-leaping SSA method [27,28] with a deterministic (PDE) approximation of the surface diffu-
sion, which is by far the fastest process in the system. The main idea is as follows: to achieve high efficiency in
the simulation, reaction channels are partitioned into three regimes. The partitioning of the reactions is done
automatically and adaptively.

1. SSA regime. This regime includes those reaction channels that are slow and have at least one of its reactants
present with a low population (usually less than 20). For reaction channels in this regime, a detailed sim-
ulation is necessary because every event in this regime can change the dynamics to a significant extent. The
original SSA (see Gillespie [29,30] for details) is applied in this regime.

2. Poisson regime. This regime includes those reaction channels such that all the reactants are present with a
moderate population (between 20 and 5000). For reaction channels in this regime, one event will not dra-
matically change the dynamics but stochastic effects should be captured in the simulation. The adaptive
non-negativity-preserving tau-leaping SSA method [27,28] is used to simulate the reactions.

3. Deterministic regime. In copper electrodeposition problems, surface diffusion is very fast in comparison to
surface reactions, and we approximate it deterministically (via a PDE). This can be justified by the slow-
scale approximation lemma in [33].

The surface diffusion is modeled by the following PDE:

oC
ot
¼ r � ðDrCÞ; ð9Þ

where C is the surface concentration of the diffusing species and D is the surface diffusion coefficient. Because
of the site-blocking effects of additives on the surface, the surface diffusion is not homogeneous. Instead, it is
heterogeneous and dependent on the surface concentration of the additives. A heterogeneous diffusion model
is proposed in Section 4 to account for this issue. In our implementation, Eq. (9) is discretized with the finite
volume method, yielding

DxDy
dCi;j

dt
¼ J iþ1;j � J i�1;j þ J i;jþ1 � J i;j�1; ð10Þ

where

J iþ1;j ¼ Dðiþ 1; j$ i; jÞCiþ1;j � Ci;j

Dx
Dy;

J i�1;j ¼ Dði� 1; j$ i; jÞCi;j � Ci�1;j

Dx
Dy;
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J i;jþ1 ¼ Dði; jþ 1$ i; jÞCi;jþ1 � Ci;j

Dy
Dx;

J i;j�1 ¼ Dði; j� 1$ i; jÞCi;j � Ci;j�1

Dy
Dx;

where Dðiþ 1; j$ i; jÞ denotes the diffusion coefficient between the cell ðiþ 1; jÞ and the cell ði; jÞ.
The surface reactions are simulated by the adaptive non-negativity-preserving tau-leaping SSA method

[27,28]. In that method, the SSA and Poisson regimes are determined based on whether the corresponding
reactants are present in low populations. Those reaction channels with low population reactants are called
critical reaction channels and treated by SSA. The remaining reactions are simulated with tau-leaping. Since
we treat the fastest process (surface diffusion) deterministically, stiffness is not a big concern in the SSA and
Poisson regimes. Thus it is reasonable to use an explicit tau-leaping method.

The algorithm is summarized below:
Algorithm (Hybrid multiscale method):

1. Initialize the system time t ¼ 0, set the diffusion time tdiff ¼ 0 and the surface diffusion time step-size ¼ sdiff .
The system time t records the real time of the reaction system. The diffusion time is the last time when the
surface diffusion is updated and the surface diffusion time step-size determines how often the surface diffu-
sion is updated.

2. Determine the list of critical reactions. In this step, the maximum number of reactions for each channel so
that no species will be exhausted is determined by

nj ¼ min
mij<0;16i6Ns

xi

jmijj

� �
; ð11Þ

where the brackets denote ‘‘greatest-integer-less-than”. A reaction is considered critical if and only if
nj < NC, where NC is a parameter set to 10.

3. Calculate s1 according to the tau-leaping s selection strategy (8). Let a0 be the sum of propensity functions
of all reaction channels. If the s-test condition

s1 <
MinLeap

a0

ð12Þ

is satisfied, go to step 4. Otherwise go to step 5. The parameter MinLeap is currently set to be 10.
4. Since the s picked up is relatively small, it is more efficient to put all reaction channels into the SSA regime.

We use the direct SSA method for all reaction channels. The simulation will repeat the direct SSA method
for a certain number of steps before doing another s-test. This is called a ‘‘silence period”, which is set to 10
SSA steps. Go to step 6.

5. Calculate the time for the next critical reaction to fire

s2 ¼
logð1=rÞ

â0

; ð13Þ

where â0 is the sum of the propensities of all critical reaction channels (SSA regime). Denote kj as the num-
ber of firings of reaction j.
(a) If s2 6 s1, take s ¼ s2. Find J c as the index of the firing critical reaction. Set kJ c ¼ 1 meaning that

there is a firing for reaction J c, and for all other critical reactions set kj ¼ 0. For non-critical Poisson
regime reactions, generate kj as a sample of the Poisson random variable with mean ajðxÞs.

(b) If s2 > s1, take s ¼ s1. For all critical reactions set kj ¼ 0. For non-critical Poisson regime reactions,
generate kj as a sample of the Poisson random variable with mean ajðxÞs.

Update the system state with the above k’s.
6. Update the system time t t þ s.
7. If t � tdiff > sdiff then integrate the surface diffusion equation (10) from tdiff to tdiff þ sdiff . Update

tdiff  tdiff þ sdiff . Go to step 2.
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In summary, the HMKMC method solves a coupled reaction–diffusion system with a stochastic method for
reaction and a deterministic method for diffusion. Specifically, the reactions are simulated by the adaptive
non-negativity-preserving tau-leaping SSA method [27,28], and the diffusion equation (10) is first discretized
to an ODE by the method-of-lines approach and solved by an adaptive backward Euler method. For simplic-
ity, in this paper we refer to the step-size given by Eq. (4) as the SSA step-size, and the one given by Eq. (8) as
the tau-leaping step-size. The HMKMC method adjusts the time step-size adaptively according to the prop-
erties of the system.

4. Heterogeneous surface diffusion modeling

As discussed above, the site-blocking effects of additives on the surface require a heterogeneous treatment
of surface diffusion. In this section we derive the relationship between the heterogeneous diffusion coefficient
and the surface concentration of the diffusing species and the additives.

We define two grid cells k and l on the discretized space, for the two scenarios shown in Figs. 2 and 3. In the
first simplified scenario, i.e., Fig. 2, the pseudo-particle in grid cell k can diffuse to any position in cell l, as well
as three other surface positions (north, west, and south), and the diffusion is treated homogeneously, in that
the diffusion coefficients in the four directions are assumed to be the same. Let Ck and Cl denote the concen-
trations in grid cells k and l, respectively. The rates of the diffusion events are written as

rðk ! lÞ ¼ C
4a

Cka2; ð14Þ

rðl! kÞ ¼ C
4a

Cla2; ð15Þ

where C is the jump frequency (number of jump attempts per pseudo-particle per second) and a is the grid size.
In the above equations, C is divided by 4 for the 4 jump directions in 2D diffusion, the number of diffusing
pseudo-particles in cell k is Cka2, and Eq. (14) is the number of pseudo-particles that cross the interface (a line
of length a) between cells k and l from k to l per unit length per unit time (s).

Thus the net flux J d from k to l is

J d ¼ rðk ! lÞ � rðl! kÞ ¼ Ca
4
ðCk � ClÞ; ð16Þ

k l

Fig. 2. Discrete diffusion scenario 1 in monolayer diffusion.

k l

Fig. 3. Discrete diffusion scenario 2 in monolayer diffusion.
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which should match the flux based on the continuous equation,

J c ¼ Dðk $ lÞCk � Cl

a
: ð17Þ

Thus

Ca
4
ðCk � ClÞ ¼ Dðk $ lÞCk � Cl

a
; ð18Þ

which yields Dðk $ lÞ ¼ 1
4
Ca2.

In the second more general scenario in Fig. 3, the diffusing pseudo-particle can only diffuse from the shaded
area (occupied sites) to the blank area (vacant sites). The rates of diffusion events are not only proportional to
the number of available diffusing pseudo-particles in the initial cell, but also proportional to the number of
available vacant sites in the final cell. These take the following form [35]:

rðk ! lÞ ¼ C
4a

Cka2ð1� flÞ; ð19Þ

rðl! kÞ ¼ C
4a

Cla2ð1� fkÞ; ð20Þ

where C is the jump frequency, a is the grid size, fk and fl are the fractions of occupied sites in cells k and l

respectively, and fk is equal to the total number of occupied sites divided by the total number of sites in grid
cell k, written as

fk ¼
ðCk þ Dk þ Ek þ � � �Þa2

a2=q2
¼ Akq

2; ð21Þ

where q is the size of a pseudo-particle (or a site), Ak ¼ ðCk þ Dk þ Ek þ � � �Þ is the concentration of occupied
sites in cell k, and C, D, E, . . . are the concentrations of different surface species.

The net flux J d from k to l is given by

J d ¼ rðk ! lÞ � rðl! kÞ ¼ Ca
4
½Ck � Cl � ðCkAl � ClAkÞq2�; ð22Þ

which should match the flux from the continuous diffusion equation

J c ¼ Dðk $ lÞCk � Cl

a
: ð23Þ

Thus

Dðk $ lÞ ¼ 1

4
Ca2 Ck � Cl � ðCkAl � ClAkÞq2

Ck � Cl
: ð24Þ

Thus the diffusion coefficients associated with pseudo-particles are generally heterogeneous and concentra-
tion-dependent. In the special case where there is only one surface species, i.e., the diffusing species is the only
surface species on the surface, we have Ck ¼ Ak. Then Eq. (24) reduces to Dðk $ lÞ ¼ 1

4
Ca2, the homogeneous

diffusion case. In the special case where two surface species are present on the surface (a diffusing non-blocking
copper species with concentration Ck and a non-diffusing blocking additive with concentration Dk) and the
concentration of the additive is uniform on the surface, with fraction given by

h ¼ Dka2

a2=q2
¼ q2Dk; ð25Þ

the diffusion coefficient is

Dðk $ lÞ ¼ 1

4
Ca2ð1� hÞ: ð26Þ

The presence of the additive (meaning a positive h) results in a smaller effective diffusion coefficient.
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5. Numerical simulations

5.1. Adsorption–desorption kinetics

The HMKMC method is first applied to the following reversible adsorption–desorption reactions:

Aaq () ½ka�kdBads; ð27Þ
where Aaq indicates that A is an aqueous solution species, Bads indicates that B is an adsorbed surface species,
and ka and kd are the forward adsorption rate constant and backward desorption rate constant, respectively.
In this test problem, diffusion is not considered and the reactions are treated by the adaptive non-negativity-
preserving tau-leaping SSA method in the HMKMC method. For this simple problem, an ODE can be de-
rived which directly models the evolution of the surface-averaged coverage of B and solved analytically.
The ODE describing the evolution of the surface coverage of B, denoted by h, is

dh
dt
¼ kaCAð1� hÞ � kdh; ð28Þ

where CA is the concentration of A asymptotically close to the surface. With initial condition hðt ¼ 0Þ ¼ 0, the
analytical solution for Eq. (28) is

hðtÞ ¼ kaCA

kaCA þ kd

ð1� e�ðkaCAþkdÞtÞ: ð29Þ

At equilibrium, dh
dt ¼ 0 and h ¼ kaCA

kaCAþkd
.

The following simulation results use the parameters CA ¼ 30 mol=m3, ka ¼ 0:4 m3=ðmol sÞ and kd ¼ 151=s.
The equilibrium surface coverage is h ¼ kaCA

kaCAþkd
¼ 0:44. For the HMKMC method, a 100� 100 grid with grid

length DL ¼ 5� 10�8 m was used.
For this problem, it is not possible to do an atomic-scale regular KMC simulation. The length scales of key

features on the surface are much larger than the scale of an atom. A typical atomic force microscopy image
that is large enough to include several nuclei on a surface are 5 lm on a side, which consists of
ð5� 10�6Þ=ð1:28� 10�10Þ ¼� 40; 000 lattice points on side. Regular KMC simulation is too computationally
expensive to be carried out for a problem with more than 1 billion (� 40; 0002) lattice points.

As an assessment of accuracy, Fig. 4 compares the results of HMKMC simulation with the coverage (29)
which would be obtained by using a sufficiently large number of lattice points or as the average of a large num-
ber of KMC simulation runs. Shown in Table 1, the computation is faster for the largest X 0 (implying less
coarse-graining), in which case reactions are more likely to be modeled in the Poisson regime, and the advan-
tages of tau-leaping are fully utilized. This value of X 0 ¼ 1:5� 105 is the largest possible number for the given
DL, as q ¼ 1:28� 10�10 m is the physical size of an atom (the size of a pseudo-particle cannot be smaller than
that of an atom). With decreasing X 0 (see Fig. 4(A)–(C)), the time step-size chosen by the HMKMC method
gradually reduces from the larger tau-leaping step-size to the smaller SSA step-size, resulting in an increase in
CPU time. The accuracy of the HMKMC method shown in Fig. 4(A)–(C) is good, with Fig. 4(C) having the
best accuracy since it uses the smallest time step-size; however, it requires the largest CPU time.

For X 0 ¼ 1, or equivalently, q ¼ DL, the pseudo-particle is the same size as a grid cell, which has been used
in the regular coarse-grained KMC methods (e.g., [17]). The HMKMC method for X 0 > 1 (Fig. 4(A)–(C)) is
nearly as accurate as the regular coarse-grained KMC method (X 0 ¼ 1, Fig. 4(D)), with less stochastic fluc-
tuations. An atomic-scale KMC simulation, if it could be carried out, would show negligible stochastic fluc-
tuations in the coverage for the surface area of these simulations – indicating that the fluctuations in the
regular coarse-grained KMC method are not physical. Cases C and D use the SSA step-size selection algo-
rithm, but because there are fewer particles in Case D, it uses a larger time step-size than Case C. Case D takes
less computation time than Case C but its solution is not as accurate and meanders above and below the exact
analytical solution.

In summary, compared to the regular coarse-grained KMC method, the HMKMC method (with large X 0

numbers) is efficient while preserving reasonably good accuracy.
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5.2. Copper electrodeposition kinetics

In this test the HMKMC method was applied to copper electrodeposition, without surface diffusion and
bulk solution diffusion, and was compared to the solution of the ODE rate equation [36,37]. The copper elec-
trodeposition mechanism [36,37] and the coefficients used are shown in Table 2.

The HMKMC method used a 64� 64 grid, grid length DL ¼ 5� 10�8 m, and pseudo-particle size
q ¼ 1:28� 10�10 m. The numerical solution is computed to the time T ¼ 0:5 s. The spatially-averaged concen-
trations of the surface species are plotted in Fig. 5, in which CuCl denotes the cuprous chloride, CuClPEG
denotes Cu(I)-Cl-PEG, PEG denotes polyethylene glycol, CuTh denotes Cu(I)-thiolate, CuHIT denotes
Cu(I)-HIT and HIT denotes 1-(2-hydroxyethyl)-2-imidazolidinethione. The ODE solution coincides with
the HMKMC solution. Fig. 6 focuses in on the concentration of Cu(I)-HIT, which is the species with lowest
concentration, for HMKMC solutions with X 0 ¼ 1:5� 105 and X 0 ¼ 1:5� 103, together with the ODE solu-
tion. The agreement of the numerical solution with the ODE solution becomes worse with decreasing X 0.
Moreover, the computation time (8403 s) of the case X 0 ¼ 1:5� 103 is greater than that of the case
X 0 ¼ 1:5� 105 (5605 s). If we further decrease X 0, the computation becomes even slower and the numerical
solution rougher (as one might expect due to small-population effects).
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Fig. 4. Surface coverage comparison between the HMKMC solutions and the analytical solution for (A) X 0 ¼ 1:5� 105; (B)
X 0 ¼ 1:5� 103; (C) X 0 ¼ 15; (D) X 0 ¼ 1.

Table 1
Parameters and CPU times in the adsorption–desorption kinetics test

Fig. 4 q (m) X 0 ¼ DL2=q2 CPU time (s)

A 1:28� 10�10 1:5� 105 16.15
B 1:28� 10�9 1:5� 103 37.55
C 1:28� 10�8 15 2150.3
D 5� 10�8 1 150.65
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These observations agree with those in Section 5.1, i.e., the HMKMC method is efficient and accurate with
a large X 0. A snapshot of the deposited surface by the computer simulation is given in Fig. 7, where the grey
level shows the density of deposited copper.

5.3. Surface diffusion

This section describes the determination of the diffusion time step-size for coupling of reaction and diffusion
and verification of the surface diffusion model of the HMKMC method.

5.3.1. Diffusion time step-size determination

This test considers the coupled reaction–diffusion system in which the adsorption–desorption reactions (27)
are allowed only in the center grid cell of a 100� 100 grid and the surface diffusion of B pseudo-particles
occurs on the whole 100� 100 grid. This corresponds to the physical situation in which an open copper site

Table 2
Surface reactions in copper electrodeposition mechanism

No. Reactions k a E0 ðVÞ
1 Cu2þ

aq þ e� ! Cuþaq 0.111 0.5 �0.5
2 Cuþaq þ e� ! Cus 0.0129 0.5 �0.12
3 Cus ! Cuþaq þ e� 0.01 0.5 �0.12
4 Cuþaq þ Cl�aq ! CuClads 5.0
5 CuClads ! Cuþaq þ Cl�aq 10.0
6 CuClads þ e� ! Cus þ Cl�aq 0.01 0.5 �0.12
7 CuClads þ PEGaq ! CuClPEGads 110.3
8 CuClPEGads ! CuClads þ PEGaq 1.0
9 SPSaq þ 2e� ! 2thiolate� 1.0e�3 0.5 �0.4
10 Cuþaq þMPSaq ! CuðIÞthiolateads þHþaq 10.0
11 CuðIÞthiolateads þHþaq ! Cuþaq þMPSaq 1.0e�5
12 Cuþaq þ CuðIÞthiolateads þ e� ! CuðIÞthiolateads þ Cus 0.0211 0.5 �0.12
13 CuðIÞthiolateads þHITaq ! CuðIÞHITads þMPSaq 20.0
14 CuðIÞHITads þHþaq þ e� ! HITaq þ Cus 2.0e�7 0.5 �0.12

k is the reaction rate constant, a is the charge transfer coefficient and E0 is the rest potential.
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Fig. 5. Concentrations of surface species vs. time. [Note: the concentration of CuHIT is small compared to others and almost coincides
with the x-axis.]
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Fig. 7. A plot of the deposited surface.
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is surrounded by molecules (e.g., PEG) that block electrodeposition but allow surface diffusion to occur under
the molecules.

The PDE for this system is

oCi;j

ot
¼ Dr2Ci;j þ fi;j; ð30Þ

where

fi;j ¼
kaCAð1� Ci;jÞ � kdCi;j ði; jÞ is the center grid cell;

0 otherwise;

�
ð31Þ

and Ci;j is the fractional coverage of B. The parameters were set as CA ¼ 30 mol=m3, ka ¼ 0:004 m3=ðmol sÞ,
kd ¼ 0:151=s, and D ¼ 1:0� 10�12 m2=s. The solution was computed to the time T ¼ 0:2 s.

The maximal concentration in the center grid cell obtained by directly solving the PDE (30) is
Cmax ¼ 2:0091� 10�4. For the HMKMC method with a 100� 100 grid, DL ¼ 5� 10�8 m, X 0 ¼ 1:5� 105

(q ¼ 1:28� 10�9 m), the diffusion time step-size was varied from 1:0� 10�2 to 1:0� 10�6, to assess the con-
vergence. The comparison of maximal concentrations for varying diffusion time step-sizes in Fig. 8 indicates
that the HMKMC solution is convergent with decreasing diffusion time step-sizes. In the HMKMC method,
the remaining numerical simulations use a predetermined diffusion time step-size of sdiff ¼ 1:0� 10�5 s, which
is small enough to maintain accuracy.

5.3.2. Surface diffusion verification

In this numerical experiment we test the diffusion model in Section 4. The HMKMC algorithm is compared
to a standard KMC model [38] described in the Appendix, for the case of copper diffusion on a surface par-
tially occupied by a simple blocking additive complex. The copper diffuses freely on the underlying metal sur-
face and on deposited copper, but it does not diffuse onto the sites occupied by additive species. For this
comparison, there is no deposition or dissolution of metal, nor are there any additional reaction kinetics.
The diffusing species are all present on the surface at the beginning of the simulation. The problem domain
is a 1 l m� 1 lm square, which is discretized to a 100� 100 grid with grid length DL ¼ 1:0� 10�8 m. This
test uses a spatially uniform additive coverage h ¼ 0:05. The initial concentration was set to 0 in one half
of the plane and 0:1ð1� hÞ in the other half of the plane. As shown in Eq. (26), the effective diffusion coeffi-
cient is De ¼ 1

4
Ca2ð1� hÞ ¼ Dð1� hÞ. An analytical solution for this problem is obtained in [39]
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Fig. 8. Convergence test for the coupling of reaction and diffusion.
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Cðx; tÞ ¼ 1

2
C0 erfc

x

2
ffiffiffiffiffiffiffiffiffiffiffi
ðDetÞ

p� 	 ; ð32Þ

where C0 ¼ 0:1ð1� hÞ and erfc is the complementary error function. Fig. 9 plots the concentration profile
after 1 s of diffusion for different diffusion coefficients. The deterministic HMKMC solutions completely over-
lap with the analytical solution, and agree well with the previous stochastic KMC solutions.

6. Conclusions

In this paper a hybrid multiscale kinetic Monte Carlo (HMKMC) method has been introduced to accelerate
the simulation of copper electrodeposition. The reactions are simulated by an adaptive non-negativity-preserv-
ing tau-leaping stochastic simulation algorithm (SSA), where an appropriate step-size is selected adaptively by
the algorithm for best speed-up while retaining a desired accuracy. The fast diffusion events are solved deter-
ministically with a heterogeneous diffusion model which considers site-blocking effects of additives.

Compared to fully deterministic methods (ODEs and PDEs), this stochastic-deterministic hybrid KMC
method retains the stochastic fluctuations which are important in accurately capturing all of the small-scale
dynamics. On the other hand, by treating the surface diffusion deterministically, the capability to simulate lar-
ger problems is significantly improved. As demonstrated by the numerical examples, the simulation is signif-
icantly accelerated from the coarse-grained KMC methods and maintains good accuracy. A heterogeneous
diffusion model has been proposed for monolayer diffusion of copper, which has been verified by numerical
experiments.
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Appendix

The KMC algorithm employed here is similar to that described by Levi and Kotrla [40] and Battaile et al.
[41] used for simulations of crystal growth. Details are available in Ref. [38].

1. Choose a random number, U 1, from a uniform distribution in the range (0, 1).
2. Select the transition event from the list by selecting the first index s for which

Ps
j¼1njrj P U 1.
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Fig. 9. Concentration profile after 1 s of diffusion.
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3. Choose the lattice site from ns randomly by generating another random number U 2, uniformly distributed
in (0,1).

4. Implement the transition event s at the chosen site with rate rs.
5. Update all rj that changed as a result of Step 3.
6. Advance the time in the simulations with time step-size s ¼ 1P

j
njrj

. Return to Step 1.

In more detail, the rates are binned by type in order to speed up the simulations. The computational
expense is reduced by using structured lists when coding the KMC algorithm:

1. Information about each rate is stored in a matrix. The site number is unique for each site on the surface.
Periodic boundary conditions are used in the x and y directions.

2. At the beginning of the simulation, the rates for all possible moves are tabulated and cataloged. These rates
are only recalculated when a move occurs at a site or one of its eight nearest neighbors.

3. All of the possible rates in the system are binned to create a list that is used to select which events occur.
4. The rates are normalized and a uniformly distributed random number U 1 is generated on the interval (0,1).
5. Once the random number is generated, the appropriate event is selected from the list.
6. An instance of that event is selected randomly from the bin for that rate by generating another uniformly

distributed random number U 2 in (0,1) and the action is executed.
7. The appropriate neighbor rates are updated in the site list depending on the action that is taken.
8. The time in the system is updated and the process is repeated.

This (2+1)D KMC model uses the rate-based approach which formulates all actions in terms of rates and
checks a single site per Monte Carlo time step. Null events are eliminated in this approach. There is a single
Monte Carlo time step in the simulation that is a function of the species and their associated rates. It is pos-
sible to simulate the effect of low concentration additives and steric effects with this KMC formulation.
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