CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exp@007;00:1-11 Prepared usingpeauth.cls [Version: 2002/09/19 v2.02]

Parallel Simulation for a Fish
Schooling Model on a
General-Purpose Graphics
Processing Unit

Hong Li"*, Allison M. Kolpas', Linda Petzold*, Jeff Moehlis"$

! Department of Computer Science

University of California, Santa Barbara, CA 93106
2 Department of Mathematics

University of California, Santa Barbara, CA 93106
3 Department of Mechanical Engineering
University of California, Santa Barbara, CA 93106

SUMMARY

We consider an individual-based model for fish schooling with incorporates a tendency for each fish to
align its position and orientation with an appropriate average of its neighbors’ positions and orientations,
plus a tendency for each fish to avoid collisions. To accurale determine statistical properties of the
collective motion of fish whose dynamics are described by sh@ model, many realizations are typically
required. This carries a very high computational cost. The arrent generation of graphics processing
units is well-suited to this task. We describe our implemerdtion, and present computational experiments
illustrating the power of this technology for this important and challenging class of problems.

KEY WORDS. GPU, Fish Schooling, Parallel Computing

1. INTRODUCTION

Many organisms display ordered collective motidi, [such as geese flying in a Chevron-shaped
formation [7], wildebeests herding on the Serengeti plains of Afritg][locusts swarming in sub-
Saharan Africal9], and fish schooling16]. The number of individuals involved in such collective
motion can be huge, from several hundred thousand wildébéesmillions of Atlantic cod off
the Newfoundland coast. Despite these large numbers, thepgran seem to move as a single

*E-mail: hongli@cs.ucsb.edu
TE-mail: allie@math.ucsb.edu
*E-mail: petzold@engr.ucsb.edu
$E-mail: moehlis@engr.ucsh.edu

Received
Copyright(© 2007 John Wiley & Sons, Ltd. Revised

2 H. LI, A. KOLPAS, L. PETZOLD, AND J. MOEHLIS

organism, with all individuals responding very rapidly teetr neighbors to maintain the collective
motion. Advantages of collective motion include a reduciiopredation {2, 4], increased harvesting
efficiency [LO, 16], and improved aerodynamic efficiency(, 11].

The mathematical study of biological collective motion lpasceeded, broadly speaking, on two
fronts. First, one can model each organism individuallythwiules specifying its dynamics and
interactions with other organisms. Such “individual-ldhseodels” can incorporate experimental
observations of the behavior of the organisms, therebygiliologically realistic models. On the other
hand, one can define “continuum models” to describe the digsamfithe population; for example, one
might study a model for the evolution of the density of theasnigms. However, available continuum
models are often qualitative caricatures that cannot cayatll of the details which can be included in
individual-based models, thereby compromising biololiealism.

In this paper, we consider an individual-based model fordidtooling. This model incorporates a
tendency for each fish to align its position and orientatidth \an appropriate average of its neighbors’
positions and orientations, plus a tendency for each fiskaaaollisions. Furthermore, randomness
is included in the model to account for imperfections in tlaghgring of information and in acting on
this information. To accurately determine statisticalpedies of the collective motion of fish whose
dynamics are described by such an individual-based modeiymealizations are typically required;
see, e.g.,3]. This can entail a very large amount of computation. Aftesctibing the model in more
detail, we will describe how a Graphics Processor Unit (GP&F) be used to very efficiently carry out
parallel simulations of this model.

With the low cost and high performance processing capasliof GPUs, computation on general
purpose GPUs (GPGPUJ| has become an active research field with a wide variety adndific
applications including fluid dynamics, cellular automapayticle systems, neural networks, and
computational geometry5[15, 6]. Previous generation GPUs have required computationseto b
recast into a graphics application programming interfaBlY such as OpenGL, which has made
programming GPUs for non-graphics applications a significhallenge. NVIDIA's Compute Unified
Device Architecture (CUDA) 13] is a new technology which directly enables implementatidn
parallel programs in the C language using an API designeddaeral-purpose computation. In this
paper, we will show how Single Instruction Multiple Data {8)) computation as well as parallel
processing within a single realization can be implementec cCUDA-enabled GPU to efficiently
perform ensemble simulations of an individual-based fistosting model.

2. FISH SCHOOLING MODEL

We consider a two-dimensional individual-based model foho®ling with local behavioral
interactions. This model is similar to that df][but without an informed leader, and with different
weights of orientation and attraction response. Groupsangposed ofV individuals with positions
p;(t), unit directionsi; (t), constant speegl and maximum turning raté. At every time step of size
7, individuals simultaneously determine a new directionravél by considering neighbors within two
behavioral zones. The first zone, often referred to as the€zaf repulsion”], is represented by
a circle of radius-,. about the individual. Individuals repel from neighborstthee within this zone,
which typically has a radius of one body length. The secomeza “zone of orientation and attraction”,
is represented by an annulus of inner radiugand outer radius, about the individual. This zone also

Copyright(©) 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@007;00:1-11
Prepared usingpeauth.cls

PARALLEL SIMULATION FOR A FISH SCHOOLING MODELONAGPU 3

includes a blind area, defined as a circular sector with eeatrgle(2r — 7), for which neighbors
within the zone are undetectable. Individuals orient witld @re attracted towards neighbors within
this zone.

These zones are used to define behavioral rules of motiast, Findividuali finds agents within its
zone of repulsion, then it orients its direction away frora #tverage relative directions of those within
its zone of repulsion. Its desired direction of travel in thext time step is given by

i (1) i (t
i(t+7) Z Pilt) = pilt) 1)
p;(t) t)l
JF#
This vector is normalized as;(t + 7) = \Z§§I:§| assumingu;(t + 7) # 0. In the case that

vi(t + 7) = 0, agenti maintains its previous direction of travel as its desirecgdion of travel,
giving 0;(t + 7) = ().

If agents are not found within individuaék zone of repulsion, then it will align with (by averaging
the directions of travel of itself and its neighbors) andl fee attraction towards (by orienting itself
towards the average relative directions of) agents withanzone of orientation and attraction. The
desired direction of ageritis given by the weighted sum of these two terms:

t t .
Z Z t)| Zvj(t)

i(t) -
vi(t+7) = w, Cha il + Wort— (2
() = pit) N
; po—no| 250

wherew, andw, are the weights of attraction and orientation, respegtiv€his vector is then

normalized as;(t + 7) = ﬁg‘;ijg‘ assumingy;(t + 7) # 0. As before, ifv;(t + 7) = 0, then

agenti maintains its previous direction of travel.

We denoter = w,/w, as the ratio of orientation and attraction tendencies. When0 (w, = 0),
individuals have no desire to orient with their neighbors.rAapproaches 1, individuals balance their
orientation and attraction preferences. For 1, individuals are more interested in orientation with
their neighbors than attraction towards them.

Stochastic effects are incorporated into the model by iraigenti’'s desired directiorv; (¢t + 7)
by an angle drawn from a circularly wrapped normal distridaitwith mean) and standard deviation
o. Also, since individuals can only turfr radians in one time step, if the angle betweéeft) and
0;(t 4+ 7) is greater thard, individuals do not achieve their desired direction, arstéad rotateér
towards it. Finally, each agent’s position is updated stemgously as

pi(t+7) = pi(t) + s0;(t + 7)7. 3)

Copyright(©) 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@007;00:1-11
Prepared usingpeauth.cls

4 H. LI, A. KOLPAS, L. PETZOLD, AND J. MOEHLIS

NN

[~
E,
=

Figure 1. CPU vs. GPU architecture. There are more transistevoted to data processing rather than to data
caching and flow control for the GPU, compared with the CPU.

3. THE GRAPHICS PROCESSOR UNIT - A NEW DATA PARALLEL COMPUTIN G
DEVICE

3.1. Modern Graphics Processor Unit

The general-purpose Graphics Processing Unit (GPU) isrbegpa viable option for many parallel
programming applications. The GPU has a highly paralleicstire with high memory bandwidth and
more transistors devoted to data processing than to daténggand flow control, compared with a CPU
architecture, as shown in Figuitd13]. Problems that can be implemented with stream processidg a
that use limited memory are well-suited to the GPU architextSingle Instruction Multiple Data
(SIMD) computation, which involves a large number of totaliddependent records being processed
by the same sequence of operations simultaneously, isfole&@PU application. We will show how
simulation of the fish schooling model can be structured taviihin the constraints of the GPU
architecture.

3.2. NVIDIA 8 Series GeForce-based GPU Architecture

The NVIDIA 8800 GTX chip, released at the end of 2006, has 7B&®AM and 681 million transistors
on a480mm? surface area. There are 128 stream processors on a GeF@@&IX chip, divided
into 16 clusters of multiprocessors with 8 streaming preoesin each multiprocessor as shown in
Figure2 [13]. The 8 processors in each multiprocessor share 16 KB smaeadory which brings data
closer to the Arithmetic Logic Unit (ALU). The peak computat rate accessible for general-purpose
application is (16 multiprocessoss 8 processors / multiprocessox) (2 flops / MAD *) x (1 MAD

/ processor-cyclex 1.35 GHz = 345.6 GFLOP/s, since the processors are clocke@atGHz with
dual processing of scalar operations supported. The mariwhserved bandwidth between system
and device memory is about 2GB/second.

*A MAD is a multiply-add.

Copyright(©) 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@007;00:1-11
Prepared usingpeauth.cls

PARALLEL SIMULATION FOR A FISH SCHOOLING MODELONAGPU 5

(Device) Grid

Block (0, 0) Block (1, 0)

|]

Thread (0, 0) Thread (1,0) Thread (0, 0) Thread (1, 0)

AT FA¥avaN RANA ATty

L4

Figure 2. Hardware Model : a set of SIMD multiprocessors witihichip shared memory.

Unfortunately, current GPU chips support only single-sien floating point, while current CPUs
support 64-bittechnology. Additionally, there is only 16Kfast read and write on-chip memory shared
between the eight processors, on each multiprocessor.

3.3. CUDA: Compute Unified Device Architecture

The Compute Unified Device Architecture (CUDA) Software Biepment Kit (SDK) supplies general
purpose functionality for non-graphics applications oe t#VIDIA GPU. The CUDA provides an
essential high-level development environment with stashd@alanguage, which results in a minimal
learning curve for beginners to access the low-level hardwor development flexibility, the CUDA
provides both scatter and gather memory operations. It sugports a fast read and write shared
memory [L3].

Following the data-parallel model, the structure of CUDAmmutation allows each of the processors
to execute the same instruction sequence on different §eleta@ in parallel. The data can be broken
into a 1D or 2D grid of thread blocks. Each block can be spetii®a 1D, 2D, or 3D array of threads
which collaborate via the shared memory. Up to 512 thread$eactive.

Currently, the CPU and GPU cannot run in parallel. Also, ih@t possible to execute multiple
kernels at the same time through the CUDA, or to download dathrun a kernel in parallel. Users

Copyright(©) 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@007;00:1-11
Prepared usingpeauth.cls

6 H. LI, A. KOLPAS, L. PETZOLD, AND J. MOEHLIS

can branch in the kernel based on the thread id to achievepteutasks on a single kernel, but the
simulation will be slowed down with such branches. IndnalGPU program launches can run at
most 5 seconds on a GPU with a display attached.

4. PARALLEL SIMULATION

To accurately determine statistical properties of theemive motion of fish, many realizations of
the fish schooling model are typically required for a givem sk parameters. This can be very
computationally intensive. There are essentially two wayimprove the performance: parallelize the
simulation across the realizations, and parallelize tireiktion within one realization. We do both.

We also tried simulating our fish model on a cluster. We gohedr performance improvement for
parallelization across realizations, but for paralldii@a within one realization, the message passing
overhead is a substantial burden. One might also considey ashared memory computer to improve
the performance of parallelization within one realizatibat for multiple realizations where many
threads must access the shared resources there are liksdysterious problems with contention. The
best part of the GPU is that it @urs It resides on our workstation. We don’t have to share itesiciie
it or find machine room space or a system administrator for it.

Migrating a C code from a workstation to the GPU is not a big jblyou are familiar with
programming multiple threads. Starting from a well-wrnittsequential C code on our workstation,
it took one of us about one week to port it to the GPU.

4.1. Random Number Generation

To generate the initial conditions and to add noise to ownutations at each time step, we need many
uniformly distributed random numbers. So that our statdtresults can be trusted, it is particularly
important that these random numbers are independent. &ememdependent sequences of random
numbers is one of the most important issues of implementinglations for ensembles of fish
schooling models in parallel.

Originally we considered pre-generating a sequence obumifandom numbers in the CPU. Since
the CPU and GPU can’t run in parallel, we can pre-generatega humber of random numbers and
store them in the shared memory, and swap back to the CPU &rajermore when they are used
up. Alternatively, we could pre-generate a huge number nfloax numbers and store them in the
global memory. These methods spend too much time on datasadaathermore, the Scalable Parallel
Random Number Generators Library (SPRN&)9], which might have been an ideal choice because
of its excellent statistical properties, cannot be moveth®oGPU efficiently due to its complicated
data structure. The only solution appears to be to employnalsirandom number generator on the
GPU. Experts suggest using a mature random number genersteaid of inventing a new one, since it
requires great care and extensive testing to evaluate amandmber generatdtf]. Thus we chose the
Mersenne Twisterl4] in our application, which has passed many statistical oamuess tests including
the stringent Diehard tests.

In our implementation, we modified Eric Mills’ multithreadl€ implementation]4]. Since many
random numbers are required by this model, we use the shagatny for random number generation
to minimize the data launching and accessing time.

Copyright(©) 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@007;00:1-11
Prepared usingpeauth.cls

PARALLEL SIMULATION FOR A FISH SCHOOLING MODELONAGPU 7

4.2. Parallelizing Across the Realizations

Parallelizing the independent realizations is an effectiay to improve the performance. Ensembles
of fish schooling runs are very well-suited for implemergaton the GPU through the CUDA.

The whole fish schooling simulation can be put into a singlen&kerunning in parallel on a
large set of system state vectoR&!(t), Py] (t), V! (t), Vy!(t), respectively representing the
and y components of the positions of the fish and theand y components of the velocities
of the fish, wherei is id of the fish, j is the block id, andt represents time. The initial
conditions Pz (0), Py! (0), V] (0), Vy](0) are randomly generated by different processors within
each multiprocessor. The large set of final state vectors(t), Pyl (t;), Val (t;), Vy! (t) wil
contain the desired results. We minimize the transfer betwbe host and the device by using an
intermediate data structure on the device, and batch a fel sransfers into a big transfer to reduce
the overhead for each transfer.

4.3. Parallelizing Within One Realization

Before discussing parallelism within one realization, walioe the sequential algorithm. Individual
fish are initialized in a bounded region with randomized poss and directions of travel. Then the
simulation is executed fot; = 3000 steps to reach a steady state. At each step, we calculate the
influence on each fish from all the other fish. To calculate tliénce on a fish, we compute the
distance from this “goal fish” to all the other fish and recdrd influence coming from the different
zones in a few variables. Next, we compute the net influermethis “goal fish”, including the noise
term, based on the above data, and save them to an influeageAsfter computing all the influences
for all the fish, we update the position and direction of eash based on the influence array of this
step.

For the GPU, there are some restrictions on the number addsrim each block and the total number
of fish stored in the shared memory. The device has very ldhsbtared memory in each multiprocessor
but relatively large global memory. The global memory adjacto the GPU chip has much higher
latency and lower bandwidth than the on-chip shared meniioigkes about 400-600 clock cycles to
read or write the global memory vs. 4 clock cycles to accessltared memory. To effectively use the
GPU, our simulation makes as much use of on-chip shared nyeasguossible. Although it is better
to have at least 128 threads for the best efficiency, we haakéothe limited shared memory size into
account.

The main goal of parallelizing within one realization is tecdmpose the problem domain
into smaller subdomains. In our implementation, within feddock j, the system state vector
Pz], Py, V!, Vy] is divided among threads. Assume that we havdish and we use: threads
to do the simulation. Then we need orderof = N/n time to calculate the influences on each of
the fish. In the parallel implementation, we initialize &létfish with random positions and directions.
At each step we load fish by loading one fish in each thread. The system state \weliaded to
shared memory at this stage are the “goal fish”. Each threlislomly one “goal fish” at a time and
calculates the influences on this “goal fish”. Thus duringgiap, each thread processes onrelement
subvector. To calculate the distance from the “goal fish”lkéh@ other fish, we need the position and
direction of all the other fish. By using a temporary arrayinés: in shared memory, we loadfish at
a time, with each thread loading one fish. The program wilpkeading until all the desired data have

Copyright(©) 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@007;00:1-11
Prepared usingpeauth.cls

8 H. LI, A. KOLPAS, L. PETZOLD, AND J. MOEHLIS

NN

Update the system state

.....

2

*, :
Keep Ioadl'ﬁ until finished ifluence Record
loading all the fish (Reuse the vector of goal fish)
tid=0 [|
tid=1 —,
Save i
porary
calculation {
tid=n

Figure 3. Memory layout of the fish schooling model. Thererathreads to simulate one realization with thread

id tid to identify the thread. In proceds each thread loads one fish as its “goal fish” from the devicenamg to

shared memory; In procegs each thread loads fish to another array in shared memorypteps 3, each thread

uses the full data from proceggo compute the influences on its own “goal fish”; Proce@sasd3 continue until

all of the influences to the “goal fish” have been computed;rbtess4, each thread saves its influence to the

influence record array (this reuses the previous array te shared memory); In procedseach thread updates
its “goal fish” to the system state vector on the device.

been loaded and used for calculation for the goal fish. Thach ¢hread will compute the influence
information for the goal fish of this thread. At the end of tlmwslation step, each thread writes the
results into its own influence subvector. After all the infiae calculations are finished, each thread
updates its system state subvector by its influence subva@tte memory layout of the whole process
is shown in Figure3. Our implementation does not make use of a concurrent upBateng each
calculation, each thread reads the full system state vebher concurrent reads to the same data are
supported by the hardware.

Within each realization, most calculations use the sharethary, for which the memory access
latency is small. In addition to the parallelization witline realization, we have many blocks doing
independent realizations. Whenever a thread is waitingctess the device memory, another thread
will be running on the ALUs. Hence the memory access lateacywt a problem.

5. RESULTS

Our simulations were run on the NVIDIA GeForce 8800GTX itlsthon a host workstation with Intel
Pentium 3.00GHz CPU and 3.50GB of RAM with physical AddresteRsion.

Copyright(©) 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@007;00:1-11
Prepared usingpeauth.cls

PARALLEL SIMULATION FOR A FISH SCHOOLING MODELONAGPU 9

To begin a simulation, individuals are placed in a boundegiore (so that each agent initially
interacts with at least one other agent), with random pwsitand directions of travel. The parameters
were fixed to ber, = 1,r, = 7, n = 350°(= 6.1 radians),s = 1, 7 = 0.2, ¢ = 0.01, and
0 = 115°(~ 2 radians). Simulations were run for approximately 3000 steptil they reached a
steady state. Groups of si2é = 100 were explored for a range of ratiesof attraction to orientation
weightings.

Two observables were used to measure the structure of thelsclelongation and polarizatiog]|
Elongation measures the ratio of the length of the axis atigwith group motion to the axis
perpendicular to group motion, and polarization

3

P(t) = %

N
Z v (t)

measures the degree of group alignment. Both quantitiess values between 0 and 1. To obtain
statistics regarding the group structure for a given $¥zand ratior, 1120 realizations (with different
initial conditions) were run. The average group elongatiad polarization were recorded, as well as
the probability of group fragmentation.

We were able to nicely resolve the group statistics as a fmmof the ratio of attraction to alignment.
We find that forr close to zero, groups exhibit swarm behavior, with smalapgahtion and elongation
nearl. As r is increased, groups become increasingly more alignethifgy elongated dynamically
parallel groups and then highly parallel groups é&sfurther increased; see FiguteThus, by changing
the proportion of attraction to alignment tendencies, geogan shift between different collective
behaviors. We also see that the probability of fragmentafiist increases as the group elongation
increases (from < r < 2.5), then decreases as elongation decreases @#remr < 8), and then
increases again as schools become more highly alignedjgerb.

The simulation performance in generating these results exasordinary. We simulated 1120
realizations of the code witth' = 100 individuals. The timing results for different parameters a
shown in Table. The simulation time of the GPU-based code includes the ¢tiffeading data to the
GPU and copying the data back to the host. The parallel (Gitlation is abouR30 — 240 times
faster than the corresponding sequential simulation omdisé workstation.

The code on the host workstation was carefully written taussdmemory accesses and combine
loops, and was the starting point of the GPU code. SSE (Stngg®iMD Extensions) was not enabled
on the workstation operating system, in the way that mosttjti@ners (including us!) would normally
use a workstation. The workstation computation was peréatrim single precision. Even so, one
might reasonably ask why is the GPU making so much better Lige GPU resources? The answer
is multithreading. In our simulation code, there are margniches and memory access operations,
besides the floating point operations. On the GPU, the sd¢biedan arrange for other threads to run
while the current threads are accessing the global memory.

The limitation of single-precision floating-point on the GBeems to have no noticeable effect on
the results, for this computation. Schools generated irbldoprecision on the host workstation were
found to be statistically indistinguishable from thoseadbéd in single precision.

Copyright(©) 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@007;00:1-11
Prepared usingpeauth.cls

LN

10 H. LI, A. KOLPAS, L. PETZOLD, AND J. MOEHLIS

NN

Swarm
o ~ A\ |
7 A
ALK T |
N “~ AN \ ES /- Al r=0.25
L . 2 i
2 — 4\ .
| T O
—
| = ;/ //f
ot <T N]
il LRV
/ 7\
~ \M]
AVAVS
i V |
-10 -8 -6 -4 -2 0 2 4 6 8
Dynamic parallel
b i
o r=2 |
4 \\\ N i
AN - ~
oF AN . S DR
—N R
ok =T TN - i
NN
L PEANRN \\\/ N =
N ~ h -
s /\ /:\\ =
i P
8 i
10k i
S - T B R
Highly parallel
6 ‘_"ﬂe\ = _ 1
il =~ |
P r=16
2l &kkk -_— = “(\ B
;. =T
“ - (&9\@ -
— . T]
=~ - T —
-4t - (\(\&‘—\ d
-6 - (\(\& ~ i
-8 -6 -4 -2 6 ‘2 (\;& 6 8

Figure 4. Swarms = 0.25), dynamic parallel £ = 2), and highly parallel{ = 16) collective motion for
N = 100 member schools.

Copyright(©) 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@007;00:1-11
Prepared usingpeauth.cls

PARALLEL SIMULATION FOR A FISH SCHOOLING MODELONAGPU 11

s S s

T T T T T
250 R
& 2f .
kS
o 15| R
c
o
[1m} 1F i
1 1 1 1
107 10 10° 10" 10°
r
i — .
c
Kl
=
IS
N 05k B
B .
o
a
0 1 il 1 1
107 10" 10° 10" 10°
r
c 1 T T — T T
Kl
I
IS
S o5 R
IS
(@]
g J\\.,_.M//’—“
o
S Ok n PR | n PR n PR | n PR i
107 10" 10° 10" 10°
r

Figure 5. Statistics of group elongation (only includingnAeagmented schools), group polarization (only

including non-fragmented schools), and probability ofugrdragmentation, fortN'. = 100 member schools. To

obtain these statistics, for each valuerofl120 simulations with different initial conditions werernr for 3000
time steps, each using the GPU.

6. CONCLUSIONS

We considered an individual-based model for fish schoolihgctvincorporates a tendency for each
fish to align its position and orientation with an appropiatverage of its neighbors’ positions and
orientations, plus a tendency for each fish to avoid coltisidRandomness is included in the model
to account for imperfections in the gathering of informatiand in acting on this information. For
the problem of calculating collective motion statisticaé@sures from many realizations, we observed
speedups o230 — 240 times for our parallelized code running on a GPU over the esponding
sequential simulation on the host workstation. With thipigssive performance improvement, in one
day we can generate data which would require more than sixhmeaf computation with the sequential
code.

In the future we hope to simulate larger fish schools usingtehs of GPUs. Our computation should
scale well for parallelization across the simulations.eEfive parallelization within one realization

Copyright(©) 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@007;00:1-11
Prepared usingpeauth.cls

12 H. LI, A. KOLPAS, L. PETZOLD, AND J. MOEHLIS i

Table |. Performance Comparison for different parameters

Ar, Sequential Simulation Time (ms) Parallel Simulation Tinms) Speedup

0.03125 7924067.2 33750.6 234.8
0.0625 7925786.6 33767.7 234.7
0.125 7908017.5 33750.6 234.3

0.25 7938803.4 33790.0 235.0
0.5 7934238.6 33774.8 235.0
1 7902735.7 33855.3 233.4

2 7799067.5 33755.0 231.0
4 8009521.9 33859.2 236.6
8 8091104.2 33681.4 240.2
16 8091787.8 33706.8 240.1

will depend, of course, on the communication speed of thetetu The usefulness of individual-
based models of biological systems, which can incorporeteiled experimental observations of the
behavior of the organisms, is limited by the ability to siaiel them in a reasonable amount of time.
By exploiting the power of general-purpose GPUs as illdsttan this paper, we expect that it will be
possible to simulate more detailed models with more agentefiger times and over more realizations.
This GPU computational paradigm has the potential to reiaiize our ability to understand how
collective behavior at the macroscopic, population-levedes from the interaction of individuals with

each other and their environment.

7. ACKNOWLEDGMENTS

We thank lain Couzin for helpful discussions related to thaled, and Brent Oster for introducing us
to the NVIDIA GPU.

This work was supported in part by the U.S. Department of §nander DOE award No. DE-FGO02-
04ER25621, by NIH Grant EBO07511, by the Institute for Cndieative Biotechnologies through grant
DAAD19-03-D004 from the U.S. Army Research Office, and byibl@l Science Foundation Grant
NSF-0434328. J.M. also was supported by an Alfred P. Sloae#&teh Fellowship in Mathematics.

REFERENCES

1. S. Camazine, J. L. Deneubourg, N. R. Franks, J. Sneyd, &alitaz, and E. Bonabea&elf-Organization in Biological

Systems Princeton University Press, Princeton, 2003.
2. 1. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin. HEifeecleadership and decision making in animal groups on the

move. Nature 433:513-516, 2005.
3. I.D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. RikstaCollective memory and spatial sorting in animal groups

J. theor. Biol, 218:1-11, 2002.

Copyright(©) 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@007;00:1-11

Prepared usingpeauth.cls

PARALLEL SIMULATION FOR A FISH SCHOOLING MODEL ONAGPU 13

4. P. M. Driver and D. A. HumphriesProtean Behavior: The Biology of Unpredictabilitpxford University Press, Oxford,
1988.

5. GPGPU-Home. GPGPU homepage, 2007. http://www.gpgpiu.or

6. H. Li and L. Petzold. Stochastic simulation of biocherhggstems on the graphics processing unit. Technical report
Department of Computer Science, University of CaliforrBanta Barbara, 2007. Submitted.

7. P.B. S. Lissaman and C. A. Shollenberger. Formation fbdbirds. Science168:1003-1005, 1970.

8. M. Mascagni. SPRNG: A scalable library for pseudorandamiper generation. IfProceedings of the Ninth SIAM
Conference on Parallel Processing for Scientific Computian Antonio, Texas, 1999.

9. M. Mascagni and A. Srinivasan. SPRNG: A scalable librarnypseudorandom number generation.AiM Transactions
on Mathematical Softwareolume 26, pages 436-461, 2000.

10. D. R. Martinez and E. Klinghammer. The behavior of the l@loacinus orca a review of the literature Z. Tierpsychol.
27:828-839, 1970.

11. R. M. May. Flight formations in geese and other birtl&ture 282:778-780, 1979.

12. S. R. S. J. Neill and J. M. Cullen. Experiments on whetlodiosling by their prey affects the hunting behavior of
cephalopods and fish predatork.Zoology 172:549-569, 1974.

13. NVIDIA Corporation. NVIDIA CUDA Compute Unified Device uhitecture Programming Guide, 2007.
http://developer.download.nvidia.com.

14. NVIDIA Forums members. NVIDIA forums, 2007. http://fons.nvidia.com.

15. John D. Owens, David Luebke, Naga Govindaraju, Mark isladiens Krger, Aaron E. Lefohn, and Timothy J. Purcell.
A survey of general-purpose computation on graphics hamlwén Eurographics 2005, State of the Art Reportages
21-51, August 2005.

16. B. L. Partridge. The structure and function of fish scho8ci. Am, 245:90-99, 1982.

17. Richard P. Brent. Uniform Random Number Generators &mtdf and Parallel ComputerfReport TR-CS-92-02992.

18. A.R. E. Sinclair and M. Norton-GriffithsSerengeti: Dynamics of an Ecosystebniversity of Chicago, Chicago, 1979.

19. B. P. Uvarov.Grasshoppers and Locustémperial Bureau of Entomology, London, 1928.

20. D. Wiehs. Hydrodynamics of fish schoolinjature 241:290-291, 1973.

Copyright(©) 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@007;00:1-11
Prepared usingpeauth.cls

	1 INTRODUCTION
	2 FISH SCHOOLING MODEL
	3 THE GRAPHICS PROCESSOR UNIT - A NEW DATA PARALLEL COMPUTING DEVICE
	3.1 Modern Graphics Processor Unit
	3.2 NVIDIA 8 Series GeForce-based GPU Architecture
	3.3 CUDA: Compute Unified Device Architecture

	4 PARALLEL SIMULATION
	4.1 Random Number Generation
	4.2 Parallelizing Across the Realizations
	4.3 Parallelizing Within One Realization

	5 RESULTS
	6 CONCLUSIONS
	7 ACKNOWLEDGMENTS

