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SUMMARY

We consider an individual-based model for fish schooling which incorporates a tendency for each fish to
align its position and orientation with an appropriate average of its neighbors’ positions and orientations,
plus a tendency for each fish to avoid collisions. To accurately determine statistical properties of the
collective motion of fish whose dynamics are described by such a model, many realizations are typically
required. This carries a very high computational cost. The current generation of graphics processing
units is well-suited to this task. We describe our implementation, and present computational experiments
illustrating the power of this technology for this important and challenging class of problems.
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1. INTRODUCTION

Many organisms display ordered collective motion [1], such as geese flying in a Chevron-shaped
formation [7], wildebeests herding on the Serengeti plains of Africa [18], locusts swarming in sub-
Saharan Africa [19], and fish schooling [16]. The number of individuals involved in such collective
motion can be huge, from several hundred thousand wildebeests to millions of Atlantic cod off
the Newfoundland coast. Despite these large numbers, the group can seem to move as a single
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organism, with all individuals responding very rapidly to their neighbors to maintain the collective
motion. Advantages of collective motion include a reduction in predation [12, 4], increased harvesting
efficiency [10, 16], and improved aerodynamic efficiency [20, 11].

The mathematical study of biological collective motion hasproceeded, broadly speaking, on two
fronts. First, one can model each organism individually, with rules specifying its dynamics and
interactions with other organisms. Such “individual-based models” can incorporate experimental
observations of the behavior of the organisms, thereby giving biologically realistic models. On the other
hand, one can define “continuum models” to describe the dynamics of the population; for example, one
might study a model for the evolution of the density of the organisms. However, available continuum
models are often qualitative caricatures that cannot capture all of the details which can be included in
individual-based models, thereby compromising biological realism.

In this paper, we consider an individual-based model for fishschooling. This model incorporates a
tendency for each fish to align its position and orientation with an appropriate average of its neighbors’
positions and orientations, plus a tendency for each fish to avoid collisions. Furthermore, randomness
is included in the model to account for imperfections in the gathering of information and in acting on
this information. To accurately determine statistical properties of the collective motion of fish whose
dynamics are described by such an individual-based model, many realizations are typically required;
see, e.g., [3]. This can entail a very large amount of computation. After describing the model in more
detail, we will describe how a Graphics Processor Unit (GPU)can be used to very efficiently carry out
parallel simulations of this model.

With the low cost and high performance processing capabilities of GPUs, computation on general
purpose GPUs (GPGPU) [5] has become an active research field with a wide variety of scientific
applications including fluid dynamics, cellular automata,particle systems, neural networks, and
computational geometry [5, 15, 6]. Previous generation GPUs have required computations to be
recast into a graphics application programming interface (API) such as OpenGL, which has made
programming GPUs for non-graphics applications a significant challenge. NVIDIA’s Compute Unified
Device Architecture (CUDA) [13] is a new technology which directly enables implementationof
parallel programs in the C language using an API designed forgeneral-purpose computation. In this
paper, we will show how Single Instruction Multiple Data (SIMD) computation as well as parallel
processing within a single realization can be implemented on a CUDA-enabled GPU to efficiently
perform ensemble simulations of an individual-based fish schooling model.

2. FISH SCHOOLING MODEL

We consider a two-dimensional individual-based model for schooling with local behavioral
interactions. This model is similar to that of [2], but without an informed leader, and with different
weights of orientation and attraction response. Groups arecomposed ofN individuals with positions
pi(t), unit directionŝvi(t), constant speeds, and maximum turning rateθ. At every time step of size
τ , individuals simultaneously determine a new direction of travel by considering neighbors within two
behavioral zones. The first zone, often referred to as the “zone of repulsion” [3], is represented by
a circle of radiusrr about the individual. Individuals repel from neighbors that are within this zone,
which typically has a radius of one body length. The second zone, a “zone of orientation and attraction”,
is represented by an annulus of inner radiusrr and outer radiusrp about the individual. This zone also
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includes a blind area, defined as a circular sector with central angle(2π − η), for which neighbors
within the zone are undetectable. Individuals orient with and are attracted towards neighbors within
this zone.

These zones are used to define behavioral rules of motion. First, if individuali finds agents within its
zone of repulsion, then it orients its direction away from the average relative directions of those within
its zone of repulsion. Its desired direction of travel in thenext time step is given by

vi(t + τ) = −
∑

j 6=i

pj(t) − pi(t)

|pj(t) − pi(t)|
. (1)

This vector is normalized aŝvi(t + τ) = vi(t+τ)
|vi(t+τ)| , assumingvi(t + τ) 6= 0. In the case that

vi(t + τ) = 0, agenti maintains its previous direction of travel as its desired direction of travel,
giving v̂i(t + τ) = v̂i(t).

If agents are not found within individuali’s zone of repulsion, then it will align with (by averaging
the directions of travel of itself and its neighbors) and feel an attraction towards (by orienting itself
towards the average relative directions of) agents within the zone of orientation and attraction. The
desired direction of agenti is given by the weighted sum of these two terms:

vi(t + τ) = ωa
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, (2)

where ωa and ωo are the weights of attraction and orientation, respectively. This vector is then
normalized aŝvi(t + τ) = vi(t+τ)

|vi(t+τ)| , assumingvi(t + τ) 6= 0. As before, ifvi(t + τ) = 0, then
agenti maintains its previous direction of travel.

We denoter = ωo/ωa as the ratio of orientation and attraction tendencies. Whenr = 0 (ωo = 0),
individuals have no desire to orient with their neighbors. As r approaches 1, individuals balance their
orientation and attraction preferences. Forr > 1, individuals are more interested in orientation with
their neighbors than attraction towards them.

Stochastic effects are incorporated into the model by rotating agenti’s desired direction̂vi(t + τ)
by an angle drawn from a circularly wrapped normal distribution with mean0 and standard deviation
σ. Also, since individuals can only turnθτ radians in one time step, if the angle betweenv̂i(t) and
v̂i(t + τ) is greater thanθτ , individuals do not achieve their desired direction, and instead rotateθτ
towards it. Finally, each agent’s position is updated simultaneously as

pi(t + τ) = pi(t) + sv̂i(t + τ)τ. (3)
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Figure 1. CPU vs. GPU architecture. There are more transistors devoted to data processing rather than to data
caching and flow control for the GPU, compared with the CPU.

3. THE GRAPHICS PROCESSOR UNIT - A NEW DATA PARALLEL COMPUTIN G
DEVICE

3.1. Modern Graphics Processor Unit

The general-purpose Graphics Processing Unit (GPU) is becoming a viable option for many parallel
programming applications. The GPU has a highly parallel structure with high memory bandwidth and
more transistors devoted to data processing than to data caching and flow control, compared with a CPU
architecture, as shown in Figure1 [13]. Problems that can be implemented with stream processing and
that use limited memory are well-suited to the GPU architecture. Single Instruction Multiple Data
(SIMD) computation, which involves a large number of totally independent records being processed
by the same sequence of operations simultaneously, is idealfor GPU application. We will show how
simulation of the fish schooling model can be structured to fitwithin the constraints of the GPU
architecture.

3.2. NVIDIA 8 Series GeForce-based GPU Architecture

The NVIDIA 8800 GTX chip, released at the end of 2006, has 768MB RAM and 681 million transistors
on a480mm2 surface area. There are 128 stream processors on a GeForce 8800 GTX chip, divided
into 16 clusters of multiprocessors with 8 streaming processors in each multiprocessor as shown in
Figure2 [13]. The 8 processors in each multiprocessor share 16 KB sharedmemory which brings data
closer to the Arithmetic Logic Unit (ALU). The peak computation rate accessible for general-purpose
application is (16 multiprocessors× 8 processors / multiprocessor)× (2 flops / MAD ∗) × (1 MAD
/ processor-cycle)× 1.35 GHz = 345.6 GFLOP/s, since the processors are clocked at1.35 GHz with
dual processing of scalar operations supported. The maximum observed bandwidth between system
and device memory is about 2GB/second.

∗A MAD is a multiply-add.
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Figure 2. Hardware Model : a set of SIMD multiprocessors withon-chip shared memory.

Unfortunately, current GPU chips support only single-precision floating point, while current CPUs
support 64-bit technology. Additionally, there is only 16Kof fast read and write on-chip memory shared
between the eight processors, on each multiprocessor.

3.3. CUDA: Compute Unified Device Architecture

The Compute Unified Device Architecture (CUDA) Software Development Kit (SDK) supplies general
purpose functionality for non-graphics applications on the NVIDIA GPU. The CUDA provides an
essential high-level development environment with standard C language, which results in a minimal
learning curve for beginners to access the low-level hardware. For development flexibility, the CUDA
provides both scatter and gather memory operations. It alsosupports a fast read and write shared
memory [13].

Following the data-parallel model, the structure of CUDA computation allows each of the processors
to execute the same instruction sequence on different sets of data in parallel. The data can be broken
into a 1D or 2D grid of thread blocks. Each block can be specified as a 1D, 2D, or 3D array of threads
which collaborate via the shared memory. Up to 512 threads can be active.

Currently, the CPU and GPU cannot run in parallel. Also, it isnot possible to execute multiple
kernels at the same time through the CUDA, or to download dataand run a kernel in parallel. Users
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can branch in the kernel based on the thread id to achieve multiple tasks on a single kernel, but the
simulation will be slowed down with such branches. Individual GPU program launches can run at
most 5 seconds on a GPU with a display attached.

4. PARALLEL SIMULATION

To accurately determine statistical properties of the collective motion of fish, many realizations of
the fish schooling model are typically required for a given set of parameters. This can be very
computationally intensive. There are essentially two waysto improve the performance: parallelize the
simulation across the realizations, and parallelize the simulation within one realization. We do both.

We also tried simulating our fish model on a cluster. We got a linear performance improvement for
parallelization across realizations, but for parallelization within one realization, the message passing
overhead is a substantial burden. One might also consider using a shared memory computer to improve
the performance of parallelization within one realization, but for multiple realizations where many
threads must access the shared resources there are likely tobe serious problems with contention. The
best part of the GPU is that it isours. It resides on our workstation. We don’t have to share it, schedule
it or find machine room space or a system administrator for it.

Migrating a C code from a workstation to the GPU is not a big jobif you are familiar with
programming multiple threads. Starting from a well-written sequential C code on our workstation,
it took one of us about one week to port it to the GPU.

4.1. Random Number Generation

To generate the initial conditions and to add noise to our calculations at each time step, we need many
uniformly distributed random numbers. So that our statistical results can be trusted, it is particularly
important that these random numbers are independent. Generating independent sequences of random
numbers is one of the most important issues of implementing simulations for ensembles of fish
schooling models in parallel.

Originally we considered pre-generating a sequence of uniform random numbers in the CPU. Since
the CPU and GPU can’t run in parallel, we can pre-generate a huge number of random numbers and
store them in the shared memory, and swap back to the CPU to generate more when they are used
up. Alternatively, we could pre-generate a huge number of random numbers and store them in the
global memory. These methods spend too much time on data access. Furthermore, the Scalable Parallel
Random Number Generators Library (SPRNG) [8, 9], which might have been an ideal choice because
of its excellent statistical properties, cannot be moved tothe GPU efficiently due to its complicated
data structure. The only solution appears to be to employ a simple random number generator on the
GPU. Experts suggest using a mature random number generatorinstead of inventing a new one, since it
requires great care and extensive testing to evaluate a random number generator[17]. Thus we chose the
Mersenne Twister [14] in our application, which has passed many statistical randomness tests including
the stringent Diehard tests.

In our implementation, we modified Eric Mills’ multithreaded C implementation [14]. Since many
random numbers are required by this model, we use the shared memory for random number generation
to minimize the data launching and accessing time.
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4.2. Parallelizing Across the Realizations

Parallelizing the independent realizations is an effective way to improve the performance. Ensembles
of fish schooling runs are very well-suited for implementation on the GPU through the CUDA.

The whole fish schooling simulation can be put into a single kernel running in parallel on a
large set of system state vectorsPxj

i (t), Pyj
i (t), V xj

i (t), V yj
i (t), respectively representing thex

and y components of the positions of the fish and thex and y components of the velocities
of the fish, wherei is id of the fish, j is the block id, andt represents time. The initial
conditionsPxj

i (0), Pyj
i (0), V xj

i (0), V yj
i (0) are randomly generated by different processors within

each multiprocessor. The large set of final state vectorsPxj
i (tf ), Pyj

i (tf ), V xj
i (tf ), V yj

i (tf ) will
contain the desired results. We minimize the transfer between the host and the device by using an
intermediate data structure on the device, and batch a few small transfers into a big transfer to reduce
the overhead for each transfer.

4.3. Parallelizing Within One Realization

Before discussing parallelism within one realization, we outline the sequential algorithm. Individual
fish are initialized in a bounded region with randomized positions and directions of travel. Then the
simulation is executed fortf = 3000 steps to reach a steady state. At each step, we calculate the
influence on each fish from all the other fish. To calculate the influence on a fish, we compute the
distance from this “goal fish” to all the other fish and record the influence coming from the different
zones in a few variables. Next, we compute the net influences for this “goal fish”, including the noise
term, based on the above data, and save them to an influence array. After computing all the influences
for all the fish, we update the position and direction of each fish based on the influence array of this
step.

For the GPU, there are some restrictions on the number of threads in each block and the total number
of fish stored in the shared memory. The device has very limited shared memory in each multiprocessor
but relatively large global memory. The global memory adjacent to the GPU chip has much higher
latency and lower bandwidth than the on-chip shared memory:it takes about 400-600 clock cycles to
read or write the global memory vs. 4 clock cycles to access the shared memory. To effectively use the
GPU, our simulation makes as much use of on-chip shared memory as possible. Although it is better
to have at least 128 threads for the best efficiency, we have totake the limited shared memory size into
account.

The main goal of parallelizing within one realization is to decompose the problem domain
into smaller subdomains. In our implementation, within each block j, the system state vector
Pxj

i , Pyj
i , V xj

i , V yj
i is divided among threads. Assume that we haveN fish and we usen threads

to do the simulation. Then we need order ofm = N/n time to calculate the influences on each of
the fish. In the parallel implementation, we initialize all the fish with random positions and directions.
At each step we loadn fish by loading one fish in each thread. The system state vectors loaded to
shared memory at this stage are the “goal fish”. Each thread holds only one “goal fish” at a time and
calculates the influences on this “goal fish”. Thus during onestep, each thread processes onem-element
subvector. To calculate the distance from the “goal fish” to all the other fish, we need the position and
direction of all the other fish. By using a temporary array of sizen in shared memory, we loadn fish at
a time, with each thread loading one fish. The program will keep loading until all the desired data have
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Figure 3. Memory layout of the fish schooling model. There aren threads to simulate one realization with thread
id tid to identify the thread. In process1, each thread loads one fish as its “goal fish” from the device memory to
shared memory; In process2, each thread loads fish to another array in shared memory; In process 3, each thread
uses the full data from process2 to compute the influences on its own “goal fish”; Processes2 and3 continue until
all of the influences to the “goal fish” have been computed; In process4, each thread saves its influence to the
influence record array (this reuses the previous array to save shared memory); In process5, each thread updates

its “goal fish” to the system state vector on the device.

been loaded and used for calculation for the goal fish. Then, each thread will compute the influence
information for the goal fish of this thread. At the end of the simulation step, each thread writes the
results into its own influence subvector. After all the influence calculations are finished, each thread
updates its system state subvector by its influence subvector. The memory layout of the whole process
is shown in Figure3. Our implementation does not make use of a concurrent update. During each
calculation, each thread reads the full system state vector. The concurrent reads to the same data are
supported by the hardware.

Within each realization, most calculations use the shared memory, for which the memory access
latency is small. In addition to the parallelization withinone realization, we have many blocks doing
independent realizations. Whenever a thread is waiting to access the device memory, another thread
will be running on the ALUs. Hence the memory access latency is not a problem.

5. RESULTS

Our simulations were run on the NVIDIA GeForce 8800GTX installed on a host workstation with Intel
Pentium 3.00GHz CPU and 3.50GB of RAM with physical Address Extension.
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To begin a simulation, individuals are placed in a bounded region (so that each agent initially
interacts with at least one other agent), with random positions and directions of travel. The parameters
were fixed to berr = 1, rp = 7, η = 350◦(≈ 6.1 radians),s = 1, τ = 0.2, σ = 0.01, and
θ = 115◦(≈ 2 radians). Simulations were run for approximately 3000 steps until they reached a
steady state. Groups of sizeN = 100 were explored for a range of ratiosr of attraction to orientation
weightings.

Two observables were used to measure the structure of the schools: elongation and polarization [2].
Elongation measures the ratio of the length of the axis aligned with group motion to the axis
perpendicular to group motion, and polarization

P (t) =
1

N

∣

∣

∣

∣

∣

N
∑

i=1

vi(t)

∣

∣

∣

∣

∣

,

measures the degree of group alignment. Both quantities take values between 0 and 1. To obtain
statistics regarding the group structure for a given sizeN and ratior, 1120 realizations (with different
initial conditions) were run. The average group elongationand polarization were recorded, as well as
the probability of group fragmentation.

We were able to nicely resolve the group statistics as a function of the ratio of attraction to alignment.
We find that forr close to zero, groups exhibit swarm behavior, with small polarization and elongation
near1. As r is increased, groups become increasingly more aligned, forming elongated dynamically
parallel groups and then highly parallel groups asr is further increased; see Figure4. Thus, by changing
the proportion of attraction to alignment tendencies, groups can shift between different collective
behaviors. We also see that the probability of fragmentation first increases as the group elongation
increases (from1 < r < 2.5), then decreases as elongation decreases (from3 < r < 8), and then
increases again as schools become more highly aligned; see Figure5.

The simulation performance in generating these results wasextraordinary. We simulated 1120
realizations of the code withN = 100 individuals. The timing results for different parameters are
shown in TableI. The simulation time of the GPU-based code includes the timeof loading data to the
GPU and copying the data back to the host. The parallel (GPU) simulation is about230 − 240 times
faster than the corresponding sequential simulation on thehost workstation.

The code on the host workstation was carefully written to reduce memory accesses and combine
loops, and was the starting point of the GPU code. SSE (Streaming SIMD Extensions) was not enabled
on the workstation operating system, in the way that most practitioners (including us!) would normally
use a workstation. The workstation computation was performed in single precision. Even so, one
might reasonably ask why is the GPU making so much better use of its CPU resources? The answer
is multithreading. In our simulation code, there are many branches and memory access operations,
besides the floating point operations. On the GPU, the scheduler can arrange for other threads to run
while the current threads are accessing the global memory.

The limitation of single-precision floating-point on the GPU seems to have no noticeable effect on
the results, for this computation. Schools generated in double precision on the host workstation were
found to be statistically indistinguishable from those obtained in single precision.
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Figure 4. Swarm (r = 0.25), dynamic parallel (r = 2), and highly parallel (r = 16) collective motion for
N = 100 member schools.
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Figure 5. Statistics of group elongation (only including non-fragmented schools), group polarization (only
including non-fragmented schools), and probability of group fragmentation, forN = 100 member schools. To
obtain these statistics, for each value ofr, 1120 simulations with different initial conditions were run for 3000

time steps, each using the GPU.

6. CONCLUSIONS

We considered an individual-based model for fish schooling which incorporates a tendency for each
fish to align its position and orientation with an appropriate average of its neighbors’ positions and
orientations, plus a tendency for each fish to avoid collisions. Randomness is included in the model
to account for imperfections in the gathering of information and in acting on this information. For
the problem of calculating collective motion statistical measures from many realizations, we observed
speedups of230 − 240 times for our parallelized code running on a GPU over the corresponding
sequential simulation on the host workstation. With this impressive performance improvement, in one
day we can generate data which would require more than six months of computation with the sequential
code.

In the future we hope to simulate larger fish schools using clusters of GPUs. Our computation should
scale well for parallelization across the simulations. Effective parallelization within one realization
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Table I. Performance Comparison for different parameters

∆ro Sequential Simulation Time (ms) Parallel Simulation Time (ms) Speedup

0.03125 7924067.2 33750.6 234.8
0.0625 7925786.6 33767.7 234.7
0.125 7908017.5 33750.6 234.3
0.25 7938803.4 33790.0 235.0
0.5 7934238.6 33774.8 235.0
1 7902735.7 33855.3 233.4
2 7799067.5 33755.0 231.0
4 8009521.9 33859.2 236.6
8 8091104.2 33681.4 240.2
16 8091787.8 33706.8 240.1

will depend, of course, on the communication speed of the cluster. The usefulness of individual-
based models of biological systems, which can incorporate detailed experimental observations of the
behavior of the organisms, is limited by the ability to simulate them in a reasonable amount of time.
By exploiting the power of general-purpose GPUs as illustrated in this paper, we expect that it will be
possible to simulate more detailed models with more agents for longer times and over more realizations.
This GPU computational paradigm has the potential to revolutionize our ability to understand how
collective behavior at the macroscopic, population-levelarises from the interaction of individuals with
each other and their environment.
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