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The enzyme-catalyzed conversion of a substrate into a product is a common reaction motif in
cellular chemical systems. In the three reactions that comprise this process, the intermediate
enzyme-substrate complex is usually much more likely to decay into its original constituents than to
produce a product molecule. This condition makes the reaction set mathematically “stiff.” We show
here how the simulation of this stiff reaction set can be dramatically speeded up relative to the
standard stochastic simulation algorithm �SSA� by using a recently introduced procedure called the
slow-scale SSA. The speedup occurs because the slow-scale SSA explicitly simulates only the
relatively rare conversion reactions, skipping over occurrences of the other two less interesting but
much more frequent reactions. We describe, explain, and illustrate this simulation procedure for the
isolated enzyme-substrate reaction set, and then we show how the procedure extends to the more
typical case in which the enzyme-substrate reactions occur together with other reactions and species.
Finally, we explain the connection between this slow-scale SSA approach and the Michaelis–
Menten �Biochem. Z. 49, 333 �1913�� formula, which has long been used in deterministic chemical
kinetics to describe the enzyme-substrate reaction. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2052596�
I. INTRODUCTION

The simple enzyme-substrate reaction set

S1 + S2�
c2

c1

S3→
c3

S1 + S4 �1�

describes a common mechanism by which an enzyme S1

catalyzes the conversion of a substrate S2 into a product S4.
The conversion proceeds by way of an unstable enzyme-
substrate complex S3, which decays either into its original
constituents S1 and S2, or into its converted constituents S1

and S4. Often, the former outcome is much more likely than
the latter, in consequence of the condition

c2 � c3, �2�

and we shall assume that this condition holds in what fol-
lows. But we make no assumptions about the molecular
population levels of the various species; in particular, we
expressly allow that the average number of S3 molecules
might be small, even less than one, which sometimes hap-
pens in practice. Accordingly, our analysis will suppose that
the system’s state vector X�t���X1�t� , . . . ,X4�t��, where Xi�t�
is the number of molecules of species Si in the system at time
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t, moves over the non-negative integer lattice in a stochastic
manner. The stochasticity is a consequence of the premise
that if X�t�=x, then each reaction Rj has probability aj�x�dt
of firing in the next infinitesimal time dt, where aj is the
propensity function for reaction Rj.

1 The propensity functions
for the three reactions in �1� are

a1�x� = c1x1x2, a2�x� = c2x3, a3�x� = c3x3. �3�

On account of condition �2�, the reaction set �1� evolves
on two separate time scales: the “fast” time scale of reactions
R1 and R2, and the “slow” time scale of reaction R3. In the
context of a traditional deterministic analysis, the system is
said to be stiff, and numerically solving the associated ordi-
nary differential equations then poses special challenges.
From the stochastic viewpoint that we are taking here, the
difficulty introduced by the stiffness condition �2� is that the
stochastic simulation algorithm �SSA�, which simulates the
discrete reaction events sequentially in accordance with the
propensity functions,1 is forced to simulate very many R1

and R2 reactions in order to simulate each R3 reaction. Since
the former reactions merely “undo” each other while the lat-
ter completes the conversion of a substrate molecule into a
product molecule, R1 and R2 are “frequently occurring unim-
portant” reactions, while R3 is a “rarely occurring important”
reaction. A more efficient stochastic simulation procedure
would skip over the R1 and R2 reactions and simulate only

the R3 reactions. An approximate way of doing that is

© 2005 American Institute of Physics17-1
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afforded by the recently introduced slow-scale stochastic
simulation algorithm.2

In Secs. II–VIII, we show how the slow-scale SSA can
be applied to reactions �1� under condition �2� to achieve a
substantial gain in simulation speed at practically no cost in
simulation accuracy. In Sec. IX we describe how the simu-
lation procedure is to be applied in the more common case in
which reactions �1� are occurring together with other reac-
tions and species. Finally, in Sec. X, we connect the slow-
scale SSA approach to some well-known deterministic strat-
egies of approximating reactions �1�, namely, the quasi-
steady-state approximation, the partial �or rapid� equilibrium
approximation, and the Michaelis–Menten formula.

System �1� has been addressed previously by Rao and
Arkin3 using an approach very similar to the one described
here. We believe that our approach represents an improve-
ment over Ref. 3, both in its theoretical perspective and in its
algorithmic implementation; however, the development of
our approach was materially aided and informed by that ear-
lier work.

II. PARTITIONING THE SYSTEM

A detailed derivation of the slow-scale SSA is given in
Ref. 2. We shall not repeat that derivation here, but simply
describe how the slow-scale SSA is applied to reactions �1�
under condition �2�. The first step is to partition the reaction
set �R1 ,R2 ,R3� into fast and slow subsets. In general this
partitioning is done provisionally, making an educated guess
that is later validated or invalidated. For our system, condi-
tion �2� clearly implies that R2 will be a fast reaction and R3

will be a slow reaction. We shall tentatively classify R1 as a
fast reaction, like R2, on the heuristic grounds that those two
reactions will approximately equilibrate, so their respective
propensity functions c1x1x2 and c2x3 will become approxi-
mately equal. �The “speed” of a reaction is measured by the
size of its propensity function, not its rate constant.� We shall
see later that classifying R1 and R2 as fast and R3 as slow
will, in fact, be acceptable, provided condition �2� is satisfied
strongly enough.

The next step is to partition the species set �S1 , . . . ,S4�
into fast and slow subsets. The rule for doing this is unam-
biguous: Any species whose population gets changed by a
fast reaction is called a fast species, and all other species are
called slow. So in the present case, S1, S2, and S3 will be fast
species, and S4 will be a slow species. The system state vec-
tor can now be written X�t�= �Xf�t� ,Xs�t��, where the fast
process is Xf�t�= �X1�t� ,X2�t� ,X3�t��, and the slow process is
Xs�t�=X4�t�. The fact that the only reactant in the slow reac-
tion is a fast species underscores the asymmetric and rather
subtle relationship between fast and slow reactions and fast
and slow species.

The third step in setting up the slow-scale SSA is to

construct what is called the virtual fast process X̂f�t�. It is
defined to be the fast state variables evolving under only the

fast reactions; i.e., X̂f�t� is Xf�t� with all the slow reactions
switched off. Since the slow reactions by definition occur

only infrequently, we may expect that X̂f�t� will provide a
f
reasonably good approximation to X �t�. This approximation
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will be useful because X̂f�t�= �X̂1�t� , X̂2�t� , X̂3�t�� evolving
under reactions R1 and R2 is mathematically much simpler to
analyze than Xf�t�= �X1�t� ,X2�t� ,X3�t�� evolving under reac-
tions R1, R2, and R3.

Two conditions, which together define what might be
called “stochastic stiffness,” are now required to be satisfied
in order for the slow-scale SSA to be applicable: First, the

virtual fast process X̂f�t� must be stable, in the sense that it

approaches a well-defined time-independent limit X̂f��� as
t→�; this requirement can be thought of as the stochastic
equivalent of the well-known deterministic stiffness require-
ment that the system’s fastest dynamical mode be stable.

Second, the approach of X̂f�t� to X̂f��� must be accomplished
in a time that is small compared to the expected time to the
next slow reaction; this is essentially a refinement of condi-
tion �2�—a more precise specification of the degree of sepa-
ration that must exist between the time scales of the fast and
slow reactions. If these two conditions are not satisfied, then
we must modify our initial partitioning of the reactions into
fast and slow subsets. If that fails, we must forego using the
slow-scale SSA. We shall later see that, for our problem here,
both of these stiffness conditions will be satisfied if the in-
equality �2� is strong enough.

Our virtual fast process X̂f�t� obeys two conservation
relations:

X̂1�t� + X̂3�t� = xT1 �const.� , �4a�

X̂2�t� + X̂3�t� = xT2 �const.� . �4b�

These can be understood by viewing an S3 molecule as the
union of one S1 molecule and one S2 molecule, so that Eq.
�4a� expresses the constancy of the total number of S1 mo-
lecular units, and Eq. �4b� the constancy of the total number
of S2 molecular units, all under the two fast reactions R1 and
R2. Equations �4a� and �4b� reduce the number of indepen-
dent variables making up the virtual fast process from three
to one, which is a considerable mathematical simplification.
By contrast, the real fast process Xf�t� satisfies Eq. �4a� but
not Eq. �4b�, since Xf�t� is affected by the slow reaction R3.
Xf�t� thus has two independent variables, and accordingly

would be more difficult to analyze than X̂f�t�.

III. THE SLOW-SCALE APPROXIMATION

The condition that X̂f�t� approaches X̂f��� in a time that
is small compared to the expected time to the next slow
reaction—a condition that we shall quantify later—sets the
stage for invoking a result called the slow-scale
approximation.2 This approximation forms the theoretical ba-
sis for the slow-scale SSA. It says, in essence, that we can
approximately simulate reactions �1� one R3 reaction at a
time if we replace the R3 propensity function a3�x�=c3x3

with its average with respect to the asymptotic virtual fast

process:
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ā3�x� = c3�X̂3���	 . �5�

This surrogate propensity function for R3 is called its “slow-
scale propensity function.” To use it, we obviously must be

able to compute �X̂3���	. If we want to allow reactions �1� to
occur along with other slow reactions besides R3, which
might have as reactants any of the fast species in any com-

bination, we would also need to be able to compute �X̂i���	
and �X̂i

2���	 for i=1,2 ,3, since these values might be needed
to construct the slow-scale propensity functions for those
other slow reactions. Finally, if we want our simulation to
show the trajectories of the fast species as well as the trajec-
tories of slow species, as we usually do, then we will need to

be able to efficiently generate random samples of X̂1���,
X̂2���, and X̂3���, since that is how the fast species trajecto-
ries get constructed in the slow-scale SSA.

In Secs. IV and V we shall show how all these compu-

tations involving the asymptotic virtual fast process X̂f���
can be done.

IV. THE MASTER EQUATION FOR THE VIRTUAL FAST
PROCESS

We begin our analysis of the virtual fast process by using

the conservation relations �4� to eliminate X̂1�t� and X̂2�t� in

favor of X̂3�t�. Once that is done, X̂3�t� takes the form of
what is known as a “birth-death Markov process”4 with
“stepping functions”

W−�x3� = c2x3, W+�x3� = c1�xT1 − x3��xT2 − x3� . �6�

Here, W±�x3�dt gives the probability, given X̂3�t�=x3, that

X̂3�t+dt� will equal x3±1. The master equation for X̂3�t�
reads

�P̂�x3,t
xT1,xT2,x3
�0��

�t

= W−�x3 + 1�P̂�x3 + 1,t
xT1,xT2,x3
�0��

− W−�x3�P̂�x3,t
xT1,xT2,x3
�0��

+ W+�x3 − 1�P̂�x3 − 1,t
xT1,xT2,x3
�0��

− W+�x3�P̂�x3,t
xT1,xT2,x3
�0�� , �7�

where P̂�x3 , t 
xT1 ,xT2 ,x3
�0�� is the probability that X̂3�t�0�

=x3, given that X̂3�0�=x3
�0�, X̂1�0�=xT1−x3

�0�, and X̂2�0�=xT2

−x3
�0�.

It follows from Eqs. �4a� and �4b� that X̂3�t� will be
bounded above by

x3 max = min�xT1,xT2� . �8�

Now, a bounded birth-death Markov process is always

stable, meaning in this case that P̂�x3 , t 
xT1 ,xT2 ,x3
�0�� will

approach, as t→�, a well-behaved stationary form,

P̂�x3 ,� 
xT1 ,xT2�. This of course is the probability density

function of X̂3���. Being a time-independent solution of the

master equation �7�, it satisfies
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0 = W−�x3 + 1�P̂�x3 + 1,�
xT1,xT2�

− W−�x3�P̂�x3,�
xT1,xT2�

+ W+�x3 − 1�P̂�x3 − 1,�
xT1,xT2�

− W+�x3�P̂�x3,�
xT1,xT2� .

Rearranging this equation reveals that the quantity

W−�x3�P̂�x3,�
xT1,xT2� − W+�x3 − 1�P̂�x3 − 1,�
xT1,xT2�

must be a constant �independent of x3�, and a consideration
of the case x3=0 shows that the constant must be zero; thus
we obtain the detailed balance relation

W−�x3�P̂�x3,�
xT1,xT2� = W+�x3 − 1�P̂�x3 − 1,�
xT1,xT2� .

�9�

A simple rearrangement of �9� yields a recursion relation for

P̂�x3 ,� 
xT1 ,xT2�,

P̂�x3,�
xT1,xT2� =
W+�x3 − 1�

W−�x3�
P̂�x3 − 1,�
xT1,xT2�

�x3 = 1, . . . ,x3 max� . �10a�

The initial value P̂�0,� 
xT1 ,xT2� for this recursion is chosen
to satisfy the normalization condition

�
x3=0

x3 max

P̂�x3,�
xT1,xT2� = 1. �10b�

Once P̂�x3 ,� 
xT1 ,xT2� has been computed from Eqs.

�10a� and �10b�, the first two moments of X̂3��� can then be
computed as

�X̂3
k���	 = �

x3=0

x3 max

x3
kP̂�x3,�
xT1,xT2� �k = 1,2� . �11�

Another approach to computing these moments is as follows:
First, sum the detailed balance relation �9� over all x3 to
obtain

�W−�X̂3����	 = �W+�X̂3����	 . �12a�

Next, multiply Eq. �9� by x3
n, and then sum the result over all

x3 to obtain

�X̂3���nW−�X̂3����	 = ��X̂3��� + 1�nW+�X̂3����	

�n = 1,2, . . . � . �12b�

When the polynomial functions W±�x3� in Eqs. �6� are in-
serted, Eqs. �12a� and �12b� become an infinite set of equa-

tions that interrelate all the moments of X̂3���.
For the stepping functions �6�, the calculations indicated

in Eqs. �10a�, �10b�, and �11� can all be carried out numeri-
cally, as detailed in the Appendix, unless x3max is too large
for that to be practical. Analytical solutions are more prob-
lematic. Solving Eqs. �12a� and �12b� directly is not gener-
ally possible because the quadratic form of the function

ˆ 2
W+�x3� in Eqs. �6� causes Eq. �12a� to contain �X3���	 as
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well as �X̂3���	, and the n=1 version of Eq. �12b� to contain

�X̂3
3���	, etc., so there is always one more unknown moment

than there are interrelating equations. One approximate way

around this difficulty is to assume that X̂3��� is a normal
random variable; this closes the first two equations �since the
third moment of a normal random variable is expressible in
terms of its first two moments�, but solving the resulting two
equations for those two moments must be done implicitly.
Darvey et al.5 have analyzed reactions R1 and R2 in great
detail using the generating function approach, and they de-
rive exact, explicit formulas for the first two moments in
terms of confluent hypergeometric functions. They also de-
rive an exact formula for the generating function G�s ,��
��x3

sx3P̂�x3 ,�� of the probability function P̂�x3 ,��; how-
ever, it would appear that deconvolving G�s ,�� to get

P̂�x3 ,��, which is required to generate exact random samples

of X̂3���, will involve at least as many computational steps
as the procedure for directly iterating Eq. �10a� that is out-
lined in the Appendix.

In Sec. V, we describe a practical, approximate way of

computing the needed properties of X̂3��� which appears to
be acceptably accurate and reasonably fast. We do not dis-
count the possibility that other approaches, such as the gen-
erating function approach of Darvey et al.,5 might be able to
compute some of those properties even more efficiently, or
might be more easily extended to other virtual fast processes.

V. PRACTICAL APPROXIMATE COMPUTATIONS
OF X̂3„�…

In this section we shall describe practical approximate

ways to compute the first two moments of X̂3��� and to

generate random samples of X̂3���. We shall investigate
when these approximate methods are satisfactory, and how to
proceed alternatively when they are not. Finally, we shall
derive a quantitative test—essentially a refinement of condi-
tion �2�—that will tell us when the slow-scale SSA is appli-
cable to reactions �1�.

A. The first two moments

Let us first focus on estimating �X̂3���	 and �X̂3
2���	.

Note that a knowledge of these two moments will enable us
to easily compute asymptotic first and second moments in-
volving any of the other fast species S1 and S2, for use in
computing the slow-scale propensity functions of any slow
reactions besides R3. Thus, from the conservation relations
�4a� and �4b� we have

X̂1��� = xT1 − X̂3���, X̂2��� = xT2 − X̂3��� , �13�

and so it follows that

�X̂1���	 = xT1 − �X̂3���	 , �14a�

�X̂1
2���	 = xT1

2 − 2xT1�X̂3���	 + �X̂3
2���	 , �14b�

�X̂1���X̂3���	 = xT1�X̂3���	 − �X̂3
2���	 , �14c�

and so forth. The corresponding variances can then be calcu-

lated from
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var�X̂i���� = �X̂i
2���	 − �X̂i���	2 �i = 1,2,3� , �15�

and it is not hard to show from Eqs. �13� that these three
variances will be equal.

The simplest approximation to the first moment �X̂3���	
is the stationary �asymptotic� solution to the reaction-rate
equation �RRE�,

dX̂3�t�
dt

= W−�X̂3�t�� − W+�X̂3�t�� , �16�

wherein X̂3�t� is now regarded as a sure �nonrandom�, con-

tinuous �real� variable. The stationary solution X̂3�t→��
� X̂3

RRE to Eq. �16� evidently satisfies

W−�X̂3
RRE� − W+�X̂3

RRE� = 0. �17�

Notice that this is the same as Eq. �12a�, except that �X̂3
2���	

has now been approximated by �X̂3���	2. Inserting the ex-
plicit formulas �6� for the functions W± and then applying the
quadratic formula, we find that the only solution to Eq. �17�
in the interval �0,x3 max� is

X̂3
RRE =

1

2
�
xT1 + xT2 +

c2

c1
�

−�
xT1 + xT2 +
c2

c1
�2

− 4xT1xT2� . �18�

As we shall see later, for this single steady-state system

X̂3
RRE practically always turns out to be an acceptably accu-

rate approximation to �X̂3���	. But this deterministic ap-

proach of approximating �X̂3
2���	��X̂3���	2 inevitably also

approximates var�X̂3�����0, and that will usually not be

adequate. A better approximation for �X̂3
2���	 can be devel-

oped by using two results from the general theory of birth-
death Markov processes, both of which follow directly from
the recursion relation �10a�. First is the result that any rela-

tive maximum of P̂�x3 ,� 
xT1 ,xT2� will be the greatest integer
in a down-going root of the function4

��x3� � W+�x3 − 1� − W−�x3� . �19�

For the stepping functions �6�, this function is

��x3� = c1�xT1 − �x3 − 1���xT2 − �x3 − 1�� − c2x3

= c1x3
2 − �c1�xT1 + xT2 + 2� + c2�x3

+ c1�xT1 + 1��xT2 + 1� . �20�

Since this is the equation for a concave up parabola, it will
have at most one down-going root, x3

dgr, and the quadratic

formula reveals that root to be
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x3
dgr =

1

2
�
xT1 + xT2 + 2 +

c2

c1
�

−�
xT1 + xT2 + 2 +
c2

c1
�2

− 4�xT1 + 1��xT2 + 1�� .

�21�

This value therefore locates the single maximum of the func-

tion P̂�x3 ,� 
xT1 ,xT2� in the interval �0,x3 max�. Comparing
Eqs. �21� and �18� reveals that the difference between x3

dgr

and X̂3
RRE will be small if xT1 and xT2 are both �1. It can

further be shown from the recursion relation �10a� that the
variance of the “best Gaussian fit” to the function

P̂�x3 ,� 
xT1 ,xT2� in the vicinity of the maximum at x3
dgr is

given by the simple formula4

�G
2 �x3

dgr� =
W−�x3

dgr�
− ���x3

dgr�
, �22�

where the prime on � denotes the derivative. Using Eqs. �6�
and �20�, this works out to

�G
2 �x3

dgr� =
c2x3

dgr

− 2c1x3
dgr + c1�xT1 + xT2 + 2� + c2

. �23�

Since the function P̂�x3 ,� 
xT1 ,xT2� has only one peak, and
since �G

2 �x3
dgr� gives the variance of the best Gaussian fit to

that peak, then it should be reasonable to approximate

var�X̂3���� by �G
2 �x3

dgr�.
Thus we are led to the following approximate formulas

for the first two moments of X̂3���:

�X̂3���	 � X̂2
RRE, �24a�

�X̂3
2���	 � �G

2 �x3
dgr� + �X̂3���	2. �24b�

Here, Eq. �24a� refers to formula �18�, and Eq. �24b� refers to
formulas �23� and �21�. Any first- or second-order moments
involving the other fast species S1 and S2, which might be
needed to evaluate slow-scale propensity functions of other
slow reactions besides R3, can be computed from these esti-
mates by using Eqs. �14a� and �14b�, etc.

B. Condition for applying the slow-scale SSA

Another useful result from the general theory of stable
birth-death Markov processes concerns the relaxation time,
or equivalently the fluctuation time, of the process. It char-
acterizes the time it takes the process to reach its stationary
asymptotic form, or equivalently, the time it takes the pro-
cess to fully explore the region under the peak of its station-
ary probability density function. The theory tells us that for

the virtual fast process X̂3�t�, this time tf can be estimated by
the formula2,4

tf �
1

− ���x3
dgr�

=
1

− 2c1x3
dgr + c1�xT1 + xT2 + 2� + c2

. �25�

It is shown in the proof of the slow-scale approximation
in Ref. 2 that the following condition must hold in order for

the slow-scale SSA to be applicable: the relaxation time of
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the virtual fast process must be comfortably less than the
expected time to the next slow reaction. In this case, the
former time is estimated by �25�. The latter time, the mean
time to the next R3 reaction, can be estimated as the recip-
rocal of the R3 propensity function a3�x�=c3x3, with x3 re-
placed by its most likely value x3

dgr. Thus, the condition for
applying the slow-scale SSA to reactions �1� is

− 2c1x3
dgr + c1�xT1 + xT2 + 2� + c2 � c3x3

dgr. �26�

Since x3
dgr�x3 max=min�xT1 ,xT2�, the magnitude of the

first term on the left is always less than the magnitude of the
second term; therefore, �26� will be satisfied if the inequality
�2� is strong enough that c2 is “comfortably larger” than c3

times the average number of S3 molecules. Condition �26� is
the earlier mentioned “refinement” of condition �2�. The
stronger the inequality �26� is, the more accurate the slow-
scale SSA will be.

C. Generating random samples

A simple approximate way to generate a random sample

of X̂3��� is to take a cue from the normal approximation that

was used in deriving formula �22�, and assume that X̂3���
can be approximated as a normal random variable with mean
m and variance �2,

X̂3��� � N�m,�2� . �27�

Since N�m ,�2�=m+�N�0,1�, we can generate a random

sample x3 of X̂3��� under this approximation by drawing a
random sample n of the “unit normal” random variable
N�0,1�, and then making use of the estimates �24a� and

�24b� for the mean and variance of X̂3���. More specifically,
we generate the random sample as

x3 = rounded �X̂3
RRE + ��G

2 �x3
dgr�n� in �0,x3 max� , �28�

where the real number in braces is to be rounded to the
nearest integer in the interval �0,x3 max�. The associated ran-
dom samples of the populations of other two fast species S1

and S2 can then be computed from this value through the
conservation relations �4a� and �4b�:

x1 = xT1 − x3, x2 = xT2 − x3. �29�

D. Condition for using these approximations

To see under what conditions the approximations �24a�,
�24b�, and �27� should be acceptable, let us compare the
numerical predictions of these formulas to the exact results
for some specific numerical examples. The exact results will

be obtained by evaluating the function P̂�x3 ,� 
xT1 ,xT2� us-
ing Eqs. �10a� and �10b�.

For our first example, we take the reaction parameter
values

c1 = 10−4, c2 = 1, xT1 = 2200, xT2 = 3000. �30�

For these values, X̂3
RRE in Eq. �18� is found to be 50.114,

which agrees extremely well with the exact value �X̂3���	
2 dgr
=50.117 obtained from Eq. �11�. The value of �G�x3 � in
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Eq. �23� is 38.37, which is only 0.4% higher than the exact

value var�X̂3����=38.20 obtained from Eq. �11�. Figure 1

compares the exact density function P̂�x3 ,� 
xT1 ,xT2� com-
puted from Eqs. �10a� and �10b� with the density function for

the normal random variable with mean X̂3
RRE and variance

�G
2 �x3

dgr�, which is the basis for the sampling approximation
�28�. On the linear scale of this graph, the two curves appear
to be practically the same. A semilog plot, however, would
reveal significant differences in the far tails, from 20 down to
0 and from 80 up to 220; e.g., for x3=20 the normal approxi-
mation is too large by a factor of 9.3, and for x3=80 it is too
small by a factor of 0.36. Further out in the tails the differ-
ences are in orders of magnitude. These differences will not

be important for generating random samples of X̂3���, be-
cause in those tails both curves are extremely small com-
pared to 1; e.g., the Gaussian value at x3=20 is 4.8�10−7,
and at x3=80 it is 5.7�10−7. For these parameter values, the
approximations �24a�, �24b�, and �27� should be entirely sat-
isfactory.

Consider, however, the situation for the parameter values

c1 = 10−4, c2 = 6, xT1 = 10, xT2 = 3000. �31�

The value of X̂3
RRE in this case is actually quite good, dis-

agreeing with the exact value �X̂3���	=0.476 13 only in the
last digit. The value of �G

2 �x3
dgr�=0.499, however, is about

10% higher than the exact value var�X̂3����=0.453. Figure 2

shows that the true density function P̂�x3 ,� 
xT1 ,xT2� is not
very well approximated by that of the normal random vari-

able with mean X̂3
RRE and variance �G

2 �x3
dgr�.

Other tests of this kind point to the following general
conclusion: If the location x3

dgr of the peak of the function

P̂�x3 ,� 
xT1 ,xT2� is at least four standard deviations away
from both the upper and lower limits of the interval
�0,x3 max�, then approximating that function by a normal

density function with mean X̂3
RRE and variance �G

2 �x3
dgr�

should be quite accurate. Therefore, we shall use the ap-

FIG. 1. The probability function P̂�x3 ,� 
xT1 ,xT2� for the parameter values
�30�. The circles show the exact values as computed from the recursion
relation �10a�, while the triangles show the normal distribution with mean

X̂3
RRE and variance �G

2 �x3
dgr�. The normal approximation actually differs from

the exact values by orders of magnitude in the extreme tails, but those
differences will be unimportant for our purposes.
proximations �24a�, �24b�, and �27� only when
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4��G
2 �x3

dgr� � x3
dgr � x3 max − 4��G

2 �x3
dgr� . �32�

E. When condition „32… is not satisfied

Numerical tests suggest that cases that do not satisfy
condition �32� all share a common feature: the interval
�0,x3 max�, or at least the subinterval of that interval where

the function P̂�x3 ,� 
xT1 ,xT2� is “significantly different from
zero,” is small, usually less than about 15 �cf. Fig. 2�. In
such circumstances, it becomes feasible to evaluate

P̂�x3 ,� 
xT1 ,xT2� using the exact formulas �10a� and �10b�,
and then compute the first two moments exactly and generate
a random sample exactly. This is what we propose to do
when condition �32� is not satisfied. In the Appendix, we
outline an efficient way to carry out these exact calculations.

VI. THE SLOW-SCALE SSA FOR REACTIONS „1…

We are now in a position to describe the slow-scale sto-
chastic simulation algorithm for simulating reactions �1�. Af-
ter presenting the algorithm in full, we will discuss each of
its steps in detail.

Step 0 �initialization�:

�a� Specify values for cj�j=1,2 ,3� and xi
�0��i=1, . . . ,4�.

�b� Set t←0 and xi←xi
�0��i=1, . . . ,4�.

�c� Compute xT1=x1+x3, xT2=x2+x3, and x3 max

=min�xT1 ,xT2�.
�d� Evaluate x3

dgr in Eq. �21�, and �G
2 �x3

dgr� in Eq. �23�.
Set Jnorm=TRUE or FALSE according to whether
condition �32� is or is not satisfied.

�e� If Jnorm=TRUE, evaluate X̂3
RRE in Eq. �18�, and then

set �X̂3���	= X̂3
RRE.

�f� If Jnorm=FALSE, compute f , Z0, and Z1 according to

formulas �A2�–�A6�, and then set �X̂3���	=Z1 /Z0.

Step 1 �begin simulation loop�: If condition �26� is satisfied,
¯ ˆ

FIG. 2. The probability function P̂�x3 ,� 
xT1 ,xT2� for the parameter values
�31�. The circles show the exact values as computed from the recursion
relation �10a�, while the triangles show the normal distribution with mean

X̂3
RRE and variance �G

2 �x3
dgr�. The normal approximation in this case would

not be adequate.
set a3=c3�X3���	; otherwise, abort this procedure and use the
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exact SSA or tau-leaping to advance the system in time.

Step 2 �find the next slow reaction�: Draw a unit-interval
uniform random number r, and set �= �1/ ā3�ln�1/r�.

Step 3 �actualize the next slow reaction�:

�a� t ← t + �,

�b� x3 ← x3 − 1, x1 ← x1 + 1, x4 ← x4 + 1,

�c� xT2 ← x2 + x3, x3 max ← min�xT1,xT2�.

Step 4 �relax the fast variables�:

�a� Evaluate x3
dgr in Eq. �20�, and �G

2 �x3
dgr� in Eq. �23�.

Set Jnorm=TRUE or FALSE according to whether
condition �32� is or is not satisfied.

�b� If Jnorm=TRUE, evaluate X̂3
RRE in Eq. �18�, and set

�X̂3���	= X̂3
RRE. Then generate a random sample x3

according to Eq. �28�.
�c� If Jnorm=FALSE, compute f , Z0, and Z1 according to

formulas �A2�–�A6�. Set �X̂3���	=Z1 /Z0, and gener-
ate a random sample x3 according to Eq. �A8�.

�d� Take x1=xT1−x3 and x2=xT2−x3.

Step 5 �end loop�:

�a� Plot �t ,x1 , . . . ,x4� if desired.
�b� If t� tstop then stop; otherwise, return to step 1.

Step 0 makes the necessary initializing computations. In
�a� we input the parameter values, in �b� we initialize the
time and state variables, and in �c� we evaluate the “con-
stants” xT1, xT2, and x3 max. In �d� we compute the location
x3

dgr and approximate width 2��G
2 �x3

dgr� of the peak in the

probability density function for X̂3���, and then we check to
see if that peak is far enough from the end points of the
interval �0,x3 max� that a normal �Gaussian� approximation
would be satisfactory. If so �Jnorm=TRUE�, we approximate

the mean of X̂3��� by the stationary solution X̂3
RRE of the

RRE. If not �Jnorm=FALSE�, we evaluate the mean of X̂3���
using the exact procedure described in the Appendix.

Step 1 checks to see if the relaxation time of the virtual
fast process is less than the expected time to the next slow
�R3� reaction. If it is, we prepare to step to the next R3 reac-
tion by evaluating its slow-scale propensity function, ā3. If it
is not, we should not use the slow-scale SSA.

Step 2 generates the time to the next R3 reaction. We use
the standard SSA time step formula, except the actual R3

propensity function a3 is replaced by the slow-scale R3 pro-
pensity function ā3, in accordance with the slow-scale ap-
proximation �see Sec. III�.

Step 3 actualizes the next R3 reaction by �a� updating the
time variable, �b� changing the species populations according
to the stoichiometry of reaction R3, and �c� computing the
postreaction values of the parameters xT2 and x3 max. In con-
nection with the last, note that the state change �b� decreases
the value of parameter xT2=x2+x3 by 1 but leaves the value
of parameter xT1=x1+x3 unchanged.

Step 4 “relaxes” the fast state variables by sampling

them at a time after the R3 reaction that is typically short
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compared to the time step � just taken, but long enough that
the virtual fast process will have relaxed to its asymptotic
form. The relaxed values for the fast state variables are gen-

erated by first picking x3 as a random sample of X̂3���, using
the postreaction parameter values just computed in step 3�c�,
and then choosing x1 and x2 in accordance with the conser-
vation relations. Generating the sample value x3 is the key
here. To do that, we begin in �a� by computing the location
x3

dgr and approximate width 2��G
2 �x3

dgr� of the peak in the

probability density function for X̂3���, and checking to see if
that peak is far enough from the end points of the interval
�0,x3 max� that a normal �Gaussian� approximation is war-

ranted. If so �Jnorm=TRUE�, we approximate X̂3��� as a nor-

mal random variable with mean X̂3
RRE and variance �G

2 �x3
dgr�,

and we generate the random sample x3 accordingly. If not

�Jnorm=FALSE�, we generate the random sample of X̂3���
exactly, using the procedure described in the Appendix, and

in the process we also calculate �X̂3���	 exactly. Either way,

we leave step 4 with a postreaction value for �X̂3���	 that can
be used to evaluate ā3 on the next pass through step 1.

Step 5 reads out the current state, and then either loops
back to simulate the next R3 reaction or else stops.

VII. NUMERICAL EXAMPLES

To illustrate the slow-scale SSA for reactions �1�, we
first take the parameter values

c1 = 10−4, c2 = 1, c3 = 10−4;

x1
�0� = 220, x2

�0� = 3000, x3
�0� = x4

�0� = 0. �33�

Figure 3 shows the results of an exact SSA run made using
these values, with the molecular populations of all the spe-
cies being plotted out immediately after the occurrence of
each R3 reaction. After an initial rapid transient that brings
the free enzyme population X1 down from 220 and the
enzyme-substrate complex population X3 up from 0, a
quasi-equilibrium is established between those two species.
Thereafter, the substrate population X2 slowly decreases, and
the product population X4 slowly increases, until all 3000 of
the initial substrate molecules have been converted into
product molecules, and the free enzyme population X1 has
returned to its initial value 220. The 3000th R3 reaction event
actually occurred at time 4.25�106 in this run. This exact
simulation of the 3000 R3 reactions required simulating
58.4�106 reactions in all, so successive trajectory dots here
are separated by, on average, about 19 000 fast reactions �R1

or R2�.
For the parameter values �33�, the left-hand side of con-

dition �26� is found to be about 260 times larger than the
right-hand side, and that favorable imbalance only improves
as the simulation proceeds since x3

dgr, which approximately
locates the center of the X3 trajectory in Fig. 3�a�, decreases.
The slow-scale SSA should therefore be applicable. Figure 4
shows the results of a slow-scale SSA run, with the molecu-
lar populations again plotted out immediately after each R3

reaction. The trajectories in Fig. 4 are statistically indistin-

guishable from those in Fig. 3, at least on the scale of these
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figures, which means that the slow-scale SSA is performing
very well. Whereas the exact SSA run in Fig. 3 had to simu-
late 58.4�106 reactions, the approximate slow-scale SSA
run in Fig. 4 simulated only 3000 reactions. The run time for
Fig. 4 was about 1.75 s, whereas the run time for Fig. 3 was
27.75 min, giving a real-time speedup factor for the slow-
scale SSA of about 950. By monitoring the value of Jnorm in
the slow-scale SSA run, it was determined that step 4�b� was
used to generate the X3 trajectory from time 0 until time
7.8�105, and thereafter step 4�c� was used; we note that the
transition between those two computational methods for gen-
erating the X3 trajectory cannot be detected in the data.

Our second example illustrates a case in which the aver-
age number of molecules of the enzyme-substrate complex
S3 remains less than one for an extended period of time. The
plots in Fig. 5 show the results of an exact SSA run for the
parameter values

c1 = 10−4, c2 = 6, c3 = 10−3;

x1
�0� = 10, x2

�0� = 3000, x3
�0� = x4

�0� = 0. �34�

Figure 5�a� shows the steady decline of the substrate �S2�
population, and the steady increase in the product �S4� popu-
lation, with the data points being taken immediately after
each R3 reaction. There are 1172 R3 reaction events in the
time span shown here, and a total of 13.7�106 reaction
events in all, so over 11 000 fast reaction events �R1 and R2�
typically occur between successive points in Fig. 5�a�. Figure
5�b� shows the population of the enzyme-substrate complex

FIG. 3. Trajectories obtained in an exact SSA run of reactions �1� for the
parameter values �33�. A total of over 58�106 reactions were simulated
here, but the species populations are plotted out only after each occurrence
of a slow �R3� reaction, of which there were 3000.
�S3� taken at these same times. Note that most of the time X3
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is either 0 or 1, but it is practically never greater than 2.
Figure 5�c� shows the S3 population for the same SSA

run, but now taken at equally spaced time intervals of 	t
=2.56�103, a value chosen to give the same total number of
plotted points as in Figs. 5�a� and 5�b�. The slight difference
between the X3 plots in Figs. 5�b� and 5�c� �note, for in-
stance, the higher number of X3=3 events in Fig. 5�c�� re-
flects the fact that the X3 population is not statistically inde-
pendent of the times at which R3 reactions occur. That
becomes clear when we recognize that an R3 reaction is
twice as likely to occur when X3=2 as when X3=1, and an
R3 reaction cannot occur at all when X3=0. The plot in Fig.
5�c� provides a sampling of the X3 population at times that
are uncorrelated with the times of the R3 reactions, and it
arguably represents a more “natural” sampling than that
shown in Fig. 5�b�. Of course, both plots are “correct.”

For the parameter values �34�, the left-hand side of con-
dition �26� is found to be larger than the right-hand side by
about four orders of magnitude, and that favorable imbalance
persists for the time span simulated since x3

dgr stays fairly
constant �at about 0.5� during this time. The slow-scale SSA
should therefore be applicable. Figure 6 shows the results of
a slow-scale SSA run. The populations are plotted after each
simulated �R3� reaction, and there were 1165 such reactions
in the interval shown. We see that the X2 and X4 plots in Fig.
6�a� are statistically indistinguishable from the SSA-
generated plots in Fig. 5�a�. We also see that the X3 plot in
Fig. 6�b� more closely resembles the equal-time plot in Fig.

FIG. 4. Trajectories obtained in an approximate slow-scale SSA run of
reactions �1� for the parameter values �33�. Only R3 reactions were explicitly
simulated here. The trajectories are statistically indistinguishable from the
exact SSA trajectories generated in Fig. 3, but this simulation ran about 900
times faster.
5�c� than the R3 reaction-time plot in Fig. 5�b�. This is to be
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expected from the way in which the slow-scale SSA relaxes
the fast variables after each R3 reaction before sampling
them. For this particular slow-scale SSA run, the X3 values
were always generated using the exact method in step 4�c�,
rather than the faster approximate method in step 4�b�; nev-
ertheless, the actual speedup factor of the slow-scale SSA run
relative to the x4 exact SSA run here was found to be about
400.

VIII. STREAMLINING THE ALGORITHM

A close examination of the computational procedure de-
scribed in Sec. VI will reveal that the three fast variables x1,
x2, and x3 affect the slow reaction R3 only through the values
of the two parameters xT1�x1+x3 and xT2�x2+x3, and the
values of those two parameters do not get changed by the
relaxation step 4. Therefore, if we are content to track the
status of the three fast variables only through the two vari-
ables xT1 and xT2, we can speed up the simulation procedure

by omitting the random samplings of X̂3��� in steps 4�b� and
4�c�.

The specific changes required to “streamline” the algo-
rithm in this way are as follows: In step 3�b�, delete the two
updates to x3 and x1. In step 3�c�, change the xT2 update to
read xT2←xT2−1. In steps 4�b� and 4�c�, delete the “gener-
ate” instructions. Omit step 4�d� entirely. Finally, in step
5�b�, plot �t ,xT1 ,xT2 ,x4�.

This streamlined stochastic simulation procedure evi-
dently ignores the fast variables x1, x2, and x3 �the enzyme,
substrate, and enzyme-substrate complex populations�, and
focuses solely on the slow variable x4 �the product species
population�. We shall see in Sec. X that simulating the evo-

FIG. 5. Trajectories obtained in an exact SSA run of reactions �1� for the
parameter values �34�. A total of 13.7�106 reactions were simulated, but
the species populations in �a� and �b� are plotted out only after each occur-
rence of a slow �R3� reaction, of which there were 1172. The X3 plot in �c�
is from the same run, but here the points are plotted at equally spaced time
intervals, with the interval spacing chosen to give the same total number of
plotted points. The explanation for the slight but statistically significant
differences between the �b� and �c� plots is discussed in the text.
lution of the system in this way is essentially equivalent to
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invoking the standard Michaelis–Menten formula for the de-
terministic rate of the slow reaction. Note that stochastically
correct values of the fast variables x1, x2, and x3 can be
regained at any time, and without any loss of accuracy, by
simply restoring steps 4�b�–4�d� to their previous forms.

IX. INCORPORATING ADDITIONAL SLOW REACTION
CHANNELS

It is straightforward to generalize the simulation proce-
dure for reactions �1� described in Sec. VI to accommodate K
additional slow reactions, R4 , . . . ,R3+K. These additional
slow reactions might involve any of the species S1 , . . . ,S4

already present in reactions �1�, as well as any new �slow�
species. For example, a reaction could be added that slowly
creates new molecules of the substrate species S2, or that
slowly consumes existing molecules of the free enzyme spe-
cies S1.

Condition �26� for applying the slow scale SSA, which
gets tested in step 1, will have to be modified so that it
compares the relaxation time of the virtual fast process to the
expected time to the next slow reaction of any kind. The
needed modification is the replacement of a3 on the right-
hand side of �26� with � j=3

3+Kaj, evaluated at the current values
of the slow species populations and the most likely values of
the fast species populations.

The formulas for the slow-scale propensity functions of
the new slow reactions are determined as follows: If the true
propensity function aj of slow reaction Rj does not involve
any of the fast species variables �x1 ,x2 ,x3�, then the slow-
scale propensity function āj of Rj would be identical to aj. If
aj depends on a single fast species variable, x1 or x2 or x3,
then āj is constructed by simply replacing that fast variable

by xT1− �X̂3���	 or xT2− �X̂3���	 or �X̂3���	, the values of
which are available in the existing algorithm through the

current estimate of �X̂3���	. If aj depends on the product of
two fast variables, then evaluating āj would require knowing

also �X̂3
2���	; for example, the product x1x3 would get re-

FIG. 6. Trajectories obtained in an approximate slow-scale SSA run of
reactions �1� for the parameter values �34�. Only R3 reactions were explicitly
simulated here, and they numbered 1165. The X2 and X4 trajectories in �a�
are statistically indistinguishable from the exact SSA trajectories in Fig.
5�a�. The X3 trajectory in �b� more closely resembles the one in Fig. 5�c�
than the one in Fig. 5�b�, for reasons explained in the text. This slow-scale
SSA simulation ran about 400 times faster than the SSA simulation in Fig. 5.
placed by the expression in Eq. �14c�. In that case, we would
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need to augment steps 0�e� and 4�b� to also compute

�X̂3
2���	=�G

2 �x3
dgr�+ �X̂3���	2, and to augment steps 0�f� and

4�c� to also compute Z2 and �X̂3
2���	=Z2 /Z0. Step 1 must

then be expanded to evaluate all the slow-scale propensity
functions ā3 , . . . , ā3+K according to these rules, and to also
compute their sum

ā0 � ā3 + ¯ + ā3+K.

Step 2 must be modified so that it determines not only
when the next slow reaction occurs but also which slow re-
action that will be. In direct analogy with the standard SSA,
the new step 2 would read:

Step 2: Draw two unit-interval uniform random
numbers, r1 and r2. Take �= �1/ ā0�ln�1/r1�, and take
j to be the smallest integer that satisfies � j�=3

j āj�
�r2ā0.
Step 3�b� must be changed so that it implements the state

change induced by the particular slow reaction Rj whose in-
dex was found in step 2. Step 3�c� must additionally update
xT1←x1+x3 if the occurrence of any of the new slow reac-
tions is capable of altering the value of that parameter.

Finally, the actions in steps 0�a�, 0�b�, and 5�a� must be
extended to all reactions and all species.

The resulting algorithm, which we note leaves the core
computations involving the virtual fast process unchanged,
will simulate the evolution of the expanded system one slow
reaction at a time.

X. CONNECTION TO MICHAELIS–MENTEN

The traditional deterministic approach to the enzyme-
substrate reactions �1� is to invoke the Michaelis–Menten
formula for the rate 
 at which molecules of product species
S4 are being produced. The deterministic reaction-rate equa-
tion for reactions �1� gives 
 as


 =
dX4

dt
= c3X3, �35�

where Xi is now viewed as a sure �nonrandom� variable giv-
ing the instantaneous number of Si molecules in the system.
Deriving the Michaelis–Menten formula for 
 evidently re-
quires obtaining an estimate for X3, and a quick review of
how that is done will enable us to understand the connection
between the Michaelis–Menten approach to reactions �1� and
the slow-scale SSA approach presented in this paper.

There are actually two ways of obtaining the Michaelis–
Menten formula: one can either invoke the partial equilib-
rium �or rapid equilibrium� approximation, or one can invoke
the quasi-steady-state approximation. In the partial (rapid)
equilibrium approximation, one assumes that the fast reac-
tions R1 and R2 are in approximate equilibrium with each
other. Equating �approximately� the deterministic rates at
which those two reactions occur gives

c1X1X2=̇c2X3. �36�

In the quasi-steady-state approximation, one assumes that
the population of the enzyme-substrate complex species S3 is

approximately constant. Since the reaction-rate equation
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gives dX3 /dt as c1X1X2−c2X3−c3X3, then setting that rate to
�approximately� zero gives

c1X1X2=̇�c2 + c3�X3.

Under condition �2�, this relation reduces to Eq. �36�. So we
see that the partial �rapid� equilibrium approximation and the
quasi-steady-state approximation lead to the same result �36�
when condition �2� holds.

The Michaelis–Menten formula is a simple consequence
of Eq. �36� and the fact that reactions �1� conserve “enzyme
units;” i.e., the number of free enzyme molecules �=X1� plus
the number of enzyme-substrate complexes �=X3� remains
constant �cf. Eq. �4a��:

X1 + X3 = xT1 �const� . �37�

Solving Eq. �37� for X1 and substituting the result into Eq.
�36� gives

c1�xT1 − X3�X2=̇c2X3,

and then solving this for X3 gives

X3=̇
xT1X2

�c2/c1� + X2
. �38�

Putting this into Eq. �35� yields the Michaelis–Menten
formula6


 =
c3xT1X2

�c2/c1� + X2
. �39�

The connection between this well-known result and our
slow-scale SSA can be understood by recognizing that, be-
cause of condition �2�, reaction R3 will be occurring at a
negligibly small rate compared to reactions R1 and R2. Since
the latter two reactions by themselves conserve “substrate
units,” then condition �2� implies the approximate conserva-
tion relation �cf. Eq. �4b��

X2 + X3=̇xT2 �const� . �40�

Solving this for X2 and then substituting the result into Eq.
�38� gives

X3=̇
xT1�xT2 − X3�

�c2/c1� + �xT2 − X3�
.

Clearing the fraction and collecting terms produces

X3
2 − 
 c2

c1
+ xT1 + xT2�X3 + xT1xT2=̇0,

and the solution to this quadratic equation for X3 is precisely
the quantity in Eq. �18�:

X3=̇X̂3
RRE. �41�

By combining this result with the definition of 
 in Eq. �35�,
and the approximate formula for the mean of X̂3��� in Eq.
�24a�, and finally the definition �5� of the slow-scale propen-

sity function for reaction R3, we conclude that
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 = c3X3=̇c3X̂3
RRE=̇c3�X̂3���	 = ā3�x� . �42�

In words, under condition �2�, the Michaelis–Menten esti-
mate of the rate of production of product is approximately
equal to the slow-scale propensity function for reaction R3.
Therefore, the stochastic rate of production of product spe-
cies in the slow-scale SSA is, for all practical purposes,
equal to the deterministic rate that is prescribed by the
Michaelis–Menten formula.

The result �42� suggests that our earlier analysis amounts
to a derivation of the deterministic Michaelis–Menten result
from a purely stochastic point of view. More specifically, the
slow-scale approximation that was proved in Ref. 2 leads to
the conclusion that if condition �26� is satisfied, then the
propensity function of reaction R3 on the slow time scale is
effectively the value given by the Michaelis–Menten for-
mula. The stochastic approach, in addition to providing the
validity criterion �26�, also allows us to simulate the fluctua-
tions in the fast species S1, S2, and S3, which of course a
deterministic analysis cannot do. The “streamlined” stochas-
tic simulation procedure described in Sec. VIII does not
simulate the populations of the fast species, and in that sense
is very close to the usual deterministic Michaelis–Menten
treatment. Whereas conventional deterministic derivations of
the Michaelis–Menten formula �39� simply assume that the
fluctuations in the fast variable X2 can be safely ignored, our
stochastic derivation provides a priori assurance of that. Fi-
nally, the slow-scale SSA approach automatically provides
an accurate discrete-stochastic description of the creation of
product molecules by reaction R3, for those circumstances
where that turns out to be important.

XI. SUMMARY AND CONCLUSIONS

The enzyme-substrate reaction set �1� is a common motif
in cellular systems, where it often satisfies condition �2�. We
have shown here how dramatic increases in the speed of
stochastically simulating reactions �1� under condition �2�
can be achieved, without noticeable loss of computational
accuracy, by using the slow-scale SSA that was developed in
Ref. 2. We described the application of the slow-scale SSA to
this system in detail, and we indicated how the procedure can
be adapted to the case in which reactions �1� are embedded
in a larger set of �slow� reactions. Finally, we showed that
the slow-scale SSA approach to reactions �1� is a natural
stochastic extension of the deterministic Michaelis–Menten
approach, and, in fact, provides a broader perspective on the
Michaelis–Menten formula that helps clarify its rationale.

The speedup provided by the slow-scale SSA for reac-
tions �1� generally depends on the strength of the inequality
�2�, or more accurately, the inequality �26�: the stronger
those inequalities are, the greater the speedup will be, and
the greater the accuracy will be as well. If those inequalities
do not hold, the three reaction channels in �1� will be firing at
comparable rates. In that case the system will not be stiff,
and the slow-scale SSA cannot be applied. If at least some of
the reactant populations are large, substantial but less dra-
matic speedups over the exact SSA should still be possible

7
by using the explicit tau-leaping procedure. If all the reac-
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tant populations are small, the SSA itself will probably be the
most efficient simulation procedure.
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APPENDIX: EXACT COMPUTATIONS FOR X̂3„�…

In some circumstances it is feasible to compute the first

two moments of X̂3���, and to generate random samples of

X̂3���, exactly. The key to doing this is to compute the prob-

ability density function P̂�x3 ,� 
xT1 ,xT2� of X̂3��� according
to the exact equations �10a� and �10b�. To that end, we begin
by using the current values of X1, X2, and X3 to evaluate the
parameters for this distributions,

xT1 = X1 + X3, xT2 = X2 + X3, x3 max = min�xT1,xT2� .

�A1�

Next we compute x3
dgr in Eq. �21�, which locates the �single�

peak in the function P̂�x3 ,� 
xT1 ,xT2�; more precisely,

P̂�x3 ,� 
xT1 ,xT2� achieves its largest value for integer values
of x3 at the greatest integer in x3

dgr, which we denote by

x̂3 � �x3
dgr� . �A2�

Although the function P̂�x3 ,� 
xT1 ,xT2� is strictly positive for
all x3� �0,x3 max�, it gets dramatically closer and closer to
zero as we move further and further away from the peak at
x3. For numerical work, we can safely confine ourselves to a
usually much smaller subinterval �x3L ,x3H� of �0,x3 max�
which is defined by the condition that everywhere outside

this subinterval, P̂�x3 ,� 
xT1 ,xT2� is less than some very
small fraction, say 10−7, of its maximum value at x̂3.

To capture the information contained in Eqs. �10a� and
�10b� for x3� �x3L ,x3H�, we let f�x3� denote the unnormal-

ized function P̂�x3 ,� 
xT1 ,xT2�, and we execute the following
computational steps, where the functions W−�x3� and W+�x3�
are as defined in Eqs. �6�: First, we set

f�x̂3� = 1. �A3�

Then, if x̂3�0, we compute for x3= x̂3−1 , x̂3−2 , . . ., in that

order,
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f�x3� =
W−�x3 + 1�

W+�x3�
f�x3 + 1� , �A4�

until either x3=0 or f�x3��10−7, after which we set x3L=x3

and stop; or, if x̂3=0, we simply set x3L=0. Similarly, if x̂3

�x3 max, we compute for x3= x̂3+1 , x̂3+2 , . . ., in that order

f�x3� =
W+�x3 − 1�

W−�x3�
f�x3 − 1� , �A5�

until either x3=x3 max or f�x3��10−7, after which we set
x3H=x3 and stop; or, if x̂3=x3 max, we simply set x3H=x3 max.
Concurrent with the computations in �A3�–�A5�, we also
compute the following three quantities as running sums:

Zk � �
x3=x3L

x3H

x3
k f�x3� �k = 0,1,2� . �A6�

Since P̂�x3 ,� 
xT1 ,xT2�= f�x3� /Z0, we can now compute

the first two moments of X̂3��� according to the exact for-
mula �11� simply by taking

�X̂3
k���	 = Zk/Z0 �k = 1,2� . �A7�

If R3 is the only slow reaction being considered, the k=2
calculations in Eqs. �A6� and �A7� can be omitted, since the

value of �X̂3
2���	 will not be needed.

A random sample x3 of X̂3��� can be generated by using
the exact “inversion” Monte Carlo generating method, in
which one draws a unit-interval uniform random number r

and then takes x3 to be the smallest integer that satisfies
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�
x3�=x3L

x3

P̂�x3�,�
xT1,xT2� � r .

Since P̂�x3 ,� 
xT1 ,xT2�= f�x3� /Z0, we can therefore compute
the random sample x3 as the smallest integer that satisfies

�
x3�=x3L

x3

f�x3�� � rZ0. �A8�

The time required to make all the above computations
will be roughly proportional to �x3H−x3L�, the number of
steps in the two do-loops for the computations of �A3�–�A6�
and of �A8�. For the circumstances in which we are propos-
ing to make these exact computations inside the main simu-
lation loop, �x3H−x3L� will usually be less than 15, so these
computations ought to be feasible.
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