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Abstract: Systems theoretic tools, including mathematical modeling, control
theoretic analysis, and feedback design, advance the understanding of the circadian
clock: a set of noisy oscillators that communicate to ensure its function as a reliable
pacemaker. The clock’s internal time, or phase, is a key performance measure
used to investigate dynamics of a single deterministic oscillator for the purpose of
generating insight into the behavior of coupled stochastic oscillators. The analysis
of a single oscillator identifies appropriate coupling mechanisms for an ensemble of
stochastic oscillators. Phase also serves as a critical control objective for a model
predictive control algorithm that aims to correct mismatch between the biological
clock and its environment.
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1. INTRODUCTION

Biological systems are characterized by com-
plex dynamics. Undergirding a system’s function
are networks of interacting components (Sontag,
2004). To elucidate the mechanisms employed by
these networks, biological experimentation and
intuition are by themselves insufficient (Kitano,
2002). In the field of systems biology, investi-
gators formalize the dynamical interactions as
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mathematical models and subject these models
to systems theoretical analyses, with the goal of
guiding further experimentation and increased un-
derstanding (Fall et al., 2005). A perfect example
of biological complexity is the circadian clock,
which coordinates daily physiological behaviors of
organisms across the kingdoms of life.

The mammalian circadian master clock resides in
the suprachiasmatic nucleus (SCN), located in the
hypothalamus (Reppert and Weaver, 2002). It is a
network of multiple autonomous noisy oscillators,
which communicate via neuropeptides to synchro-
nize and form a coherent oscillator (Herzog et
al., 2004; Liu et al., 2007). This coherent oscillator
then coordinates the timing of daily behaviors,
such as the sleep/wake cycle. Left in constant
conditions, the clock will free-run with a period



of only approximately 24 hours and its internal
time, or phase, will drift away from that of its
environment. Thus, vital to a circadian clock is
its ability to entrain to external time through en-
vironmental factors (Boulos et al., 2002; Dunlap et
al., 2004; Daan and Pittendrigh, 1976a). To study
the timekeeping abilities of the circadian clock, we
employ a systems biology approach. Mathematical
models are used in two complementary investiga-
tions, one involving the network of coupled oscil-
lators, and the other involving the single coherent
oscillator. In both cases we investigate the phase
response behavior.

Proper phase response behavior is critical for syn-
chronization both to environmental factors such
as light, temperature, nutrition intake, and so-
cial interaction (Boulos et al., 2002; Dunlap et
al., 2004; Daan and Pittendrigh, 1976a), and to
other oscillators via intercellular signals such as
vasoactive intestinal polypeptide (VIP) (Herzog et
al., 2004; To et al., 2007). To study this behavior,
phase response curves (PRCs) are collected. By
mapping the arrival time of a stimulus to its
resulting phase shift (advance or delay), the PRC
characterizes the clock’s time-dependent sensitiv-
ity to the given stimulus. In experimental settings,
the best-studied factor is light (Daan and Pitten-
drigh, 1976b; Johnson, 1999; Winfree, 2001). Light
PRCs have been used extensively to predict and
better understand how biological oscillators are
entrained by light input (Johnson, 1999; Johnson
et al., 2003; Comas et al., 2006). A similar analysis
is extended to mathematical models.

Commonly, circadian clocks are modeled with or-
dinary differential equations (ODEs) as single,
deterministic limit cycle oscillators (Leloup and
Goldbeter, 2003; Forger and Peskin, 2003). These
models are used to reverse-engineer both the inter-
nal composition (transcriptional feedback loops)
of the clock and the process of entrainment by
light/dark cycles (Johnson et al., 2003; Geier et
al., 2005). To capture the variability observed
in biological data, additional models introduce
stochasticity, via multiplicative noise in stochastic
differential equations (SDEs) (Ueda et al., 2002)
or via a transformation from the differential equa-
tion setting to a discrete stochastic setting (Forger
and Peskin, 2005; Gonze and Goldbeter, 2006). To
capture the network behavior, spontaneous syn-
chronization of coupled oscillators is modeled for
the mammal and fly in (Ueda et al., 2002; Gonze
et al., 2005; To et al., 2007).

Synchronization and entrainment are critical phe-
nomena of the circadian network that dictate an
organism’s level of performance. To further our
understanding of such processes, we use ODEs,
SDEs, and a discrete stochastic model in both
the network and single-cell setting. In Section 2

we analyze synchronization of neurons in an SDE
model by studying the phase response behavior
of a single, deterministic cell. In Section 3 we
define a population of neurons through a discrete
stochastic model where the challenges associated
with achieving synchronization are addressed via
the study of a single oscillator. Section 4 describes
a strategy for correcting the phase mismatch that
arises when there is a difference between internal
and external time.

2. ANALYSIS OF AND PREDICTIONS FOR
COUPLED OSCILLATORS

We analyze the phase behavior of an SDE
model of 100 coupled neurons in the Drosophila
melanogaster circadian pacemaker (Ueda et al.,
2002). In an investigation of potential coupling
mechanisms, Ueda et al. have developed a frame-
work in which there are 960 potential coupling
mechanisms. Each coupling mechanism is con-
structed such that each cell contains a compo-
nent that sends a signal which is received by its
neighbor cells. The signal then modulates a given
target parameter. The authors show that a subset
of the target/signal pairs produce spontaneous
(in phase) synchronization among the cells. They
discuss this phenomenon in terms of “day” and
“night” systems, in which the mutual entrainment
occurs in a manner similar to light (or dark) pulse
entrainment.

We expand upon their analyses by modeling all
960 signal/target pairs. Of the 960, there are 84
that produce (in phase) synchrony. However, not
all synchronizing mechanisms produce the same
behavior. Notably, the period of oscillation is
different for each target/signal pair, with values
ranging from 20 hours to 37 hours. Because we
are interested in rhythms that are circadian, we
consider only those pairs that produce periods
in the range of 20 to 28 hours. We examine the
relationship between the signal/target pair and
the resultant period of the synchronized system
using a combination of numerical experimentation
and mathematical analysis with an infinitesimal
analog to the PRC. This is a step in pursuit of
the fundamental question: What causes these cou-
pling mechanisms to bring about synchronization
while the others fail? Understanding the transi-
tion from asynchrony to synchrony is a signifi-
cantly more complicated endeavor; thus, we focus
on a synchronized system.

2.1 Methods

We simulate the SDE system for the 82 sig-
nal/target pairs that cause synchrony with a
“circadian” period. The data describe what will



happen, but leave unanswered questions such as:
Why are some signal/target pairs speeding up
the oscillations and some slowing them down?
How would an adjustment of the relative timing
between the signal and the cell’s phase change
the timing? There is a rich literature concern-
ing the mathematical analysis of coupled oscilla-
tors (Kuramoto, 1984; Hoppensteadt and Izhike-
vich, 1997; Winfree, 2001; Brown et al., 2004).
The most heavily studied systems, such as the
Kuramoto model, assume either that interactions
among oscillators are sinusoidal (Kuramoto, 1984;
Strogatz, 2000) or that they perturb state veloc-
ities directly (Brown et al., 2004). In circadian
clock models, a signal sent to an oscillator ulti-
mately manifests as the manipulation of a single
parameter. Thus, to study the effects of signaling
on the phase behavior, we must examine the ef-
fects of parametric manipulation on phase behav-
ior. This motivated us to develop the parametric
impulse phase response curve (pIPRC) in (Taylor
et al., 2007), which predicts the oscillator’s veloc-
ity change in response to parametric perturbation.
In the present work, we demonstrate its utility as
a complement to numerical experimentation.

To utilize the pIPRC, we are compelled to inves-
tigate a deterministic model. Thus, we study a
single neuron, modeled as a set of ODEs with a
stable attracting limit cycle, e.g. ẋ(t) = f(x(t),p).
The solution along the limit cycle is periodic with
period τ , and we describe its progress along the
cycle by its internal time, or phase, φ. When the
clock is unperturbed, the phase progresses at the
same rate as time, i.e., dφ(x(t,p))/dt ≡ 1. When
the clock is perturbed the velocity response is
predicted by the pIPRC, i.e.

pIPRC(φ) =
d

dt

∂φ

∂p
(t).

Consider a signal ∆pj(t, φ) which is a function
either of time or phase. This signal will change
the oscillator’s velocity according to ∆φ/∆t ≈
pIPRCj(φ)∆pj(t, φ). Another interpretation is
that for a pulse of duration ∆t, a phase shift is in-
curred according to ∆φ ≈ pIPRCj(φ)∆pj(t, φ)∆t.
Using this interpretation, the pIPRC is a predictor
for the PRC – the pIPRC characterizes the timing
behavior of an oscillator alone while the PRC
describes the response to a particular signal. To
understand the period of the synchronized cells
of the Drosophila clock, we study the relationship
between the signal and the pIPRC for the target.

We must acquire the signal. To begin, we capital-
ize on the stable synchrony – in a synchronized
system, each neuron sends the same signal at the
same time. Thus, we mimic the intercellular sig-
naling simply by assuming that all signals match
that of a single neuron. The trace of the signal

is acquired by simulating one cell as it sends the
signal (without allowing the signal to feed back
onto the cell). Two example signals along with the
pIPRCs corresponding to their targets are shown
in Fig. 2.

Before we begin our analysis, we evaluate the
predictive power of the single cell model and of
the pIPRC for each signal/target pair. First, we
predict the period of the synchronized SDE pop-
ulation by simulating the ODE model, allowing it
to signal itself. After several cycles it converges to
a new limit cycle with a new period – the period
of the synchronized system. In Fig. 1 we plot our
prediction for the new period against the observed
period of the SDE model of the full population.
The square of the Pearson correlation coefficient,
R2, is 0.91 and the data is located within an hour
of the observed values. Second, we use the pIPRC
directly to make similar predictions. By treating
φ as the independent variable (instead of time),
we predict the change in period by assessing the
effect of the signal on the oscillator over a single
cycle. Integrating over the cycle,

∆τ ≈ −
τ∫

0

pIPRCj(φ)∆pj(φ) dφ,

we find that the predictions are qualitatively ac-
curate. Fig. 1 shows the predicted period change
of the synchronized system versus the observed
period change of the synchronized system. The R2

value between observed and predicted periods is
0.65. The data are more scattered than those from
the full-cell simulation, though the majority are
within 1 hour of perfect prediction. We conclude
that although neither of these methods are perfect
predictors, their qualitative correctness supports
our approach.

2.2 Analysis

Fig. 2 contains the traces of two signal/target
pairs. Fig. 2(a) shows the relationship for a pair
that causes the system to slow down. In this case,
the target reaction rate is the maximal rate of
degradation for clock component tim mRNA. The
signal arrives at the tail end of the advance zone,
and is active during the deadzone and the first
half of the delay zone, leading to a cycle that
is slower than nominal. Fig. 2(b) shows a pair
for which the target reaction rate is the maximal
rate of clk mRNA degradation. Here, the pIPRC
shows nearly negligible delay regions. It follows
that, regardless of the phase relationship between
the signal and target, the oscillator will respond
by speeding up.

In both of these cases, and in all cases that
produce synchrony, the relationship between the
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Fig. 1. Observed vs. Predicted Periods. For each
signal/target pair that produces synchrony
there is a black circle and a gray plus. The
x-axis position indicates the period predicted
using the pIPRC (circles) or using a single
cell, signaling itself (pluses). For both data,
the y-axis position indicates the period ob-
served once collection of noisy cells becomes
(and remains) synchronized. Perfect predic-
tions fall on the dotted line. The dashed and
solid lines represent the best fit by linear
regression analysis, with R2 = 0.65 for the
pIPRC-predicted data and R2 = 0.91 for the
single-cell data.

signal and target meets the criteria for stable
entrainment (data not shown). If the signal arrives
early (because the phase of the system is a little
behind), the system is sped up more (or slowed
down less) than usual, and vice versa. The study
of the pIPRC and signal is consistent with the ob-
served behavior – the mutual entrainment is stable
and the system remains synchronized. However,
meeting the conditions for mutual entrainment is
only a necessary factor; pairs arise that meet the
requirements for stable entrainment but do not
yield a transition to synchrony (data not shown).
Figure 2(a) makes clear that a leftward signal shift
of several hours produces a greater overlap of the
advance region, meets the conditions for stable en-
trainment, and shortens the synchronized period.
Thus, an understanding of the phase response
behavior is key to unraveling the mechanisms in
vivo.

3. STOCHASTIC MODEL OF COUPLED
MAMMALIAN CIRCADIAN NEURONS

Phase response analysis is an important tool used
to predict the coupling mechanism used by the
mammalian clock. Evidence suggests that neurons
in the SCN are synchronized via the neuropeptide
VIP (Herzog et al., 2004). VIP levels are high
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(a) Signal/Target Pair Producing Slow Oscillations
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(b) Signal/Target Pair Producing Fast Oscillations

Fig. 2. Shown are the pIPRC (black dotted line)
and signal trace (gray solid line) pairs that
cause the coupled SDE system to synchronize
with (a) long and (b) short periods. All curves
are relative to the target parameter’s nominal
value; i.e., each signal represents fractional
changes in the target parameter’s value and
each pIPRC predicts the velocity response to
fractional changes.

during the subjective day, and preliminary results
show that VIP signals cause light-like phase shifts.
Thus, the VIP signal is similar to the light signal,
and the VIP target is similar to the light tar-
get. Data show that both VIP and light induce
Per transcription (Piggins et al., 1995), and it is
predicted that the target of VIP signaling is Per
transcription. Using this evidence, the authors of
(Hao et al., 2006; To et al., 2007) model postulated
mechanisms in which VIP signals are received
by a cell through signal cascades culminating in
the modulation of the parameter associated with
Per transcription. Using an ODE model, To et
al. incorporate this coupling mechanism into a
population of non-identical cells, each of which is
based on the gene regulatory network model of
(Leloup and Goldbeter, 2003). They simulate sce-
narios in which (1) no coupling is present (and the
cells drift out phase) and (2) coupling is present
(and the cells form a coherent oscillator), thus
demonstrating that their mechanism is capable of
creating the spontaneous synchronization seen in
the data.

Biological experiments show that uncoupled neu-
rons are either damped or sloppy oscillators (Aton
et al., 2005). The periods of isolated neurons show
both a broad distribution of periods and temporal
(cycle-to-cycle) variability (Herzog et al., 2004).
The model presented in (To et al., 2007) shows
a broad distribution of periods across cells, but



none of the cycle-to-cycle variability. To introduce
that variability, we develop a stochastic model
that builds on these efforts, adding the intrin-
sic noise due to the discrete nature of reactions
in the SCN neuron. The present model employs
a 2-dimensional grid of 9 SCN neurons and is
the discrete stochastic version of the model in
(Leloup and Goldbeter, 2003) with the coupling
mechanism from (To et al., 2007). Preliminary
results, synchronizing a small number of coupled
cells, support the validity of the mechanism in the
presence of noise. For a more detailed description
of the signaling mechanism, see Equations 1-7
and Table 1 in the model supplement of (To et
al., 2007).

3.1 Discrete Stochastic Simulation

The stochastic simulation algorithm (SSA) (Gillespie,
1976; Gillespie, 1977) generates exact trajectories
of the populations of chemical species, given a
description of the reaction system consisting of
the stoichiometric matrix, νij , and the propen-
sity functions aj . The probability density func-
tion P (x, t|x0, t0) is defined as the probability the
system will be in state x at time t, given that it
was in state x0 at time t0. The time evolution of
P (x, t|x0, t0) is described by the chemical master
equation,

∂P (x, t|x0, t0)
∂t

=
M∑

j=1

[ aj(x− νj)

P (x− νj , t|x0, t0)

−aj(x)P (x, t|x0, t0)].(1)

The stoichiometric matrix νij describes how the
populations of species change with each reaction
and has dimensions of number of species i =
1, · · · , N by number of reactions j = 1, · · · ,M .
The propensity function aj predicts the probabil-
ity of each reaction occurring during the next in-
finitesimal time interval, given the current species
populations. We use StochKit (StochKit, 2007)
package, a stochastic simulation tool developed at
University of California, Santa Barbara, to simu-
late the two dimensional grid of neurons using the
SSA.

3.2 Oscillatory Range of Per Transcription Rate

The introduction of noise alters the behavior of
the single cells such that additional tuning is
required to achieve synchrony. In particular, be-
cause VIP signaling ultimately manifests as mod-
ulation of the rate of Per transcription, special
attention must be paid to the levels of Per mRNA

and its rate of transcription, νsP (t). The basal
rate, νsP0, characterizes the behavior of an iso-
lated cell. Per mRNA for several νsP0 are shown
in Fig. 3. The depletion or accumulation of per
mRNA that occurs when νsP0 is below 1.2 or
above 1.8 indicates that we have upset the balance
between (1) the transcription rate and (2) the
combination of the transport (from nucleus to
cytoplasm) and degradation. The current model
normalizes the coupling for the size of the grid,
but does not maintain the median of νsP (t) as
coupling is added. For the coupled population
to exhibit synchrony, we have observed that the
median value of νsP (t) must stay within the range
that produces oscillations in an individual cell.
Thus, to achieve synchrony, the basal transcrip-
tion rate νsP0 is decreased to 1.0 for the coupling
weight used in the present work. This produces
a median per mRNA population comparable to
the uncoupled case with νsP0 = 1.5. At this basal
transcription rate, all isolated cells are damped
oscillators. To better match the biological obser-
vation that many isolated cells show sustained
oscillations, it is necessary either to weaken the
coupling or to adjust the transport or degradation
rate to re-balance the per mRNA level.
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Fig. 3. Per mRNA concentration as a function
of basal transcription rate νsP0 in uncoupled
cells. For νsP0 below 1.2 per mRNA concen-
trations exhibit damped oscillations for the
ten day period simulated. For νsP0 above 1.8
per mRNA concentrations begin to grow in
amplitude with minima greater than zero.

3.3 Discrete Stochastic Simulation

The results of a single simulation trajectory of a
3x3 grid of coupled cells are shown in Fig. 4(a) and



Fig. 4(b). The radius r(t) of the complex order
parameter

rεiΨ =
1
N

N∑

j=1

εiθj (2)

measures the phase coherence of the collective
rhythm of N coupled oscillators (Strogatz, 2000).
If the oscillators are in phase, then r ≈ 1. θj

are the phase of each oscillator and Ψ(t) is the
average phase. The increase in r(t) from 0.6 to
0.8 in one cycle is comparable to the results from
(To et al., 2007), where a deterministic model with
normal distribution of some of the parameters was
used to create a grid of coupled heterogeneous
cells.

The difference in peak amplitudes in Fig. 4(a) is
due to the small grid and the effect of its bound-
aries. The discrete stochastic simulation of larger
grids is a goal of this research and will require im-
provements in code performance. Reproducing the
period and cycle-to-cycle variability of uncoupled
single neurons will require increasing the effective
noise level by lowering the volume. This study,
done at a high volume, demonstrates a method for
balancing the coupling strength that will produce
phase coherence with a basal Per transcription
rate that will sustain oscillations.
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Fig. 4. For a single SSA simulation of a 3x3 grid
of coupled cells (with Ω = 2000), we show
(a) the trajectory of Per mRNA concentra-
tion over time, and (b) its degree of phase
coherence.

4. PHASE AS A CONTROL OBJECTIVE

As signaling among a network of cells serves to
synchronize the phase of the individuals, signaling
from the environment serves to entrain the phase
of the emergent coherent oscillator. Thus, the
light signal received by an organism induces phase
shifts that calibrate its internal phase to external
time. In this section the clock is regarded as
a single deterministic oscillator and we apply a
model predictive control (MPC) algorithm as a
tool to minimize the phase difference between the
organism and the environment.

In the early 1970’s, Daan and Pittendrigh inves-
tigated light-induced phase shifts in free-running
organisms through the development of phase re-
sponse curves. Watanabe et al. (2001) build upon
Daan and Pittendrigh’s investigation of light-
induced phase shifts in free-running organisms
by proving that the basis for phase entrainment
in mammals involves both advance and delay
components of the phase response curve . Boulos
et al. (2002) extend the investigation/application
of phase response curves by establishing bright
light treatment as a means to accelerate circa-
dian re-synchronization rates. In a previous study,
a closed-loop model predictive control algorithm
that relies on an evolutionary strategy to deter-
mine an optimal sequence of light pulses is used to
reset the organisms’ phase (Bagheri et al., 2007).
In this study the optimal sequence of light inputs
is determined as a function of MPC tuning pa-
rameters as well as the attributes of the driving
force (light).

4.1 A Mammalian Model

A detailed model that describes circadian dy-
namics of a single mammalian cell through 61
ODEs serves as the example system (Forger and
Peskin, 2003; Mirsky et al., 2007). It may be
generally defined as a set of nonlinear ordinary
differential equations where t is continuous in
time, x(t) defines the n-length state vector, L(t)
defines the environmental light input, u(t) defines
the controlled light input, and f(x(t), L(t), u(t))
defines the n-length system dynamics:

ẋ(t) = f (x(t), L(t), u(t)) , (3)

x(t0) = x(0),

where x(t) ∈ <n×1, L(t), and u(t) ∈ <1×1. Once
the asymptotically stable nonlinear oscillator con-
verges to a limit cycle, it exhibits a period τ :
x(t + τ) = x(t). In this paper, the nominal model
(a version of the model that has converged to the
natural light/dark environment where u(t) = 0



and L(t) oscillates as a square wave between val-
ues 3.39E-2 and 0) is used to define the reference
trajectory, r(t). A circadian time of 0 reflects
dawn while a circadian time of 12 reflects dusk,
assuming regular 24 hour day:night cycles.

4.2 MPC of Light Pulses

A model predictive control strategy (Henson and
Seborg, 1997; Morari and Lee, 1999) is used to in-
crease the re-synchronization rate of circadian os-
cillators through the systematic addition of light.
The control algorithm steps through state trajec-
tories at ts-hour intervals, where k serves as the
discrete time index reflecting the current simula-
tion time t evaluated at ts intervals. In this work,
the time step and duration of the manipulated
control variable, light, are equivalent.

The manipulated light profile, u(t), optimizes an
open-loop performance objective on a time in-
terval extending from the current time to the
current time plus a prediction horizon, P = 54hr,
allowing the algorithm to take control action at
the current time in response to a forecasted error.
The move horizon limits the number of controlled
light pulses within the prediction horizon; M =
3hr. Beyond M hours of simulation, the predicted
model defaults to u(t) = 0. Future behaviors for a
variety of control inputs are computed according
to a model of the plant.

The algorithm chooses a series of control inputs
by minimizing a performance criterion over a
future horizon. Once the most fit control sequence,
u∗ ∈ <M/ts×1, only the first control, u∗(1), is
implemented. Feedback is incorporated by using
the next measurement to update the optimization
problem for the next time step.

Assuming umin(t) =-3.39E-2, umax(t) =3.39E-2,
and L(k) + u(k) ≥ 0, the performance function
penalizes the normalized predicted error between
the reference and controlled trajectories, e(k),
and its corresponding control sequence, u(k). To
avoid penalizing transient effects, the state error
is weighted uniformly over the move horizon and
with increasing weight of slope 2 over the predic-
tion horizon (via Q). The cost of applying a light
input is always weighted uniformly (via R). The
cost of implementing an M -length control input
u(·) beginning at time k that minimizes the error
over P hours is defined as

J = min
u(·)

[
(eQ)T (eQ) + (ūR)T (ūR)

]
. (4)

Once the controlled state trajectories converge to
within 15% of the corresponding nominal (or ref-
erence) state trajectories, the system is considered
to be in phase: Tr = mink [|e(k)|∞ ≤ 0.15]. For

further details concerning the MPC algorithm,
please refer to (Bagheri et al., 2007).

4.3 MPC Tuning Parameters

The optimum control sequence, u∗, is determined
by enumerating the solutions over a grid in the
solution space (light magnitude as a function
of time). The algorithm approaches a globally
optimal solution as the total possible quantization
steps of the control input and computational
expense increase. The efficacy of the algorithm
is tested with respect to a quantization step of
2, 4, 8, and 16 steps (Fig. 5(a)). Results suggest
that the decrease in phase recovery time may not
outweigh the increase in computation time. The
phase resetting dynamics of a control input with
2 and 8 possible steps are investigated below.

Similarly, the efficacy of the algorithm is tested
with respect to a control input of duration 1, 2,
and 3 hours (reflecting a move horizon of 3, 6, and
9-hours, respectively) (Fig. 5(b)). Results suggest
that although shorter light pulses offer a more
dynamic manipulated variable profile, it shortens
the move horizon and may reduce the utility of
model predictive control. Conversely, while longer
light pulses offer a longer move horizon, it may
reduce the possible control profiles since longer
light pulses eventually lead to arrhythmic behav-
ior (Ohta et al., 2005). In the remainder of this
study, the duration of control is set to 2 hours.

4.4 Results

The nonlinear properties of biological oscillators
often cause different phase-resetting dynamics
with respect to the initial condition, IC, and
initial phase difference, IP. The initial condition
describes the time at which the organism settles
into the new environment and begins entrainment;
the initial phase difference describes the number
of time zones bypassed upon arrival. Hence, phase
recovery times are described as a function of both
the IC and IP.

We generate phase recovery dynamics for three
different simulation schemes: (1) The open-loop
algorithm where environmental light/dark cycles
entrain the system, (2) the closed-loop MPC al-
gorithm where the manipulated control variable
(light) has two possible values, and (3) where the
manipulated control variable has eight possible
values. Phase recovery times may be consolidated
into a 3-dimensional diagram (Fig. 6) where the
recovery times are plotted with respect to both
initial phase differences and initial conditions.
As such, we may better visualize the nonlinear
dynamic behavior of phase resetting. Although
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Fig. 5. (a) The recovery time associated with a
control input that allows 2, 4, 8, and 16 pos-
sible values is 36.8, 35.6, 34.7, and 34.6-hours
respectively. (b) The recovery time associated
with a 1, 2, and 3-hour control input is 36.7,
34.7, and 35.2-hours respectively. Top sub-
plots depict state dynamics as they recover
from an (a) 8 hour or (b) -6 hour initial
phase difference and converge to the reference
trajectory (depicted by the bold solid line).
Lower subplot depict the associated control
moves that begin to take action at a circa-
dian time of (a) 12 hours or (b) 18 hours,
where the bold solid square wave describes
environmental (nominal) light/dark cycles.

the closed-loop algorithm significantly increases
re-synchronization rates, using 2 possible control
values is often just as effective as using 8 – the
flexibility of control inputs does not affect its
efficacy.

The open-loop environmental control strategy re-
quires (at most) 64.7 hours to synchronize a ±12-
hour initial phase difference beginning at an ini-
tial condition of 12-hours (Table 1) (Bagheri et
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(b) 8-Step Closed-Loop Control

Fig. 6. Recovery time with respect to IC and IP.
The time required to reset the system’s phase
is reflected on the vertical axis. The shade of
each bar is consistent along the IC. Although
the closed-loop algorithms significantly im-
prove upon open-loop phase-resetting times,
IC=12hr is one of the few data sets that
improves with the increase of control steps.

al., 2007). The closed-loop 2-step algorithm (Fig.
6(a)) improves upon the maximum recovery time
as it requires only 36.8 hours to recover a -6-hour
initial phase difference (at IC=18hr). Surprisingly,
the 8-step algorithm does not significantly im-
prove phase resetting as it requires 34.7 hours
to recover the same conditions. For this reason,
a 2-step algorithm (which requires 0.17 hours of
computation time per simulation) is more applica-
ble/efficient for use in applications – such as light
therapy – when compared to the 8-step algorithm
(which requires 3.5 hours of computation per
simulation).

We improve phase-resetting performance via im-
plementation of a closed-loop model predictive



Table 1. Maximum recovery times with respect to the set of initial conditions for
open- and closed-loop algorithms. The bold-face recovery times relate to the overall

maximum recovery for over the entire set.

Open-Loop 2-Step Algorithm 8-Step Algorithm

IC Recovery IP Recovery IP Recovery IP

0 hr 32.50 hr -6 hr 31.80 hr -9 hr 31.40 hr -9 hr
3 hr 31.40 hr -9 hr 28.00 hr -6 hr 28.10 hr -9 hr
6 hr 47.50 hr -9 hr 26.00 hr -9 hr 28.60 hr -9 hr
9 hr 46.90 hr ±12 hr 23.80 hr ±12 hr 23.20 hr ±12 hr
12 hr 64.70 hr ±12 hr 28.40 hr ±12 hr 21.10 hr ±12 hr
15 hr 61.70 hr ±12 hr 24.70 hr -3 hr 21.50 hr -3 hr
18 hr 40.80 hr 6 hr 36.80 hr -6 hr 34.70 hr -6 hr
21 hr 35.50 hr -6 hr 34.00 hr -9 hr 34.30 hr -6 hr

control algorithm. This evidence supports the hy-
pothesis that, in general, open-loop light/dark
cycles are not optimized to reset large phase dif-
ferences (Bagheri et al., 2007). Instead, organisms
may have evolved to efficiently reset small phase
differences since rapid transit across multiple time
zones is a recent innovation.

5. CONCLUSION

In this work, we develop and apply systems theo-
retic tools for the investigation of circadian phase
properties as single deterministic, and populations
of stochastic models. The study of synchroniza-
tion supports the reverse-engineering of the clock
in the SCN while providing a foundation upon
which to engineer other communication networks.
Analysis of the pIPRC provides separation of the
timing characteristics of the oscillator and signal.
Altering the signal (via a change in duration,
magnitude, or overall shape) can have profound
affects, and these effects are prescribed by the
pIPRC. For example, it is possible to speed up
an oscillator when (and only when) there is an
advance area in the target pIPRC. To synchronize,
the signal must meet the conditions for stable
entrainment.

Investigating phase dynamics of circadian os-
cillators also provides a forum to address re-
synchronization properties of the clock. Control
theoretic tools bring novel insights for unraveling
the design principles of the circadian clock, and
further, point to opportunities for therapeutic ap-
proaches to resetting the clock. The application of
a closed-loop model predictive control algorithm
provides a sequence of light pulses that force the
circadian system to recover phase differences at a
fraction of the natural open-loop simulated mam-
malian recovery time.
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