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DIFFERENTIAL/ALGEBRAIC EQUATIONS ARE NOT ODE’S*

LINDA PETZOLD*

Abstract. This paper outlines a number of difficulties which can arise when numerical methods are
used to solve systems of differential/algebraic equations of the form F(z,y, y') = 0. Problems which can be
written in this general form include standard ODE systems as well as problems which are substantially
different from standard ODE’s. Some of the differential/algebraic systems can be solved using numerical
methods which are commonly used for solving stiff systems of ordinary differential equations. Other
problems can be solved using codes based on the stiff methods, but only after extensive modifications to
the error estimates and other strategies in the code. A further class of problems cannot be solved at all
with such codes, because changing the stepsize causes large errors in the solution. We describe in detail
the causes of these difficulties and indicate solutions in some cases.
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1. Introduction. A number of difficulties can arise when numerical methods are
used to solve systems of differential/algebraic equations (DAE) of the form F(¢t, y, y') =
0. These problems look much like standard ordinary differential equation (ODE)
systems of the form y’' =£(# y) (and of course include these systems as a special case),
and many of the DAE systems can be solved using numerical methods which are
commonly used for solving stiff systems of ODE’s. However, the class of DAE systems
also includes problems with properties that are very different from those of standard
ODE’s. Some of these problems cannot be solved using variable-stepsize stiff methods
such as backward differentiation formulas (BDF). Others can be solved using such
methods but only after substantial modifications to the strategies usually used in codes
implementing those methods. In this paper we explore the causes of the difficulties
and describe modifications which enable codes based on BDF to solve a wider
class of problems than were previously possible. Additionally, we suggest strategies
for detecting the problems which cannot be solved with this technique.

Several authors [1], [2], [3], [4], [5], [6], [7] have written codes designed to deal
with either DAE systems of the form

(1.1) F(t,y,y)=0

or special cases of this general problem. These codes are based on a technique which
was introduced by Gear [1]. The idea of this technique is that the derivative y'(¢) can
be approximated by a linear combination of the solution y(¢) at the current mesh
point and at several previous mesh points. For example, y'(¢) may be approximated
by BDF. The simplest method for solving differential/algebraic systems is the first
order BDF, or backward Euler method. In this method the derivative y'(f,+1) at time
t,+1 is approximated by a backward difference of y(¢), and the resulting system of
nonlinear equations is solved for y, 1,

(1~2) F(tn+1, Yn+1, (yn+1_Yn)/(tn+l_tn))=0-

In this way, the solution is advanced from time ¢, to time #,.,. In this report we will
assume that y(fo) is known.

We investigate the behavior of the backward Euler method for solving systems of
the form (1.1) in detail because it is the simplest member of several classes of methods
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which could conceivably be used for solving systems of the form (1.1). Even this
simple method exhibits several serious difficulties when used in attempting to solve
certain types of differential/algebraic problems.

All of the difficulties that we describe occur in solving simple linear problems.
These problems are much more easily understood than nonlinear problems, and we
hope that an understanding of the linear models will provide a plan for action in the
nonlinear case. It is likely that difficulties in solving nonlinear problems are at least
as great as for related linear problems. Thus, in the first few sections of this report
we will be concerned only with linear problems. Later sections examine how the
difficulties which occur in solving certain linear systems might also affect strategies
for solving the general nonlinear problem (1.1).

We summarize in § 2 results of Sincovec et al. [2] on the decomposition of linear
differential/algebraic systems of the form

(1.3) Ey =Ay+g(t)

into canonical subsystems and on the properties of solutions of these subsystems. The
structure of linear DAE systems can be characterized by a parameter m called the
nilpotency of the system. This is important because the type of numerical difficulties
which can be expected depends on the nilpotency of the system to be solved. Standard
ODE systems have nilpotency m = 0.

In § 3 we describe the difficulties which arise in solving some of these canonical
subsystems using the backward Euler method with varying stepsizes. We find that
problems of nilpotency m =2 can be solved by codes based on variable-stepsize BDF,;
however, the usual error estimates which are proportional to the difference between
the predictor and the corrector are grossly inaccurate. Although the error in the
solution tends to zero as the current stepsize is reduced, these error estimates tend
to a positive nonzero limit. This causes codes using these estimates to fail unnecessarily
on many (m = 2) systems. Unfortunately, the situation is much less hopeful for systems
of nilpotency m =3, where varying the stepsize can lead to totally incorrect answers.
Worse yet, error estimates which have been proposed [2] or used [3] in some codes
would allow wrong answers to be computed for these problems, with absolutely no
warning. We know of no techniques for handling these (m =3) problems which do
not destroy the structure and sparseness of systems written in the form (1.3).

The remainder of the paper is devoted to techniques for solving problems of
nilpotency m =2. New error estimates are derived in § 4 which enable codes to solve
this extended (m =2) class of problems reliably. In § 5 we take up some practical
issues which are of importance in codes for solving nonlinear DAE. systems. In
particular, strategies for deciding when the Newton iteration has converged and for
detecting problems of nilpotency m =3 (i.e., those which cannot be solved by variable-
step BDF) are discussed. We make some recommendations in those areas, but there
is still much work to be done.

2. Linear differential/algebraic systems. This section reviews the structure of
linear differential/algebraic systems and the properties of solutions of these systems.
The results discussed in this section are derived and explained in greater detail by
Sincovec et al. [2]. We summarize the main points here because they are necessary
background for the understanding of the remainder of this report.

The system we consider in this and the next section is

2.1) Ey =Ay+g(t),  y(t)=Yo.
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Gantmacher [8] has given a complete analysis of the general matrix pencil, A —AE,
where A and E are N X N matrices and A or E or both can be singular. The key
result in [8] and [2] is that there exist nonsingular matrices P and Q which reduce
the matrix pencil A—AE to a canonical form. When P and Q are applied to (2.1),
we obtain

(2.2) PEQQ'y'=PAQQ 'y +Pg(t).

System (2.2) is composed of five types of uncoupled canonical subsystems. Three of
the types correspond to cases where no solutions exist or infinitely many solutions
exist. It is not even reasonable to try to solve these problems numerically. Fortunately,
codes based on BDF reject these problems almost automatically, because the iteration
matrix E —hBA, (where h is the stepsize and B is a scalar which depends on the
method and recent stepsize history) is singular for all values of 48. The remaining
two types of canonical subsystems correspond to the case where A —AE is a regular
matrix pencil, that is, det (A —AE) is not identically zero. In [2], these systems are
called ‘“‘solvable” because solutions to the differential/algebraic equation exist and
two solutions which share the same initial value must be identical. In what follows,
we will deal only with systems where the matrix pencil is regular.
For solvable systems (2.2) is equivalent to

(2.32) y1(t) = E1y1(t) +g1(2), y1(to) =y1,0,
(2.3b) E,ys(t) =ya(t) +g2(2), ¥2(to) =¥2,0,
where
NN b £10)) _ g:1(?)
ovo=[io]  reo=[50]

and E, has the property that there exists an integer m such that E3 =0, E5 ' #0.
The value of m is defined to be the nilpotency of the system. The matrix E, is always
composed of Jordan blocks of the form

0 1
0, I\,
(2.4) SN )

and m is the size of the largest of these blocks.

The behavior of numerical methods for solving standard ODE systems of the
form (2.3a) is well understood, and will not be elaborated upon here. Since the
subsystems are completely uncoupled and the methods we are interested in are linear,
it suffices for understanding (2.1) to study the action of numerical methods on
subsystems of the form (2.3b), where E, is a single block of form (2.4). When E, is
a matrix of form (2.4) and size n, the system (2.3b) will be referred to as a canonical
nonstate (m = n) subsystem.

Let us now take a closer look at one of these canonical nonstate subsystems. For
example, the simplest (m = 2) system is

(2.5) ya(t)=y1(t) +g1(2), 0=ys(2) +g2(¢).
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This system has the solution

(2.6) ya(t) = —ga(t), yi(t) =—g1()— g2 (1).

We will deal with this example repeatedly in this report. This system differs from
conventional ODE systems in several significant ways. First, note that the solution
depends on g (and its derivatives) at the current time only. That is, it does not depend
on the initial value or on the past history of g. Also, observe that the solution to (2.5)
depends on the derivative of g,(¢). Thus, if g,(¢) is differentiable but not continuously
differentiable, then y;(¢) is discontinuous. Numerical methods have a great deal of
difficulty in dealing with this situation. In view of the obvious differences between
nonstate systems and state systems (standard ODE systems), it is not surprising that
methods designed to deal with standard ODE systems should experience so many
problems with the nonstate systems. In fact, what is surprising is that these methods
actually can solve some of the nonstate systems, as we will show later. For the general
nonstate canonical subsystem (2.3b) of nilpotency m, the solution is given by

m—1 X )
2.7) v()==1 Ezgs(0),

and it is easy to see that this system shares the properties described above.

One other point to be made before we move on to numerical methods is that
differential/algebraic systems are very similar to stiff systems. For example, if € >0
small, then

(2.8) (E—eA)2'(t) = Az(t) +g(1)

is a stiff system near to (2.1). Thus, we expect that if the underlying differential/alge-
braic system (¢ = 0) has nilpotency m =2 many of the difficulties which are described
in this report should occur in problems like (2.8). Of course, the stiff system can be
solved using a small enough stepsize, but this may be very inefficient. We do not know
whether stiff problems with this structure occur very often in practice but when they
do most codes will have trouble solving them.

3. Discontinuities, errors and error estimates. This section describes several
problems which are likely to arise in solving certain linear differential/algebraic
systems. First we look at what happens when codes based on BDF with the usual
error control strategy are faced with problems of nilpotency m =2. Codes behave
rather strangely in these circumstances and may even fail because the error estimates
do not reflect the true behavior of the error. Later in this section we examine the
difficulties inherent in solving systems of nilpotency m =3 and indicate why these
problems are not solvable by codes based on variable-stepsize BDF. For simplicity,
all of our examples use the backward Euler method and low order error estimates.
However, it is easy to see that the same types of difficulties occur for higher order
methods and higher order error estimates.

Our first example is a problem involving a discontinuity in the dependent variable.
This problem is not ‘“‘solvable” since the solution is not defined at the point of the
discontinuity (though it exists and is unique everywhere else). However, it is easy to
generate such a problem without realizing it even with a differentiable input function.
Hence, we feel that a code should at least fail leaving some indication of the cause
of the difficulty on this type of problem. Furthermore, we find later that the difficulties
in solving this example problem occur in exactly the same way for continuous,
‘“‘solvable” systems.
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Consider solving the system
(3.1) Ey'=Ay+g(?).

Several unpleasant problems may occur if some derivative of g(¢) is discontinuous.
First of all, recall from (2.7) that a discontinuity in a derivative of g(¢) may lead to a
discontinuity in some component of y. If we were solving such a problem numerically,
we would hope that the code could find the discontinuity and pass over it or at least
would fail at the discontinuity. Instead, a code based on BDF with the usual error
control mechanism (error estimates proportional to the difference between the predic-
tor and the corrector) is likely to fail not on the step which spans the discontinuity
but on the subsequent step. This leaves us with little indication that the discontinuity
was the source of the difficulties. These problems occur even when using a one-step
method, which normally (for standard form ODE systems) we think of as having no
memory.
How can this happen? As an example, consider the problem

y2()=y1(t),  0=y,(t)—g(1),
0, ¢=0
ct, t>0

3.2)
where g(¢) is given by g(¢) = {

Suppose y; =y, =0 for ¢t <0 and that the error estimate (which we will use for accepting
or rejecting the step and for choosing the next stepsize) is proportional to |ly,+1— x|l
Now, take one step with the backward Euler method, assuming that #,_; is the time
corresponding to the last accepted step to the left of zero (that is, assume ¢, <0,
t, >0). Then, at time ¢, we obtain

— g(tn)_g(tn—l) - C_tn
h, h,

where h, =t, —t,-1. Now, as ¢, approaches zero, h, is bounded away from zero as long
as t,_1 <0 is fixed. So the error estimate,

_ | ct,/h,—0 |
g(tn) — g(ta-1)

approaches zero as f, » 0 and for some ¢#, >0 the step is accepted.

There is already a problem at this point as y;, is in error by yi,—yi(t.)=
cty/h, —c =c(1—t,/h,) so that unless either ¢,_, or ¢, is exactly zero, we can construct
problems (by choosing ¢ large enough) for which the error in Y3, is arbitrarily large
but the step is accepted. However, this is not as bad as it may at first seem because
for ¢, >0, we get y, > 0, which is the correct solution for a nearby time (a time less
than zero).

Since the step to ¢, is accepted for some ¢, >0, t,_; <0, the code will continue,
taking another step to #,.1,

y2,n =g(tn)=Ctm y1,n

Y1in = ¥Y1,n-1
Y2,n ~Y2,n-1

g(tn+1) - g(tn)
hn+1 )

These solutions are exactly correct (we can expect this to happen only for linear
systems with nilpotency m equal to 2), but the error estimate is

C(l - tn/hn)
Chn+1

Von+1= 8(tns1) = Clys1, Yin+1=
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The first component of this error estimate is independent of 4,1 so that we cannot
make the estimate as small as we want by reducing h,.;. Thus, for large enough c,
the code will fail on this step—even though the solution is exactly correct.

We can get a better understanding of the cause of this problem with the error
estimates by observing what happens graphically. Figure 3.1 shows g(#).

git)

Let L, be the line joining g(¢,-1) and g(¢,). The numerical solution y; , is the
slope of the secant line L,. At the time when we are trying to compute y,, .1, this line
is fixed because the step from #,_; to ¢, has been accepted. The solution for y; ,.1 is
the slope of the line L,.; between g(¢,) and g(¢,+1). But as ¢,.1 >, (when the code
is reducing the stepsize A, ., to try to obtain a smaller error estimate), this line (L, +1)
approaches the tangent of g at #,. Unless g is linear, the slope of the tangent at ¢, is
not the same as the slope of the secant from ¢#,_; to ¢,. If the difference between these
two slopes is bigger than the error estimate, then the code will fail on this step. In
any case, error estimates based on the difference between the predictor and the
corrector fail to reflect the true magnitude of the error for this problem. Recall that
the predictor is just a polynomial extrapolating through past values of the solution,
so that the predictor gets arbitrarily close to the most recent solution value as 4,1 >0,
and these estimates behave qualitatively in the same way as the simpler estimates we
have been considering.

It is easily seen that these difficulties with the error estimate are not limited to
problems whose solutions are discontinuous. For example, consider solving the same
problem as before except with g(¢) given in Fig. 3.2.

git)

This problem has a steep gradient. Since the slope of L, _; is not much different from
the slope of L,, the step to #, is accepted. But in the next step, the slope is much
different, and we cannot close the gap because the new slope (of L,.+1) just gets nearer
and nearer to the slope of the tangent at #,. Since the slope of the tangent is far from
the slope of L,, the code fails on this step.
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We conclude that 1) in general, for systems of the form (3.1), the difference
between the predictor and the corrector does not approach zero as the current stepsize
approaches zero and 2) codes using error estimates based on this difference may fail
on problems with steep gradients, and these error estimates seem to bear little
resemblance to the errors which are actually incurred for some DAE systems.

Are the problems described above due to poor error estimates or is there some
fundamental problem with using backward Euler with varying stepsizes for solving
linear DAE systems with nilpotency m =2? (To save writing these will be called
(m =2) systems.) To gain a better understanding of the source of this problem, we
take a closer look at the errors at each step compared with the error estimates.

Suppose we are starting with initial values at ¢, equal to the exact solution. Then
what is the error after one step in solving (3.1) with backward Euler? Taking one
step, we obtain

(3.3) E(Y—ii—_—y—) = AYni1+8(tas1)-
n+1

If y(#,+1) is the true solution to (3.1) at time #,.1, then we have

hl

(3.4) Y(tue) =Y(0) + r () + =22 ¥(E),
where t, = & =t,.+1. Substituting (3.4) for y'(¢,+1) in (3.1), we obtain

h,
(3.5) ¥(tus) =y () =22y (©)

E oo = Ay(ty+r1) +8(ts+1)-
n+
Now, subtracting (3.5) from (3.3), if €,+1 =yu+1 =y (fr+1),
€,.1—€ +—h%‘+1 "(&)
(36) n+1 n 2 y
E = Aen+19

hn+1

or, rewriting,
2

(3.7) ens1=(E—hy1A) 'Ee, — (E~h,,+1A)‘1E(—f2~"—l)y"(§).

Now, (3.7) says that the error after one step, starting from exact initial values (so that
€= O) is

2
(3.8) e =—(E— hn+1A)'1E(h—"2f1>y’(§).

There are several consequences of this simple expression. For example, for the (m =2)
problem (3.2), we have

=[]

and

(E-hyad) E=[7 1 h]

0 0
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so that the error after one step is

(3.9) o= [h,,+1g"(§)/2].

0

We observe from (3.9) that the error is O(h,.1), not O(hZ2,,), and that it depends
on y5(¢) and not y (¢). Thus, if we had a good estimate for y”, then the usual error
estimate based on (h2,1/2)y" would be asymptotically a gross underestimate. The
term (E — h,+1A) "E(h2,1/2)y"(£€) is in a sense the local contribution to the global
error. Notice that we cannot really define a local error in the usual way as y,+1 —u(x,+1),
where u(x,) =y,, because there may not be a solution passing through y,..

The situation for (m = 2) nonstate subsystems is obviously enough to wreak havoc
with any stepsize selection algorithm which assumes that errors are O(h**"), where
k is the order of the method. Furthermore, the usual error estimates can cause a code
to do very strange things when g(¢) has a steep gradient. Despite all of this, the
situation is not at all without hope. The error in y,.; at any step can be reduced by
reducing A, .1, (recall, however, that the difference between the predictor and corrector
is not reduced) so that in principle, if we knew how to adjust the stepsize, the error
in y,+1 could be controlled by locally adjusting A, .1. In the next section, we will find
error estimates which can accomplish this task.

Unfortunately, there are several even more severe problems in solving systems
with nilpotency m = 3. For the (m = 3) system

(3.10) ya()=yi(t), y3()=y.(t), 0=y;(t)—g(),
we have
0 —1/hnper —1/hin
(E=hprA)'E=|0 0 =1/ hpir
0 0 0
and
RN L
> y'(é)= > |8 |
g"(é)
so that the error in y after one step starting from the exact solution is
g”(g) hn+l m
_+—
> 5 8"
(3.11) e = hovr
' “Elg (é)
0

Restating this, we cannot choose A,.; small enough so that the error in the solution
after one step starting from exact initial values is small. This poses a very difficult
problem in finding initial values for m = 3 systems, if even the exact solution will not
do.

This observation seems to conflict with a theorem proved in [2]. Of course, it is
not really a conflict but only appears that way because these results are not nearly as
strong as what we are accustomed to for standard ODE’s. The theorem states that
the backward Euler method and k-step BDF converge to the analytic solution of the
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system (3.1). Furthermore, it is stated that the error in solving nonstate subsystems
with the k-step method is O(h*), where  is the stepsize. How can the method converge
when the error after the first step is independent of £#? We must be very careful about
interpreting the qualifications on this theorem. The convergence, at least for systems
where m =3, starting from the exact solution, only applies to the solution at the
endpoint of some fixed interval of integration. This is because the first m —2 solution
values contain errors which do not become arbitrarily small when 4 is decreased. The
results at later steps depend only on the function g(¢) at past steps and not on the
initial values so that the solution converges in any interval bounded away from the
initial time. The theorem is only true for linear systems, and for these systems, this
behavior may be tolerable if we have anticipated it. However, this is a very serious
problem if what we are really trying to solve is a nonlinear system. In that case, large
errors in the first few steps may persist throughout the entire interval.

The other qualification on the theorem is that it is only true for constant stepsizes.
We can see this by applying backward Euler to the m =3 system (3.9),

y3,n+1 = g(tn+1)s
(312) Y2,n+1 =(g(tn+1)_g(tn))/hn+1,

Yinar= ((g(tn+;1l’)1:1g(tn)) _ (g(tn) _hf(tn_l)))/h"“'

NOW if Ans1 = by = h, then yy...1 is given by (V>g/h”) which converges to g" as h >0
as the theorem predicts. When h,,.1 # h, we might hope that y; ,.; would be given
by the divided difference 2[g,.+1, &n» x—1), Where

8n+1 " 8n 8n " 8n-1
Bt hr
2

(313) 2[gn+19 gm gn-—1]=

)

but the method fails to pick up these differences correctly. The error in the approxima-
tion to y1.,.1 which is caused by changing the stepsize has the form 5(1 — A,/ b, +1)g"(£) +
O(h,+1). This term becomes arbitrarily large as h,.1 > O (h, fixed). If we were very
careful to select stepsizes so that h,.; = h,(1+ O(h,)), then this problem could be
avoided. However, this seems to be very difficult to accomplish in a practical code
and sequences of stepsizes would have to satisfy even more stringent restrictions for
systems with m >3.

We have tried to illustrate in this section that while the BDF can, in principle,
solve (3.1) (via the theorem [2]), there are a great many qualifications to this statement
which can cause serious difficulties in any kind of a practical code. At present, we
know of no way to adequately handle (3.1) when m = 3 subsystems are present. The
most serious problems seem to be in starting the code and in changing stepsize. The
remainder of this paper will be concerned with handling (m =2) systems and related
nonlinear problems and detecting the other problems that codes based on methods
such as BDF cannot solve.

4. Error estimation. In this section we examine several potential candidates for
error estimates for differential/algebraic systems. Our aim is to find an estimate which
accurately reflects the behavior of the error for linear (m =2) systems. Additionally,
we hope to detect (m = 3) systems which cannot be solved accurately using BDF with
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varying stepsizes and to give an accurate indication of why the code fails to solve
these problems.

Several different approaches to error estimation for DAE systems have been
reported in the literature. Gear and Brown [3] solve systems of the form

4.1) f(t,y,y)+Pv=0,

where y and y' are of length p, v is of length g —p, P is a qx(q —p) matrix and f is a
vector function of length g. A close look at their code [3] reveals that there is no
attempt to estimate errors in v. In some respects this makes sense as v is completely
determined by y on every step so that errors in v do not cause errors in y. If for some
reason we are actually interested in the values of v, we must understand that they
may contain very large errors. For example, the (m = 3) system (3.9) may be rewritten
in the form (4.1), with v = y1, z; = y2, z, =3, as

zi—v=0, z5—2z,=0, z,—g()=0,

and error control is not attempted on » (on y;). But this is exactly the component
that exhibits arbitrarily large errors after a change of stepsize. Also, if we should fail
to realize that y, occurs linearly, then the behavior of the code is very different.

Recently, a different approach to error control was proposed by Sincovec et al.
[2] for linear DAE systems. They observed that errors in nonstate components
(subsystem (2.3b)) have a different asymptotic behavior than errors in state components
(subsystems (2.3a)) so that stepsize selection schemes which assume a certain
asymptotic behavior of the error would have difficulty in controlling the errors in
these components. In addition, errors in nonstate components affect the solution only
locally, and are not propagated globally to state components. As a consequence, they
proposed to “filter out” the part of the error estimate that corresponds to the nonstate
solution components. This is accomplished by monitoring a projection of the usual
error estimate, where the new estimate is given by

(4.2) en =[Mc i (yn—ymll.

Here y;, is the final corrected value of y at the end of a step, y?, is the predicted value
of y and c,.« is a constant depending on the method and recent stepsize history of the
integration. (Note that |ic,.«(yn—y%)| is the error estimate which is generally used in
ODE codes.) M is called the canonical state variable projection matrix and is given by

(4.3) M =lim M(h, ),

where M(h, j)=((E — hA)'E)’, where J is greater than or equal to the nilpotency of
the system.

It is shown in [2] that this error estimate has the effect of filtering out that part
of (y° —y”) which is associated with nonstate variables (if the system were transformed
to canonical form), without the expensive operations of transforming the system into
canonical form. It is convenient because LU decompositions of the matrices (E —hA)
are always available (for & the current stepsize) because that is the iteration matrix
for the Newton iteration. It is somewhat inconvenient in that it is hard to find out
what the nilpotency of the system is, and we wonder what to do about systems which
are ‘“‘almost” nilpotent.

Unfortunately, there is one very bad defect in this filtered error estimation scheme
and, indeed, in nearly any scheme which fails to control the errors in certain com-
ponents of the solution. With this particular scheme we can, for example, “solve’ any
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(m = 3) system, the stepsize being chosen to control errors in the state components
of the system. However, as we have already seen, this can be very misleading because
large errors are introduced into some components of the solution whenever the stepsize
is changed.

The examples that we have given show that it is a very dangerous practice not
to control errors in some components of the solution. The only possible circumstances
under which we feel this could be done safely are if 1) we are not interested in the
value of that component, and we are sure that errors in that component cannot be
propagated into any other component later in the integration, or 2) if we are sure
that no errors are being made in that component. For example, if in solving (4.1) we
are not interested in the value of v, then it is safe to omit those variables from the
error control.

We have already noted the similarities between stiff systems and differential/alge-
braic systems. It is natural to look at error estimation schemes proposed for stiff
equations. Curtis [7] noted that for a single linear ODE, y'=—-A(y —f(#))+f'(¢)
end-step errors are smaller than the usual error estimate by a factor 1/Ah, where —A
is the eigenvalue of the Jacobian matrix and & the step size. When A is large, this
problem is very nearly the same as the (m = 1) algebraic system y = f(¢), which we
solve exactly on every step. On the other hand, we saw in § 3 that for some problems,
the usual error estimate can severely underestimate the error.

Sacks-Davis [9] noted that for stiff problems, the usual error estimate based on
the difference between the predictor and the corrector overestimates the true error.
He suggests error estimates for second derivative methods which are asymptotically
correct as h - 0, and are reliable and efficient for very stiff problems. The estimates
have the form

4.4) e =W cn(yn—yal,

where W, is the iteration matrix for the second derivative method.

If we examine an estimate similar to (4.4) for BDF, where W, is the iteration
matrix for the kth order BDF, then it is easy to see that £5* from (4.4) is the same
as the estimate (4.2), if m =1 and M (h,.1, 1) is used in place of M and if the matrix
E in (3.1) is nonsingular. We also note from (3.7) that the local contribution to the
global error for the backward Euler method is

1k
s(E—hA) 1E7y"(§).
Because of these observations, we are led to try the estimate
(45) En = ”(E _Bn,khnA)_lEcn,k (yfn_yf;)",

where B, and ¢, are constants depending on the method used and possibly on the
recent stepsize history. For a standard-form ODE, (4.5) is asymptotically equivalent
to the usual estimate, ||c,.. (Y5 —y%)|, so that the question we must answer is how well
the estimate performs on the nonstate and/or stiff components of a system.

On first glance the estimate (4.5) might seem to contradict statements that were
made earlier, as this estimate does not ‘“‘control the error” in algebraic (m =1)
subsystems. These subsystems have the form y(¢) = f(¢), and they are solved by the
method exactly (apart from errors due to terminating the Newton iteration, which are
discussed in the next section), so this strategy is not unreasonable. A problem with
(4.5) is that if a code interpolates to find the solution at user-specified output points
then this estimate does not control the error in the interpolation. These errors seem
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to go to zero as the stepsizes get smaller and smaller, but we know of no way to
explicitly control them without incurring at the same time all of the problems mentioned
in § 3.

How accurately does the estimate (4.5) reflect the error for (m =2) nonstate
subsystems? From (3.7), we can see that for backward Euler (4.5) accurately estimates
the local contribution to the global error as long as y"(£) can be found accurately.
Actually, for the canonical (m = 2) nonstate subsystems (3.2), we have

0 -1/ h]
o o /r
so that only y3(£) is involved in the estimate. This is the second derivative of the
input function g(¢), and it can be estimated reasonably well by a divided difference
of g(¢), so that the estimate (4.5) works. It is fortunate that the estimate does not
make use of y71 (¢), because difficulties in obtaining this term were in part responsible
for the problems discussed in § 3. One other point we make is that for a (m =2)
subsystem the local contribution to the global error is the global error (neglecting
roundoff and errors due to terminating the Newton iteration early). This happens
because, from (2.3b), the nonstate subsystems can be written in the form

Eyy' =y+g(0),
where E> =0 and then, from (3.7),
1= (E2—hprl) 'Esen+ (Ez—hpsrt]) ' Extpss,
where 7,41 = (h’.1/2)y"(£). Rewriting this, we obtain
€ns1=(E2—hpsr]) " Ex(E2— hod) ' Ealen_1+ %]+ (BEa = hyr]) ' Exun,
but the matrix (E; —hps1l) "Eo(Es—hI) 'E, is identically zero for this case so that
€,1=(E2— hn+1I)_1E2'Tn+1-

It is easy to verify that the estimate (4.5) also accurately reflects the behavior of the
error for all of the BDF for (m =2) systems. In general, the kth order BDF approxi-
mates h,+1Yn+1 by Zg i n+1Yn+1,5 Where a; ,+1 depend on the order and recent stepsize
history, so that y, . satisfies

(E-hA)'E =[

k
(4.6) E(Z ai,n+lyn+1—|‘> =Nps1AYns1+ Hn18(t1),
0
or, rewriting,
k
4.7) (aO,n+1E_hn+1A)yn+1 =—-FE ; Ain+1¥Yn+1—i +hn+1Egn+1-

Now, if 7.1 is defined by

(4.8) Tn+1= N s1Y (Ens1) —é @in+1Y(brr1-i)

(Th+1 is usually called the local truncation error of the method), then

4.9)  (aon+1E—hy11A)Y(tn+1)=—E é:. a1,n+1Y(tn+1-1) + hn+1Egn+1 — ETpaa.
Subtracting (4.9) from (4.7), we have, if e, =y, —y(.),

k
(4-10) €n+1 = (ao,n+1E _hn+1A)_1E 21: Xin+1€n+1—i +(010,n+1E _hn+1A)_1ETn+1
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so that (ao,,.HE—h,,HA)"lE?,,H is the local contribution to the global error for
variable-stepsize BDF, and this has the same form as the estimate (4.5).

Since 7,1 is the local truncation error of a variable-stepsize BDF, it depends on
the recent stepsize history of the computation. For example, for a variable-step 2nd
order BDF,

(4.11) I nsall = A2 4 (Busr + By V&)

Thus, the error as h,.;-> O (h, fixed) has the form O(h2.,), not O(h,,). It is
important when using this error estimate to get this dependence correctly. If we instead
assume (as is done in some methods which change the stepsize via interpolation [3],
[5], [6)) that the error depends on the current stepsize as O(h.), this can cause the
code to severely underestimate the error when the solution is just beginning to change
rapidly. This is a particular problem for (m = 3) nonstate subsystems, where the error
does not go to zero as h,.1 > 0 (h, fixed), and the error estimate is given by (for m = 3)

0 —1/hn+1 ‘1/h3|+1
(4.12) €,41=|0 0 =1/hps1 | Tusa.
0 0 0

If we had taken 7,.1= O(h>.,), then the error estimate would become smaller
as h,,, decreases and we would be led to believe that errors were under control,
when in reality there is a large error in the first component. It is especially important
for DAE systems and the error estimate (4.5) to use the actual (variable stepsize)
principal term of the local truncation error in the error estimate rather than an
approximation which assumes that the last k steps were taken with a constant stepsize.

In summary, the error estimate (4.5) seems to be a useful alternative to the usual
estimates based on a difference between the predictor and the corrector. It reflects
the behavior of the error more accurately than the usual error estimate and overcomes
many of the difficulties mentioned in § 3 for systems containing (m =2) nonstate
subsystems. Use of this estimate enables codes based on BDF to solve a wider class
of problems. The estimate is easily generalized to nonlinear problems. While we have
no theory to support this generalization, it seems to have worked well in our experience.

5. Practical issues. It is evident from the problems mentioned in § 3 that DAE
systems are in many respects very different from ODE systems. With this in mind, it
is not unreasonable to expect that codes for solving the two types of problems must
be different in some respects. In this section we question several strategies used in
ODE codes which one might be tempted to carry over to DAE codes to discover
whether or not they are applicable to these more general problems.

Codes for solving stiff and differential/algebraic systems generally use a modified
Newton iteration to solve an implicit equation for y,.; at each step. For example, in
solving

(5.1) Ey' =Ay+g(t)

with backward Euler, there is an implicit equation

(5.2) B2 ) — Ay, +glh)
n+1

which is solved for y, ., at each step.
We will use the linear problem (5.1) as a model, though it is really the more
general nonlinear problem (1.1) that we wish to gain some intuition about. Linear
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problems are, of course, much easier to solve because Newton’s method converges
in one iteration if the exact iteration matrix is used. We consider situations where the
iteration matrix is not exact to learn more about how to handle nonlinear problems
because these problems are much harder to understand.

Now suppose (5.2) is solved by a modified Newton iteration,

D re1f o (V1= ¥n) )
(5.3) Yot =Yns1—J (E—“Ayn+1_’g(tn+1))a
hn+1

where J is an approximation to the matrix (E/h,.; —A) (J may have been computed
in some previous step). Several decisions must be made in implementing (5.3). For
example, how should we decide when the iteration has converged? If the iteration is
not converging, what action should be taken? If it appears that we cannot make the
iteration converge, can we discover the problem? We take up these questions here.

In deciding when to terminate the corrector iteration, our main consideration is
that the error introduced by terminating this iteration early is small relative to errors
due to the difference approximation to y' and that these errors do not affect the error
estimates appreciably. Suppose then that 8,.; is the error in y,.; due to terminating
the corrector iteration early. That is, if ¥,.; is the exact solution to the difference
equation and y,,+1=y$f‘ﬁ is the solution accepted after M iterations, then ¥,.;=
Yn+1+8,+1. Then from (5.2),

n - n'FSn
(5.4) 2 ”) = Aot +8ner) +8tner).
n+1

The exact solution y(z) satisfies

ﬁz - Lt + n
(5'5) E(y( +1) hy( ) T +1) =Ay(tn+l)+g(tn+1).
n+1
Subtracting (5.5) from (5.4), the global error e, =y, —y(¢,) satisfies
(5.6) €ns1=(E—hu1A) 'Ee, +(E —hyi1A)  ETui1—8,11

and, rewriting,
enr1=(E—h,11A) 'E(E-h,A) 'E(e,_1+7,)
—(E—hps1A) 'E8, +(E = hps1A) "ETni1—8nst.

We know from ODE theory that for the state variables in the system (2.3a) errors
are not amplified greatly from step to step by the BDF and it is sufficient to control
8,,+1. Our main concern is what happens to this error for nonstate (m =1 and m =2)
subsystems.

For (m =1) subsystems it is logical to control the error in y, . (that is, to control
8,+1), as E =0 in this case, so that e, .1 =8,.1 and 8, is the only error. For a (m =2)
nonstate subsystem, the situation is not quite so clear. Let us look at the (m =2)
canonical subsystem (2.5). In this case, the matrix (E —h,+1A) "E(E —h.A)'E is
identically zero so that the contribution to the global error due to terminating the
iteration early is given by

—(E —hy+1A) 'E8, — 8,41, where (E—h,,A)'E= [0 —1/hn+1].

0 0

Since y; =y is approximated by a backward difference, y; n+1=(y2.n+1— Y2.n)/ An+1
then an error in y, , is amplified by 1/(h,+1) in y1,5+1.
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If we are only interested in iteration error as it relates to the error estimates of
§ 4, then this does not matter as y; .1 does not enter into the error estimate so we
should control 8,,.,. That is, terminate the iteration when

(5.9 8,1l e,

where ¢ is a constant depending on the error tolerances requested. On the other
hand, for the purposes of controlling the error in y;, we should control 8,1 so that

(510) I|6n+1||§hn+1€

because the error may be amplified by 1/h,.; on the next step. (Though we do not
know in advance what the stepsize for the next step will be, we assume it will be the
same order of magnitude as the current stepsize.) Starner [6] uses this test in his code
though apparently for different reasons. The test (5.10) has the apparent disadvantage
that it is not independent of scaling of the independent variable in the system; however,
note also that any scaling of this type also scales y. For these reasons, it is somewhat
unclear whether to use (5.9) or (5.10), but there seem to be several good reasons for
choosing (5.10). Shampine [10] discusses ways to bound ||3,, 1| based on the differences
between iterates, so that finding a bound for this number is not a big problem.

What if the corrector iteration fails to converge (assuming that the iteration matrix
is current)? There are several reasons why our answer to this question might be
different for a DAE code than for a code aimed at ODE’s in standard form. Generally,
the strategy taken in ODE codes is to reduce the stepsize when the iteration fails to
converge. There are two reasons why this works. First, as we reduce the stepsize, the
prediction gets to be a better and better initial guess for the Newton iteration. Second,
the iteration matrix for a standard-form ODE y'=f(s, y) is (I —hBdF/dy), and this
matrix tends towards the identity as the stepsize s is reduced. This is fortunate,
because the identity matrix is very well conditioned so that errors in 0F/dy and in
solving the linear systems affect the solution less and less as 4 is reduced.

The situation with differential/algebraic systems is not quite as desirable. As we
have seen, the difference between the predictor and the corrector does not tend to
zero as h,.1~> 0. Thus, the initial guess may not get better with decreasing A, .. For
these systems the iteration matrix (0F/dy'—hBdF/dy) looks like dF/dy’' as h>0. In
general, 8F/dy’ may be singular, so that as 4, ., - 0 the iteration matrix becomes more
and more poorly conditioned. This is very troublesome for some systems, where for
small enough % roundoff from solving a poorly conditioned linear system causes the
corrector iteration to diverge. We are not yet certain about the proper way to handle
these problems, but the following alternatives to the usual strategy seem to be worth
considering. Instead of decreasing 4,1 when the iteration fails to converge, we could
instead use a more robust iteration procedure (for example, damped Newton) or,
because for at least some component a better initial guess could be obtained by
reducing h,+1, we could try reducing A, .1, and if this doesn’t help (if after reducing
h, . several times, the initial guess is not much better), then switch to a more robust
iteration scheme.

It is possible that the corrector iteration fails to converge despite all of our actions
to try to help it. There are a great many more possibilities for the cause of this problem
with a DAE system than there are for an ODE system. For an ODE system, we
generally assume that this problem is caused by a very poor approximation to the
Jacobian matrix. For a DAE system, it could be that we could not get a good initial
guess or, maybe, the system contains a (m = 3) nonstate subsystem, and the initial
guesses are actually diverging from the true solution to the corrector equation. The
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iteration may be diverging because the iteration matrix is very poorly conditioned, or
the iteration matrix may be a very poor approximation to the Jacobian matrix because
of errors in numerical differencing.

Given that all of the above situations are possible, our hope is to be able to
diagnose at least some of these possibilities. Let us consider, for example, what happens
when a code encounters a system with a (m = 3) nonstate subsystem. For a linear or
nearly linear problem where corrector convergence presents minimal difficulties, the
usual response is for the stepsize to be reduced several times to try to satisfy the error
test. Eventually, since the error test will never be satisfied, the stepsize is reduced to
the point where the corrector iteration begins to diverge because the iteration matrix
is very poorly conditioned. If we see this situation (the error test fails several times—and
the error estimate is not reduced very much when h,.; is reduced and then the
corrector iteration fails to converge), then it is likely that the cause of the difficulty
is this type of problem.

It is possible to use linear algebra routines [11] for solving the linear system
which automatically generate an estimate of the condition number of the iteration
matrix. This is expensive, especially for banded systems, but it may be worthwhile for
differential/algebraic systems because this situation can happen so easily and if it is
the cause of the difficulty, then the last thing we would want to do would be to reduce
the stepsize.

One problem that we have not discussed very much here is that of finding a set
of consistent initial conditions and an initial stepsize which reflects the scaling of the
problem. We will not attempt to solve these problems here, but we will indicate why
these problems are even more difficult than they may at first seem. From § 3, we know
that for (m =3) nonstate subsystems, even the simplest numerical methods with
constant stepsizes fail to give correct answers if they are started with the exact solution.
Even restricting ourselves to problems which do not contain these subsystems, for
nonlinear systems this is still a very difficult problem. From a practical point of view,
even with a set of initial conditions and derivatives, we must be very careful about
selecting the initial stepsize. If this stepsize is too small, we may fail to solve the
problem because the iteration matrix is very poorly conditioned, even though the
problem might have been solved successfully given a better (larger) choice of initial
stepsize.

A final point which is of practical interest is the cost of computing the error
estimate (4.5) and the information that we need to do this. If we restrict ourselves to
systems of the form

(5.11) B(t, y)y'—f(t,y)=F(,y,y)=0

(where y' appears only linearly), we can avoid computing, storing, and multiplying by
the matrix E = dF/dy'. (Note that if the iteration matrix (0F/0y — hBdF/dy') is computed
by numerical differencing each column can be computed using only one increment,
as we are really finding (8/8yn+1)F (fa+1, Yn+1(Yn+1—Yn)/ha+1) instead of finding two
separate matrices dF/dy and 9F/dy’, and adding them together. If this is done, then
finding aF/dy’' separately is approximately twice as much work.) This can be done by
requiring the user of the code to supply two separate routines. One routine computes
B(t, y)y' given (¢, y, y')—that is, only those terms in (5.11) that involve y'. The other
routine computes the full residual B(, y)y'—f(¢, y), given (¢, y, y'). (Alternatively, one
routine which computes either of these possibilities, depending on the value of a flag,
could be used.) The first routine can be used to compute E(y; —y%) in the error
estimate (4.5) given (y, —y») in place of y'. In many ways this seems to be a simpler
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interface and requires less storage than others that have been used for these problems.
For example, Hindmarsh and Painter [5] solve problems of the form (5.11), requiring
the user to supply routines to compute F, and to add B to a given matrix. With our
suggestion, instead of having to find the matrix B(¢, y) and add it to a given matrix,
the user of the code need only distinguish those terms of (5.11) that involve y'.

Obviously, we do not have answers to all the questions which have been discussed
in this section. These seem to be difficulties which have been neglected in the literature.
We feel that anyone who is seriously writing a code for solving DAE systems or using
such a code should at least be aware of these difficulties.

6. Summary. In this paper we have considered some of the many difficulties
which can occur in solving differential/algebraic systems. The behavior of numerical
methods applied to these systems differs from what we would expect based on
experience from solving ODE’s in several important ways. For linear systems of
nilpotency m =2, we have noted that the basic algorithms (BDF) which are in use
will work, in the sense that as long as stepsizes and orders are chosen so that the
method is stable (Gear-Tu [12], Gear-Watanabe [13]) then the computed solution
converges to the true solution as the maximum stepsize approaches zero. Error
estimates based on the difference between the predictor and the corrector may be
grossly inaccurate for these systems and can even cause codes to fail unnecessarily.
To overcome these difficulties, we have suggested an error estimate which would more
accurately estimate errors for these problems and would eliminate the other difficulties
associated with the usual estimates. With the new error estimates, and possibly some
changes to other strategies used in ODE codes, we believe that the algorithms (such
as variable-stepsize BDF) which have been used in codes for solving differential/alge-
braic systems in the past could be used to solve DAE systems where solutions behave
similarly to solutions of linear problems with nilpotency m =2, and possibly to diagnose
other problems which cannot be solved with these algorithms. This is a significant
improvement over past codes which could not deal adequately with problems of
nilpotency m = 2.

On the other hand, we have also found that none of the algorithms such as BDF
are adequate for solving (with varying stepsizes chosen automatically by a code)
problems with nilpotency m =3. One alarming fact that has come into focus is that
some error estimation schemes which have been proposed [2] or used [3] in other
codes, would allow wrong answers to be computed for some variables, with absolutely
no warning. For these types of systems, the solution does not converge (except under
very severe restrictions on how fast the stepsize can change) as the maximum stepsize
approaches zero. Instead, large errors may be introduced into the solution whenever
the stepsize is changed. Because of this situation, it is wise to use extreme caution in
any attempt to avoid controlling error in certain components of the solution of any
differential/algebraic system. Finding initial conditions for these problems seems to
be extremely difficult because even if we start with initial conditions equal to the exact
solution, the solution in the first few steps may be grossly in error. While this may
not be fatal for a linear problem, because later the approximation will converge to
the true solution, for a nonlinear problem it could be disastrous.

It is well known that some differential/algebriac systems can be thought of as
limiting cases of stiff systems (as the stiffness becomes infinite). We have constructed
several of these problems and our tests confirm that codes based on BDF exhibit
many of the difficulties that we have described here. In particular, for these problems
the usual error estimates are very unsatisfactory, especially when the stepsize changes.
This tends to cause the stepsize to be reduced until AL (where L is the Lipschitz
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constant for the problem) is small. We do not know if this occurs very often in stiff
problems which are of interest, but it may be a point worth considering in the design
of stiff codes and algorithms.
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