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Abstract 

This paper introduces a new family of second-order methods for solving the index-2 differential-algebraic equations (DAEs) of motion for 

flexible mechanism dynamics. These methods, which extend the o-methods for ODES of structural dynamics to DAEs, possess numerical 
dissipation that can be controlled by the user. Convergence and stability analysis is given and verifies that the DAE o-methods introduce no 

additional oscillations and preserve the stability of the underlying ODE system. Convergence of the Newton iteration, which can be a source 

of difficulty in solving nonlinear oscillatory systems with large stepsizes, is achieved via a coordinate-split modification to the Newton 

iteration. Numerical results illustrate the effectiveness of the new methods for simulation of flexible mechanisms. 0 1998 Elsevier Science 

S.A. 

1. Introduction 

The numerical solution of flexible multibody systems is required for nonlinear dynamic analysis of articulated 
structures. These are structures in which kinematic connections permit large relative motion between 
components that undergo small elastic deformation. A source of difficulty in the solution of flexible multibody 
equations of motion is the coupling between the elastodynamic equations and the gross motion. Simulation of 
flexible multibody systems has been an active research topic for the last two decades. Many of the developments 
in flexible multibody systems have been implemented in the multibody dynamic analysis codes [19,21]. For 
such systems, an important feature of the solution is the nonlinear oscillations induced by the elastodynamics 
equations. Moreover, since the governing equations of flexible multibody systems are often modeled using 
algebraic constraints, the numerical solution of DAEs is required [ 1,291. This paper is concerned with the 
numerical solution of the DAEs of constrained flexible multibody motion by applying the family of a-methods 
for linear structural dynamics problems. 

Recent developments in the simulation of multibody systems have created a variety of methodologies for 
efficient automation of the process of constructing the highly nonlinear equations of motion of constrained 
multibody mechanical systems [lo]. The governing equations of motion are the well-known Euler-Lagrange 
equations, 

M(q)4 -f(4, q. t) + GT(q3 t)A = 0 (l.la) 

g(q, r) = 0 (l.lb) 
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where 4 are the generalized coordinates, M is the mass-inertia matrix, h are the Lagrange multipliers that couple 
the kinematic constraints g with the Newton-Euler equations of motion, and G = ag/ i)g is the constraint 
Jacobian. For more details on the construction of the Euler-Lagrange equations of constrained multibody 
systems, we refer to [ 10,14,20,21]. While many contributions to the literature have focused on the efficient 
generation of (1. l), in recent years there has been progress in the numerical solution of differential-algebraic 
equations [ 1,9,8]. Two basically different approaches have been proposed for integration of (1.1). The first 
involves direct application of sti@y stable numerical integration, such as backward differentiation formulas 
(BDF), to various forms of DAEs derived from (1.1). The second approach is based on the solution of the 
state-space form of ( 1.1). Either solution should satisfy the constraint equations ( 1. lb), which requires special 
care. Solution techniques for multibody systems have been proposed in [5,6,15,18,23,27]. 

Time integration algorithms for solving structural dynamics problems have been developed since the late 
1950s [ 171. General requirements and the foundations of these methods have been well-documented 
[ 1 1,12,24,3]. Although their main application area is to linear structural dynamics, these methods can be directly 
applied to the initial value problems of nonlinear second-order ordinary differential equations (ODES). 

ii =f(ci, q, f) (1.2) 

Accuracy and stability analysis hold for the numerical methods, provided the discretized nonlinear equations 
have been solved accurately, i.e. within a small enough tolerance. For example, the HHT-(Y method 11 11 for 
(1.2) is given by 

a ,1+, = (1 + ~)A;+, - 4 ( 1.3a) 

9 = ,I+ I q,,+hu~~+h2((~-P)a~~+pa,,+,) (I .3b) 

v ,I + I = u,, + MC1 - yb,, + F,,,,) ( I .3c) 

where the subscript denotes the corresponding function value at the time, e.g. q,, = q(t,,), 1~ = t,,,, ~ t,, is the 
time step, oY[-+,O], p=(l -cu)‘/4, and y = t - a. It is well-known that the HHT-cu family is second- 
order accurate and A-stable. Numerical dissipation is maximum for LY = -0.3, and zero for N = 0. Controllable 
numerical dissipation and unconditional stability are needed to deal with the high-frequency modes which often 
result from standard finite element spatial discretization. For nonlinear oscillations, these properties are also 
required in the solution of flexible multibody systems. Rather than using ad hoc mode-selection processes, this 
approach is more desirable because the elimination of higher frequencies is controlled by selection of the 

parameters. 
This paper is concerned with the numerical solution of constrained flexible multibody motion by the family of 

o-methods. Attempts have been made to apply the HHT-a-method (1.3) directly to ( 1.1) and its index-2 form 
[2]. However, these methods are plagued by oscillations which are largely unphysical. Here, we extend the 
o-method to DAEs in a way which does not introduce additional oscillations. The basic idea of the proposed 
method is to use the underlying ODES of DAEs and the projection onto the constraint manifold. The main effort 
is in developing numerical schemes which exploit the structure of multibody dynamic equations, to maintain the 
stability and reduce the computational cost as compared to a straightforward application. To treat the internal 
oscillations in the constrained systems, we use a modified Newton-type iteration based on the Coordinate-Split 

formulation of multibody systems [27]. 
In Section 2, we show the direct application of the a-method to nonlinear multibody DAEs. A projection step 

to enforce the position and velocity constraints is used for maintaining the stability and accuracy of the 
numerical solution. A convergence analysis of this approach is given. In Section 3, we describe an effective 
form of the a-method for constrained flexible multibody equations. In addition, we describe an efficient 
Newton-type iteration for dealing with the high-frequency oscillations that arise from small elastic deformation. 
Numerical experiments illustrating the effectiveness of the DAE-cu method are given in Section 4. 

2. Numerical integration of flexible multibody systems 

The basic form of the constrained multibody equations of motion is given by (1. l), which is a DAE of 
index-3 (see [l] for the definition of index). Due to the problems of numerical instability in solving index-3 
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DAEs, most of the solution techniques for (1.1) have been developed using differentiation of the constraints 

( 1.1 b). Assuming that the kinematic constraint equations are twice differentiable, the analytic solution of ( 1.1) 

must satisfy 

M(q)4 + GT(q, t)h -f(4. P. t) = 0 (2.la) 

(2.lb) 

G( q, t)4 + g = 0 

g(q, t) = 0 

(2.lc) 

(2.ld) 

where (2. lc) and (2.1 b) are the velocity and acceleration constraints, respectively. They are obtained by once 

and twice differentiating the position constraint (2.ld). 
Solving (2. la) and (2.1 b) for ti = 4, the underlying ODE of (2.1) is obtained 

cj=c$(~$q,t)=M~‘(f-GTA) (2.2) 

where h = (GM-‘GT)-‘(GM-‘f- 7) and v = -((dGi/dq)i + 2(d2g/dq at) + d’g/dt’). For simplicity of 
notation, we assume that M is invertible. Any conventional numerical integration method can be applied to 

(2.2), however the numerical solution will not preserve the constraints (2.1~) and (2.ld). To enforce the 
constraints, the numerical solution can be projected onto the position constraint manifold, which is defined as 
Ju, = {q ( g(q, t) = 0, V t}. For an approximation 4 of q E JH~, @ is projected onto the manifold &q via 

M(q)(q - S) + GT(q, t)c= 0 (2.3a) 

g(q,t)=O. (2.3b) 

This nonlinear system can be solved using Newton-type methods, since its Jacobian is nonsingular near the 
constraint manifold [10,15]. The approximation V is projected onto the velocity constraint manifold, MU = 

{u 1 G( q, t)u = 0, V q E Jlly, V t}, by solving the linear system 

M(q)(u - 6) + GT(q, t),L = 0 (2.4a) 

G(q,t)v=O. (2.4b) 

In (2.3) and (2.4), Y and iI are the Lagrange multipliers associated with the projections. Carrying out the 

simultaneous solution of (2.2), (2.3) and (2.4), e.g. (q, V) and (v, ,&), yields the results (q, u) that are consistent 

with the analytical solution of (2.1). 

REMARK 2.1. The projection of 4 onto the position constraint manifold has been proposed by many authors 
[ 18,231. A variant of (2.3) was used in the half-explicit extrapolation method [15] 

M(q)(q - 4) + GT(q, t)F= 0, 

where 4 is obtained by extrapolation. 

Applying the a-method (1.3) to (2.2), and projecting the numerical solution to (2.3) and (2.4) yields 

a n+, -Cl +a)&+, +wk== 

M(<,+,)(q,+, - s,+,) + GT(&+,t 6z+,)?z+, =0 

M&t,)@,+, -Un+,)+GT(~II+,‘tn+,)~,+, =0 

G(q,+,, tn+,)u,+, =0 

g(%+,,61+,)=0 

(2Sa) 

(2Sb) 

(2.5~) 

(2.5d) 

(2.5e) 

where 
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- =4,,+hv,~+h”((~-B)rr,,+Bu,,+,) 4,,~ I 

fi,, + I =u,{+h((l -y)u,,+YJ,,+,). (2&b) 

The solution of (2.5) consists of the acceleration. velocity and position, e.g. (a,,_,. u,(_ ,, q,, + ,), and the 

multipliers (T:, + , , p,, _ ,) of the projection. For simplicity, we assume that the kinematic constraints do not 
depend explicitly on time, e.g. scleronomic constraints. The accuracy and stability of (2.5) can be shown by the 
standard analysis of (1.3) and Gauss-Newton iteration of the constraints. 

THEOREM 2.1. Suppose g is smooth, e.g. g E C’. G = ilgf aq bus ,fuU row tank on the position constraint 

mun~f~~ld, and GMG’ is invertible. Suppose d in (2.2) is Lipschitz continuous in q and v. There exists h,, such 

that ,fbr h s h,, the solutions q,!+, und u,> + , qf (2.5) satisfy 

/I%,+, - 40,,+, )I/ = O(h2), h, , - W,,, ,111 = O(h) (2.7) 

given consistent starting values ( yo, U,,, UC,, q,. jl,,). 

PROOF. Applying the numerical integration of (1.3) to the underlying ODE of (2. I), we denote x9,, , = 
[y”,,. , , hti,,., , h’u,, + ,I, where 

4, + 1 = ( 1 + aMU,,+, . q^,, + , > t,, / ,I - 4(~,,> 4,,> f,,) 9 

and 4,, , , and fi,,+ , are obtained from (2.6) using Ut,, ,. Linearization of the HHT a-method yields 

x, t I = A ,,i,, . nE{O,1,2 ).... N}. (2.8) 

where A, for i E (0, I, 2, , N} is the IOCUI mnpl$cution matrix. For a linear function 4 = A4 ’ Kq. standard 
analysis [ 1 l] shows that the local truncation error of x,,,, is 0(/z’), with cy, p, y given in (I .3). Since qb is 

Lipschitz, eigenvalue analysis for the linear model function can be applied to the nonlinear case via the 
linearization of (2.8), see 121 for details. 

Since GMG’ is nonsingular and G has full row rank, locally there exists P(q) such that P( y@(q) = 0. 

Premultiplying (2.Sb). (2.5~) by i,, , = P( $i,,+ , ) yields 

i 

p,, / , M( 4,, , )( ‘l,, I - 4,) - I ) 

P,, , M( i,, , )(v,, + , ~ fi,, I ) 1 = 0 , 

which is a .srtrtr-.sl,uce ODE of (1.1). The state-space solution together with the constraints (2.5d), (2Se) is 

well-detined. In addition, the local error of (q,, + , , hv,$ + , ) is the same order as that of (<,,+ , . hfi,, + , ), provided 
that the nonlinear system is solved with an error tolerance which is less than the truncation error. For more 
details on the proof, we refer to 1251 (Theorem 3, pp. 559-561). Since xn, , is obtained from the second-order 
a-method, this implies that the local error of [q,, , ,, hv,z. , ] is O(h’), provided that the nonlinear equations are 

solved with an error tolerance O(h’). Denoting X,I+, = [q,,_ , , IvJ,,, , , h’u,,, , 1, we conclude that the local 
truncation error of X!,, , is O(h’). It follows that (2.7) holds for h c h,,, where h,, depends on the Lipschitz 

constant of I$ and on the Jacobian and Hessian of g. 0 

REMARK 2.2. The above results hold for many of the numerical integration methods of structural dynamics, 
including the Newmark P-method 1171, and a variety of the a-methods [ 12,24,3]. 

Note that the projection p,,+ , can be replaced by P,, , , = P(q,, _ , ) in the above analysis [ IS]. Therefore, we 
may use M(y,, +,) and GT(q!,+ ,) in (25b). (2.5~) instead of M(@,,+,) and G’(y,,+,). 

REMARK 2.3. For the one-step a-methods, the error of the multipliers (6,,+, , &,_, ) does not depend on 
accumulated errors of the constraints from the past state variables. Consider the expansion of the constraints 

x(4,,+, 1 about GL 

xc<,,+, )=~(q,,+,)+G(q,,+,)(q,,-, -4,,A, +cF,,,~,) 



J. Yen et al. I Comnput. Methods Appl. Mech. Erqrg. 1.58 (1998) 341-355 345 

for SOme llGn+,5,+,ll = O(llq,+l - 4,,+,l12). Using the projection (2.3), the associated multiplier fi, + , is given by 

fin+ I =(G,,+,M,~~,G~+,)-‘(g(~,,+,)-G,+,5,,+,). 

Similarly, the projection (2.4) yields the multiplier 

(2.9) 

I&+, = (G,+,M,~:,G~+,)~‘(G,+,v,+,). (2.10) 

Eq. (2.5) illustrate a straightforward application of the a-method to the constrained multibody systems. 
However, the computational cost of this approach is relatively large for moderate- to large-scale multibody 

systems. Each iteration of (2.5) requires the inversion of the mass-inertia matrix M and the formation off and 
decomposition of GM- 'CT in the computation of +,,,+ , , e.g. the underlying ODE (2.2). To remedy the high cost 

of (2.5), we retain the Lagrange multiplier h in ( 1.1) to avoid the inversion of large matrices. This is achieved 
because the linear algebra involved in the computation of 4,,,+, is the same as that of the projection steps (2.3) 

and (2.4). It will be shown in the next section how this approach leads to the DAE a-method which applies the 
discretization schemes of the a-methods for linear structural dynamics to the index-2 DAEs of the constrained 
multibody equations of motion. 

3. The DAE a-method 

One can reduce the computational cost of (2.5) by eliminating the explicit solution for $,,,+ ,. Substituting the 
right-hand side of (2.2) into (2.5a) yields 

a ,,+, = (1 + Q)M,::,(J?,+, - G:+,h,+,) - a& 

where +,,, = M,i’(J, - GZA,,). Substituting (3.1) into (2.6) yields 

(3.1) 

4,,+, =q~+hu~+h’[(~-B)a~-PN~),]+h2~~~~,(~~+,-G;l+,~a+,) (3.2a) 

v^ ,?+, =u,,+h[(l-y)an-ycu~,,ll+h~~~~,(~,+, -Gz+,4,+,) (3.2b) 

where fi = p( 1 + (w) and T = y( 1 + a). Substitute (3.2) into (2.5b, 2.5~) to obtain the DAE a-method 

MN+I(q.)I+, - 4,) - fih2L+, + G:+, v,+, = 0 

M,,+,(u,,+, -v^,)- ?M,+,, +G;+,P,,+, =O 

G,,+,un+, =O 

g(q,,+,) = 0 

where 

(3.3a) 

(3.3b) 

(3.3c) 

(3.3d) 

(3.4a) 

6, = u,, + h](l - Y)an - rq$,,l , (3.4b) 

and a,, = & and a,! = (1 + a)4,,, + @fi_, for IZ 3 1. Note that v,,+, and Pi+, in (3.3) comprise h’$A,+, and the 
corresponding correction terms by the projections. 

Comparing (3.3) to (2.5), the solutions of the state variables q,r+, and u,,,, differ by the use of two slightly 
different projections. The solution of (3.3) is obtained from the projection along the direction of M,::, G;f+ , , 
while the solution of (2.5) is obtained from the projection along the direction of Gii, G r+, On a smooth 
manifold, e.g. g E C2, the distance between the solutions can be bounded by O(h) for h s h, [ 18,251. However, 
the algebraic variables v,,+, and ,u,,+, contain also the scaled Lagrange multiplier h of (1.1) which was not 
accounted for by fi, + , and ,&, + , in (2.5b) and (2.5c), respectively. Thus, convergence analysis of the algebraic 

variables (v, + , , ,u,, + , > remains for the accuracy and stability of the DAE a-method (3.3). This can be 
established via the results for the application of stifJEy stable numerical integration methods to index-2 DAEs [9]. 
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THEOREM 3.1. Let the assumptions qf’ Theorem 2.1 hold, and the initial value (q,, u(,) at t,, sati@ 

k/,, - q(t,,)II = O(h’) 3 //u,, - W,,lil = Wh 

and g(q,,) = 0, G(q,,)u,, = 0. The corresponding initial values of the multipliers are 

y, = bh’h,, , ~0 = 94, 3 

where A,, = h(t,,) of (1. I). There exists h, such that for h S h,, the solution of (3.3) satisjies 

b,, - s(t,,)II = O(h*) > b,, - W,,)iI = 0th) 

for all n E (0, 1, 2, , N}. 

PROOF. The algebraic variables of (3.3) can be written as 

v ,I+ I - r,_, + &‘A,, / , > 

P ,i+ I = F ,,+I + ?4,+, 

where q,+ , and ,& + , are due to the projections of 4,, + , and u”,, + , onto the corresponding constraint manifolds, 
i.e. (2.3) and (2.4), respectively. Using the compact form of (2.8) e.g. X,, , , = A,,X,,, the discretization of (3.3) 
can be expressed by 

h’ 
4 = ,I+ 1 q,,+hu,z+ya,I+%+l +G;jllk,+, 

U r,+ I =u,z+ha,,+$41+, +G;j.,k,,_, 

(3Sa) 

(3Sb) 

(3.k) 

where 

6 ,?+, =Ph21(l+~)MR:,(L+, ~G~,,h,,+,)-LY~,,,~a,,l. 

Applying the test equation 4 = -w’q to (3.5), three eigenvalues of the amplification matrix A,, as hw’ -+x are 

of the magnitudes 121 

1 

CY l-Q! I-a 

l+Q’l+a’l+cu 1 

for p = (1 ~ a)‘/4 and y = $ - (Y. Thus, the a-method is stiffly stable for all cy E [- 4, 0). Convergence of 
stiffly stable integration methods for index-2 DAEs is well-known 191. These results yield the convergence of 
the algebraic variables in (3.5). In addition. for the special case LY = 0, i.e. the implicit trapezoidal rule, the 

eigenvalues corresponding to (@,, + , , hC,, , , ) are 1 and 0. Convergence analysis has also been carried out for this 
case (for example see [ 131). 

Using these results and Theorem 2. I, the local errors of v,,, , and ,u,~+, can be obtained from (2.9) and (2. lo), 
respectively. Consequently, (3.1) implies that 

lIh,,+, - W,,+,)II =0(h) 

where A(t,,+ ,) is defined by (2.2). For I/X,, - X(tn)II = O(h’), we conclude that 

II&,+, ~ s(t,,+ ,)I1 = W’) > I(~,,+, - u@,,+,)II = W’) 

where G,, + , and U,, + , are the solutions of (3.2). Thus, the solution of (3.3) satisfies Ilq,i+, - q(t,, +, )/I = 0th’) and 

IIV ,,i I -u(t,,+,)+O(h), t/nEO,l,..., N- 1. 0 
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3.1. Coordinate-split formulation 

Alternatively, we can directly apply the a-method to an index-l form of ( 1.1) using nonlinear projection 

operators, e.g. an annihilation matrix P(q) such that P(q)GT(q) = 0. Premultiplying (3.3a) and (3.3b) by such a 
matrix yields 

Pn+,@fn+,(qn+, - 4,,) - Lw,,,) = 0 (3.6a) 

Rn+,(Mn+,(un+, -v”,)- ?&+,)=O (3.6b) 

G,+,u,+, =O (3.6~) 

g(q,t+,) = 0. (3.6d) 

Accuracy and stability of the a-methods for ODE are preserved, since the algebraic variables have been 
annihilated. 

There is a potential gain in efficiency for this formulation due to the size-reduction of the nonlinear system, 
compared to (3.3). An important practical consequence of (3.6) is that (v, p) have been eliminated from the 

DAE. Thus, the Newton iteration convergence test in a numerical implementation of (3.6) no longer needs to 
include those multipliers, which can cause problems in the direct numerical solution of (3.3). One could in 
principle also consider removing (v, p) from the Newton convergence test in the solution of (3.3) however it is 
not usually possible to justify this action. Elimination of these variables from the Newton convergence test in the 

solution of (3.3) can lead to a code which sometimes produces incorrect solutions. It is the fact that multiplying 
by the nonlinear P(q) eliminates (v, p) from the nonlinear system, which allows these variables to be excluded 
from the tests in the solution of (3.6). However, the computation of the matrix P(q) and its derivative can be 
costly if not impossible. We have dealt with this problem by an efficient Newton-type iteration of (3.6) using a 
family of the CS-matrix P(q) [27]. 

To obtain a cheap representation of P(q) and its derivative, the CSoperator is computed by the solution of a 
class of pseudo-inverses of the constraint Jacobian G(q). 

DEFINITION 3.1 (Coordinate-Splitting Matrix). Let X and Y be the matrices whose columns constitute the 
standard basis such that Il(G(q)Y)-‘11 b IS oun e m a neighborhood CT,, of q,,. The coordinate-splitting matrix is d d 

defined by 

P(q) = XT - Q(q)‘Y’ = XT(Z - G(q)T(G(q)Y)-TYT) 

where Q(q) = (G(q)Y)-‘G(q)X. 

(3.7) 

REMARK 3.1. From the construction of the CS matrix P(q), one can easily see that P(q)G’(q) = 0 for all 4, i.e. 

P(q) is orthogonal to range (GT). Furthermore, the row vectors of Z’(q) are orthonormal, i.e. P(q)TP( q) is the 
identity. 

The computation of P(q) can be carried out using the LU-factorization of the constraint Jacobian matrix. 
Applying Gaussian elimination with row-pivoting to GT yields 

E, . . .E,GT=L;..L,U (3.8) 

where E, is the elementary permutation and L, is a Gauss transformation, i E { 1,2, . . . , m}. From the 
factorization, we have 

[Y,X] =E=E;..E, . (3.9) 

Using the standard solution technique by LU-decomposition, the projected vector P(q)r can be computed in a 
straightforward and relatively cheap way. In addition, the derivative (dP(q)r)ldq can be computed by the same 
factorization of GT and the intermediate result s = -(GY)-‘YTr from the computation of P(q)r. 

REMARK 3.2. Alternatively, one can apply QR-factorization to GT for the computation of P(q)r. Using 
QR-factorization with partial column pivoting [7], we obtain 
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G’E, . . . _6,,, = L, . . . I$,$ (3.10) 

where Et is the elementary permutation, L, is the Householder matrix, i E {1,2, . . . , m}, and fi is upper 

triangular. The last (n - m) columns of the orthogonal matrix L = II:“, i, constitute a basis for the null-space of 
G. Thus, we can write 

[Y, i] = L = L, L,,, . (3.11) 

Note that x and Y are usually subsets of the standard basis in R”. 

An efficient implementation of Newton-type iteration for (3.6) has been presented in 1271, where the Jacobian 
of the nonlinear system was derived. More importantly, a modification of the Jacobian was obtained to enhance 
the convergence of Newton-type iterations for high-frequency oscillations. This is achieved by eliminating the 

term 

W q)r dG ‘(ds ~ o 

-=p(q) dq dq > 

where s = -(GY))‘Y’ Y, from the Jacobian. This term represents the sensitivity of the potential,fi~ce due to the 

constraints. When the solution is not close to an equilibrkm on the constraint manifold, this term can be 
dominant in the Jacobian of the nonlinear system. Consequently, the iterative solution is forced to resolve the 
high-frequency oscillations if the constraint violation is large compared to the amplitude of the high modes. In 

highly oscillatory flexible multibody systems, this problem can occur at larger time integration stepsizes. Using 
this modification of the C’S iteration, abbreviated CM, the DAE a-method permits a fast convergence of the 
solution. In addition, the computational cost of the CS-matrix is insignificant compared to one iteration of (3.3) 
for DAEs with a small number of constraints, such as large-scale flexible multibody systems. We will present 

several numerical examples involving high-frequency vibrations to illustrate the advantages of the CM iteration 
in the next section. 

4. Numerical examples 

The DAE HHT a-method in (3.3) can be used for any numerical integration scheme for linear structural 
dynamics. For the numerical solution of the test problems, we will use the DAE formulas which are extensions 
of the generalized a-method 131. The generalized a-method for (1.2) is given by 

( 1 - a;,, )a,* + I + a;,,a,, = ( 1 - a, X,, , + a;.f, / (4.1) 

where the position and velocity states are defined by (1.3b) and (1.3c), respectively. The parameters of the 
method are obtained by a user-specified value of high-frequency dissipation p E [O, 11 (i.e. p = 0 maximum 
dissipation, p = I none), such that 

2p - 1 P 
a,,, = ~ p+l ’ ai p+l’ 

This yields a second-order, 
need only replace (3.4) by 

P= 
(1 - a,,, + a,)? 

4 

A-stable family of numerical integration methods. Using (4.1) in (3.3) or (3.6), we 

(4.2a) 

(4.2b) 

and p=p(l - a;)/(1 ~ a,,,), F = y( 1 - a, )/( 1 ~ a,,,). The generalized a-method is parametrized by the size of 
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the dominant eigenvalue(s) p of its amplification matrix A(-(hw)*) as ho -0. It gives the most comprehensive 
range of the user-specified value of the spectral radius in the high-frequency limit, while low-frequency 
dissipation is minimized [3]. 

4.1. Stiff spring pendulum 

To demonstrate the user-specified high-frequency dissipation in the generalized a-method, we use the stiff 

pendulum example, as shown schematically in Fig. 1. The pendulum is attached to a fixed point with a massless 
spring. The gravitation force is acting on the negative y-axis. In Cartesian coordinates, the equations of motion 
of this model, with unit mass and gravity, can be written 

0=x-u (4.3a) 

O=J;-u (4.3b) 

o=ti +xh (4.3c) 

o=ti +yh- 1.0 (4.3d) 

(4.3e) 

where the stiff spring of natural length 1.0 and stiffness 1 /E’ is attached to the center of mass of the pendulum. 

Denote by h the stepsize, 6 the maximum deflection of the spring, and the potential energy of the system 

“=&(L:+y2- l)? 

Then, the frequency w of the system is proportional to IldVl] such that 

As E + 0, the dominant pair of eigenvalues approaches km along the imaginary axis. This problem is discussed 
in more detail in [26]. 

The numerical solution of the index-l DAE (4.3) has been carried out applying the generalized a-method to 

(3.3). Using the initial values (x,, yO, ug, uO) = (0,9,0,0, O), E* = lo-“, and Newton iteration with tolerance 
10P”‘, the results of several combinations of the high frequency dissipation p and steplength h for a 0 to 5 s 
simulation are given. The total energy is plotted in Fig. 2, with the high-frequency dissipation parameter p 
varying from 1 to 0. The solution trajectory on the coordinate plane is shown in Fig. 3 with the stepsize varying 
from lo-’ to lo-‘. The results illustrate the effective damping of the DAE-(Y method. As p + 0 or the stepsize 
h is increased, the numerical solution approaches the equilibrium of the spring while maintaining the slow 
swing, e.g. see Fig. 3. The controllable damping of the DAE a-method is demonstrated by the stiff spring 

I- 
i 
: 
\ 
‘5 
\ 
\ 

‘\. Y .., . 

L X 

Fig. I. Stiff spring pendulum. 
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Fig. 2. Stiff spring pendulum example; c’ = IO-‘, TOL = 10~“‘. 

Fig. 3. Stiff spring pendulum example; c2 = IO ‘, TOL = 10~“‘. 

pendulum example. However, the stepsize may need to be restricted to obtain convergence of the Newton 
iteration for solving the nonlinear equations at each time step. In the next subsection, we present a nonlinear 
bushing example, which illustrates that the CM iteration applied to (3.6) achieves better convergence than 
solution of (3.3) via Newton iteration, thus allowing effective damping of high-frequency oscillations by taking 

larger time steps. 

4.2. Nonlinear bushing force 

The next example is a nonlinear three-variable bushing example. Using 2-D Cartesian coordinates, the 
problem may be represented as 

(+$-If-l 
E2 ’ 

0=8+ --&O-$(cosO($&+l)-sinH$f’) 

o=x2+y2-1 

(4.4b) 

(4.4c) 

(4.4d) 

where f, = i - x + 3 cos 0, 8, = -y + + sin 0 and E = lo-‘. This problem was solved using both the stabilized 
index-2 DAE (3.3) and the CM iteration applied to (3.6). Both the formulations work well for the problem. The 
CA4 iteration permits a larger stepsize and therefore a much quicker dissipation. Some results are compared in 
Figs. 4 and 5. With the initial values x = 0.8, y = 0.6 and 0 = 0.0 and the tolerance for the Newton convergence 
lo-‘, the figures show the response of the 0 variable for different parametric values. The simulation was run for 
T = 405-r X 10e5 s, i.e. roughly 6 cycles of 0 and around 20 cycles for x and y. 

The CS iteration is implemented using 

p= l ( -y/x 0 ” 
0 0 > 1 ’ 

since X-L 1 during the simulation. In Table 1, we list the damping measurement of the solution of the CM 
iteration and that of (3.3). It is measured by the ratio of the initial energy and the energy retained at the end of 
the simulation. Because a straightforward measurement of damping from the displacement response is difficult, 
the energy norm has been conveniently used. The last row of Table 1 shows the maximum stepsize that can be 
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Fig. 4. Bushing example, stabilized index-2 formulation; E = IO-‘, TOL = lo-‘. 

Fig. 5. Bushing example, CM iteration for 500 timesteps; E = lo-‘, TOL = IO-‘. 

Table I 
Final energy vs. initial energy for the bushing problem; T = 40~ X 10m5 

No. steps 

200 

500 

1200 

max. h, 

p=O(CM) p=o p=$(CM) 

0.10 0.15 0.35 

0.24 0.30 0.40 

0.30 0.41 0.5 1 

T T T 

40 100 70 

P’$ p=;(m) p’$ 

0.56 0.76 0.90 

0.65 0.8 I 0.93 

0.76 0.89 0.96 

T T T 

150 80 175 

taken without causing a failure in Newton convergence. For this example, the CM iteration allows stepsizes 

twice as large as those of the index-2 formulation. In addition, the CM solution exhibits more rapid convergence 
towards the slow solution, e.g. approaching a smaller energy level than that of (3.3). This is illustrated in Table 
1, where the same h and p were used for both CM and (3.3) solutions. 

4.3. Flexible slider-crank 

A flexible slider-crank mechanism is presented schematically in Fig. 6. The mechanism consists of a rigid 

crank connected with a flexible rod driving a slider on a straight line. Three coordinates (4,, &, xg) are used for 
the rigid body equations of motion, and the flexible rod is modeled by a finite element approximation of a 
linearized Bernoulli-Euler beam. For the details of this model, we refer to [22]. 

Using a simple beam obtained from the linearization with respect to the vertical displacement by setting the 
longitudinal displacement to zero, the two constraint equations are 

g(9) = 
( 

1, sin 4, + 1, sin & + qzk+, cos ~$2 

xx - l, cos 41 - I2 cos 42 + q2k+l sin $2 > 

where 1, is the length of the crank, 1, is the length of the rod, q, are the nodal coordinates induced by the k 
elements and q2k+, is the nodal coordinate at the boundary. Since the constraint involves only the boundary 
nodes, the computation of P(q) for the CS formulation can be reduced to 

(4.5) 

where XT consists of the column vectors e3 and e,,, , and r’ consists of e, and e2 such that e, is the jth 
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v Slider 

Longitudinal Displacement 

Fig. 6. Slider-crank mechanism with il flexible rod 

standard base of R2“*‘. The matrix P(q) is applied directly to the 4 X 1 vectors of XT(M(q) -,f) with 
XT = (e ,, e2, e3, eZk+ ,). The rest of the 2k + 1 equations remain unchanged. The computational cost of the 
CS-matrix P is equivalent to that of p. Increasing the number of elements, the computation of p remains 
unchanged. 

A one-second simulation was run with a driving torque of 0.2 N-m from O-O.3 s. The initial velocity and all 

position values are zero except x1 = 0.45. The Newton iteration tolerance was set to lo-“. The spatial 
discretization of the flexible rod was carried out using k = 4, where the magnitude of the maximum eigenvalue 
is about 1.3 X 10J. Using (4.5) in the CM iteration, Newton convergence can be attained with larger stepsizes 

compared to the index-2 DAE form, see Table 2. The high-frequency oscillation of the nodal coordinates is 
shown in Fig. 7, where the amplitude of the vibrations is small compared to the rigid motion. The numerical 
solution corresponding to the slow motion, i.e. (&, $,, xi), is preserved by the iterations of CM and stabilized 
index-2 DAE, as shown by the & plots in Fig. 8. The stepsize h = & is about one period of the highest 
frequency. Applying stronger damping to the high frequency modes, the solution at the midpoint of the Aexible 
rod is presented in Fig. 9 with p = 0.5, 0.0 and h = &. The high modes are eliminated in the numerical 
solution, comparing to Fig. 7. For various combinations of p and h, the total energy plots are presented in Figs. 
10 and 11. At various levels of damping corresponding to the different values of p and h, only the higher modes 

Table 2 
Maximum stepsize: CM vs. index-2 DAE, p = 0.75 

Newton solution tolerance h,, (CM) h,, (index-2 DAE) 

1om5 
I I 

100 175 

IO ’ 
I I 

250 500 

IO ” 
1 I 

400 800 
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Fig. 7. Nonlinear oscillations in nodal coordinates. 

Fig. 8. Rigid motion of coordinate q5> 
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Fig. 9. Damped vibration on midpoint of flexible rod. 

Fig. 10. Total energy comparison, p = 0, 0.5, 0.75. 

I t 0.6 . 

0.6 

1.3 

Fig. 1 I. Total energy comparison, h = A, A, &. 

Fig. 12. Total energy comparison, CM vs. stabilized index-2 DAE 
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are removed in the numerical solution. It is shown in Fig. 12 that faster numerical dissipation of the high modes 
is achieved via the CM iteration, where h = & and p = 0.75. 

5. Conclusions 

A new family of second-order methods has been introduced for solving the equations of motion for flexible 
mechanism dynamics. These DAE a-methods possess numerical dissipation that can be controlled by the user. It 

was shown that the DAE a-methods introduce no additional oscillations and are stable and convergent. 
Convergence of the Newton iteration can be a serious problem in solving nonlinear oscillatory mechanical 

systems with dissipative implicit numerical methods. The source of the difficulties is explained in more detail in 

[28]. In [27] a modified coordinate-split (CM) iteration was introduced which overcomes this problem. 
Numerical results demonstrate that the DAE a-methods, implemented via the CM iteration, offer an effective 

new tool for the simulation of flexible mechanisms. 
We caution that any method which possesses numerical dissipation should be used with care on oscillatory 

systems. Damping should be attempted only for those oscillations which are not of physical interest or 

importance. 
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